计算机图形学

合集下载

计算机图形学基础知识重点整理

计算机图形学基础知识重点整理

计算机图形学基础知识重点整理一、图形学的概念计算机图形学简单来说,就是让计算机去生成、处理和显示图形的学科。

它就像是一个魔法世界,把一堆枯燥的数字和代码变成我们眼睛能看到的超酷图形。

你看那些超炫的3D游戏里的场景、超逼真的动画电影,那可都是计算机图形学的功劳。

这个学科就是想办法让计算机理解图形,然后把图形按照我们想要的样子呈现出来。

二、图形的表示1. 点点是图形里最基本的元素啦。

就像盖房子的小砖头一样,很多个点组合起来就能变成各种图形。

一个点在计算机里就是用坐标来表示的,就像我们在地图上找一个地方,用经度和纬度一样,计算机里的点就是用x和y坐标(如果是3D图形的话,还有z坐标呢)来确定它在空间里的位置。

2. 线有了点,就能连成线啦。

线有各种各样的类型,直线是最简单的,它的方程可以用我们学过的数学知识来表示。

比如说斜截式y = kx + b,这里的k就是斜率,b就是截距。

还有曲线呢,像抛物线、双曲线之类的,在图形学里也经常用到。

这些曲线的表示方法可能会复杂一点,但也很有趣哦。

3. 面好多线围起来就形成了面啦。

面在3D图形里特别重要,因为很多3D物体都是由好多面组成的。

比如说一个正方体,就有六个面。

面的表示方法也有不少,像多边形表示法,就是用好多条边来围成一个面。

三、图形变换1. 平移平移就是把图形在空间里挪个位置。

这就像我们把桌子从房间的这头搬到那头一样。

在计算机里,平移一个图形就是把它每个点的坐标都加上或者减去一个固定的值。

比如说把一个点(x,y)向右平移3个单位,向上平移2个单位,那这个点就变成(x + 3,y + 2)啦。

2. 旋转旋转就更有意思啦。

想象一下把一个图形像陀螺一样转起来。

在计算机里旋转图形,需要根据旋转的角度和旋转中心来计算每个点新的坐标。

这就得用到一些三角函数的知识啦,不过也不难理解。

比如说以原点为中心,把一个点(x,y)逆时针旋转θ度,新的坐标就可以通过一些公式计算出来。

3. 缩放缩放就是把图形变大或者变小。

计算机图形学

计算机图形学

计算机图形学1. 简介计算机图形学是研究如何使用计算机来生成、处理和显示图像的一门学科。

它主要涉及图像的几何和物理特性的建模,以及图像的渲染和表示。

计算机图形学在各个领域中都有广泛的应用,包括游戏开发、电影制作、虚拟现实、医学成像等。

2. 图形学的基本概念图形学的基本概念包括点、线、多边形和曲线等基本元素,以及相应的数学方法和算法。

这些方法和算法用于描述和处理图像的几何特性,包括位置、方向、大小和形状等。

2.1 点和线在计算机图形学中,点是图像中最基本的元素,可以通过坐标系来表示。

线是由两个点之间的连接所形成的,可以通过直线方程或参数方程来描述。

2.2 多边形和曲线多边形是由多个线段连接而成的封闭图形,可以通过顶点的集合来描述。

曲线是由多个点按照一定规律连接而成的,可以通过控制点和插值方法来表示。

3. 图形的几何建模图形的几何建模是计算机图形学中的一个重要研究方向,它涉及如何使用数学模型来表示和描述物体的几何特性。

常用的几何建模方法包括点、线、面、体和曲面等。

3.1 点云和网格模型点云模型是一组离散的点的集合,它可以用于表示不规则形状的物体。

网格模型是一组由三角形或四边形面片组成的表面模型,它可以用于表示规则形状的物体。

3.2 曲面建模曲面建模是基于数学曲面的建模方法,它将物体表面抽象为由曲线和曲面组成的,可以通过控制点和插值方法来表示。

常用的曲面建模方法包括贝塞尔曲线和贝塞尔曲面等。

4. 图形的渲染和表示图形的渲染和表示是计算机图形学中的另一个重要研究方向,它涉及如何将图像的几何信息转化为可视的图像。

常用的渲染和表示方法包括光栅化、光线追踪和纹理映射等。

4.1 光栅化光栅化是将几何对象转化为像素的过程,它涉及将线段或多边形映射到屏幕上的像素点,并进行相应的着色和填充。

常用的光栅化算法包括Bresenham算法和扫描线算法等。

4.2 光线追踪光线追踪是一种以物理光线为基础的渲染方法,它从观察者的视角出发,沿着光线的路径跟踪物体的相交和反射,最终得到图像。

计算机图形学的基本概念与算法

计算机图形学的基本概念与算法

计算机图形学的基本概念与算法计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。

它在许多领域中都有广泛应用,例如电影制作、游戏开发、医学成像等。

本文将介绍计算机图形学的基本概念和算法,并分步详细列出相关内容。

一、基本概念1. 图像表示:计算机图形学中,图像通常使用像素(Pixel)来表示。

每个像素包含了图像上一个特定位置的颜色或灰度值。

2. 坐标系统:计算机图形学使用不同的坐标系统来表示图像的位置。

常见的坐标系统有笛卡尔坐标系、屏幕坐标系等。

3. 颜色模型:计算机图形学中常用的颜色模型有RGB模型(红、绿、蓝)和CMYK模型(青、品红、黄、黑)等。

RGB模型将颜色表示为三个分量的组合,而CMYK模型用于打印颜色。

4. 变换:变换是计算机图形学中常用的操作,包括平移、旋转、缩放和剪切等。

通过变换,可以改变图像的位置、大小和方向。

5. 插值:在计算机图形学中,插值是指通过已知的数据点来推测未知位置的值。

常见的插值方法有双线性插值和双三次插值等。

二、基本算法1. 线段生成算法:线段生成是图形学中最基本的操作之一。

常见的线段生成算法有DDA算法(Digital Differential Analyzer)和Bresenham算法。

DDA算法通过计算线段的斜率来生成线段上的像素,而Bresenham算法通过绘制画板上的一个像素来逐渐描绘出整条直线。

2. 多边形填充算法:多边形填充是将一个多边形内的区域用颜色填充的过程。

常见的多边形填充算法有扫描线算法和边界填充算法。

扫描线算法通过扫描多边形的每一条水平线,不断更新当前扫描线下方的活动边并进行填充。

边界填充算法从某点开始,向四个方向延伸,逐渐填充整个多边形。

3. 圆弧生成算法:生成圆弧是计算机图形学中常见的操作之一,常用于绘制圆形和曲线。

常见的圆弧生成算法有中点圆生成算法和Bresenham圆弧生成算法。

中点圆生成算法通过计算圆弧中的每个点与圆心的关系来生成圆弧上的像素,而Bresenham圆弧生成算法通过在八个特定的扫描区域内绘制圆弧上的像素。

计算机图形学ppt(共49张PPT)

计算机图形学ppt(共49张PPT)
实现自动化、智能化的 加工和生产。
应用领域
广泛应用于机械、电子、建筑、汽车等制造业领域。
计算机游戏设计与开发
游戏引擎
基于计算机图形学技术构建游戏引擎, 实现游戏场景、角色、特效等的渲染 和交互。
应用领域
广泛应用于娱乐、教育、军事模拟等 领域。
游戏设计
利用计算机图形学技术进行游戏关卡、 任务、角色等的设计,提高游戏的可 玩性和趣味性。
纹理映射与表面细节处理
纹理坐标
定义物体表面上的点与纹理图像上的点之间 的映射关系。
Mipmapping
使用多级渐远纹理来减少纹理采样时的走样 现象。
Bump Mapping
通过扰动表面法线来模拟表面凹凸不平的细 节。
Displacement Mapping
根据高度图调整顶点位置,实现更真实的表 面细节。
透明度与半透明处理
Alpha Blending
通过混合像素的颜色和背景颜 色来实现透明度效果。
Order-Independent Transparency
一种解决透明物体渲染顺序问 题的方法,可以实现正确的透 明效果叠加。
Depth Peeling
通过多次渲染场景,每次剥离 一层深度,来实现半透明物体 的正确渲染。
如中点画圆算法,利用圆 的八对称性,通过计算决 策参数来生成圆。
多边形的生成算法
如扫描线填充算法,通过 扫描多边形并计算交点来 生成多边形。
二维图形的变换与裁剪
二维图形的变换
包括平移(Translation)、旋转(Rotation)、 缩放(Scaling)等变换,可以通过变换矩阵来实 现。
二维图形的裁剪
后期制作
在影视制作后期,利用计算机图形学技术进行颜色校正、合成、剪 辑等处理,提高影片质量。

计算机图形学基础知识重点整理

计算机图形学基础知识重点整理

计算机图形学基础知识重点整理一、图形学基本概念1. 图形学是啥呢?它就像是一个魔法世界,研究怎么在计算机里表示图形,然后对这些图形进行各种操作。

比如说,我们玩的那些超酷炫的游戏,里面的人物、场景都是通过计算机图形学搞出来的。

2. 图形在计算机里可不是随便存着的哦。

有矢量图形,就像我们数学里的向量一样,用数学公式来描述图形的形状、颜色等信息。

还有光栅图形,这个就和屏幕上的像素点有关啦,它是把图形表示成一个个小格子(像素)的组合。

二、图形的变换1. 平移是最基础的啦。

就好比你在一个平面上把一个图形从一个地方挪到另一个地方,很简单对吧。

比如一个三角形,从左边移到右边,它的每个顶点的坐标都按照一定的规则发生变化。

2. 旋转也很有趣。

想象一下把一个正方形绕着一个点转圈圈。

在计算机里,要根据旋转的角度,通过数学公式来计算图形每个点旋转后的新坐标。

这就像我们小时候玩的陀螺,不停地转呀转。

3. 缩放就更直观了。

把一个小图形变大或者把一个大图形变小。

不过要注意哦,缩放的时候可不能让图形变得奇奇怪怪的,得保持它的形状比例之类的。

三、颜色模型1. RGB模型是最常见的啦。

红(Red)、绿(Green)、蓝(Blue),这三种颜色就像三个小魔法师,通过不同的组合可以创造出各种各样的颜色。

就像我们画画的时候,混合不同颜色的颜料一样。

2. CMYK模型呢,主要是用在印刷方面的。

青(Cyan)、品红(Magenta)、黄(Yellow)、黑(Black),这几种颜色的混合可以印出我们看到的书本、海报上的各种颜色。

四、三维图形学1. 在三维图形学里,多了一个维度,事情就变得更复杂也更有趣啦。

我们要考虑物体的深度、透视等。

比如说,我们看远处的山,它看起来就比近处的树小很多,这就是透视的效果。

2. 三维建模是个很厉害的技能。

可以通过各种软件来创建三维的物体,像做一个超级逼真的汽车模型,从车身的曲线到车轮的纹理,都要精心打造。

五、图形渲染1. 渲染就像是给图形穿上漂亮衣服的过程。

计算机图形学基础知识

计算机图形学基础知识

计算机图形学基础知识计算机图形学,听起来是不是有点高深莫测?但其实,它就在我们的日常生活中,从我们玩的游戏、看的电影,到日常使用的各种软件界面,都离不开计算机图形学的身影。

那什么是计算机图形学呢?简单来说,它是研究如何利用计算机来生成、处理和显示图形的一门学科。

计算机图形学的发展历程可以追溯到上世纪 50 年代。

早期的计算机图形主要是用于简单的线条图和图表。

随着计算机技术的不断进步,图形的质量和复杂度也在逐步提高。

如今,我们已经能够在屏幕上看到逼真的三维场景和栩栩如生的动画效果。

在计算机图形学中,有几个重要的概念需要了解。

首先是图形的表示方式。

常见的有位图和矢量图。

位图就像是由一个个小像素组成的拼图,每个像素都有自己的颜色和亮度信息。

而矢量图则是通过数学公式来描述图形,比如一个圆可以用圆心坐标和半径来表示。

位图的优点是能够显示丰富的细节,但放大时会出现锯齿;矢量图则无论放大缩小都不会失真,但对于复杂的图像可能表现力不足。

接下来是图形的变换。

这包括平移、旋转、缩放等操作。

想象一下,我们在屏幕上移动一个图形,这背后就是通过数学计算来实现图形的位置和形状的改变。

还有投影变换,它能把三维的物体投影到二维的屏幕上,让我们看到立体的效果。

渲染也是计算机图形学中的关键环节。

渲染就是把三维的场景转化为二维的图像。

这涉及到光照模型、材质属性、纹理映射等技术。

光照模型决定了物体表面如何反射光线,从而呈现出不同的亮度和颜色。

材质属性描述了物体的表面特性,比如光滑还是粗糙。

纹理映射则是给物体表面贴上图片,增加真实感。

在计算机图形学中,还有一个重要的部分是图形的交互技术。

比如,我们通过鼠标、键盘等输入设备来控制图形的操作,或者通过触摸屏幕来与图形进行互动。

这让我们能够更加方便和直观地使用图形应用程序。

另外,计算机图形学在很多领域都有着广泛的应用。

在游戏开发中,精美的游戏画面离不开图形学技术的支持。

电影特效也是如此,那些令人惊叹的科幻场景和奇幻生物都是通过图形学创造出来的。

计算机图形学知识点大全

计算机图形学知识点大全

计算机图形学知识点大全计算机图形学是计算机科学中的一个重要分支,涵盖了图像处理、计算机视觉、图形渲染等多个领域。

本文将介绍计算机图形学的一些重要知识点,帮助读者更好地理解和应用这些知识。

一、基础概念1. 图形学概述:介绍计算机图形学的定义、发展历史以及应用领域。

2. 图像表示:探讨图像的表示方法,包括光栅图像和矢量图像,并介绍它们的特点和应用场景。

3. 坐标系统:详细介绍二维坐标系和三维坐标系,并解释坐标变换的原理和应用。

二、图像处理1. 图像获取与预处理:介绍数字图像的获取方式和常见的预处理方法,如去噪、增强和平滑等。

2. 图像特征提取:讲解图像特征提取的基本概念和方法,例如边缘检测、角点检测和纹理特征提取等。

3. 图像分割与目标识别:介绍常见的图像分割算法,如阈值分割、基于区域的分割和基于边缘的分割等,以及目标识别的原理和算法。

三、计算机视觉1. 相机模型:详细介绍透视投影模型和针孔相机模型,并解释摄像机矩阵的计算和相机标定的方法。

2. 特征点检测与匹配:讲解常用的特征点检测算法,如Harris 角点检测和SIFT特征点检测,并介绍特征点匹配的原理和算法。

3. 目标跟踪与立体视觉:介绍目标跟踪的方法,如卡尔曼滤波和粒子滤波,以及立体视觉的基本原理和三维重建方法。

四、图形渲染1. 光栅化:详细介绍光栅化的原理和算法,包括三角形光栅化和线段光栅化等。

2. 着色模型:介绍常见的着色模型,如平面着色、高光反射和阴影等,并解释经典的光照模型和材质属性。

3. 可视化技术:讲解常用的可视化技术,如体数据可视化、流场可视化和虚拟现实等,以及它们在医学、工程等领域的应用。

五、图形学算法与应用1. 几何变换:介绍图形学中的几何变换,包括平移、旋转、缩放和矩阵变换等,并解释它们在图形处理和动画中的应用。

2. 贝塞尔曲线与B样条曲线:详细介绍贝塞尔曲线和B样条曲线的定义、性质和应用,以及它们在曲线建模和动画设计中的重要作用。

什么是计算机图形学

什么是计算机图形学

什么是计算机图形学计算机图形学是以计算机为工具,利用数学、物理、计算机科学等多个领域的知识与方法,研究如何利用计算机生成、处理、分析图形及图形相关的问题。

计算机图形学在现代工业、医学、娱乐、教育等领域中被广泛应用。

比如,运用计算机图形学,可以制作出逼真的3D模型,用于建筑、工程、汽车、航空航天等行业中的设计和模拟;可以制作出各种立体动画、视频游戏、虚拟现实等等。

计算机图形学还可以通过计算机辅助设计(CAD)和计算机辅助制造(CAM)系统,方便地创建、修改和生产产品或零件。

在医学上,计算机图形学也有很大的用处,可以用于人体的成像,如X光、CT、MRI等成像技术,将人体或器群的内部结构清晰地显示出来,便于医生进行诊断和手术操作。

计算机图形学的发展主要可以分为以下几个阶段:第一阶段是从1963年到1976年,这一时期主要是对二维图形的处理。

随着计算机的发展,人们开始尝试将图形应用到计算机中。

在这个阶段中,人们主要关注的是如何将图形显示在屏幕上。

第二阶段是从1977年到1988年,这一时期主要是三维图形的研究。

随着计算机技术的进步,计算机图形学得到了快速的发展。

在这个阶段中,人们开始研究如何在计算机中呈现三维图形。

同时,人们还发现通过利用光线追踪算法可以实现更真实的图像效果。

第三阶段是从1989年到2002年,这一时期主要是基于物理模拟的研究。

在这个阶段中,人们开始将物理学的理论应用于计算机图形学中。

通过对物质、光线等的物理特性进行计算和模拟,人们可以更加真实地呈现出三维图形。

第四阶段是从2003年到现在,这一时期主要是计算机图形学应用的广泛和发展。

在这个阶段中,计算机图形学不仅通过游戏、影视等娱乐产业得以广泛应用,还将其应用于医疗、设计、模拟等工业领域,极大地推进了各行各业的发展。

总的来说,计算机图形学具有很多应用,广泛地应用于不同行业中。

不断创新和发展的计算机图形学技术将会极大地改变我们的生活和工作方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机图形学
计算机图形学是研究计算机生成、处理和显示图像的学科领域。


是计算机科学的一个重要分支,与计算机视觉和图像处理相关。

计算
机图形学的发展促进了许多领域的进步,包括动画、游戏开发、虚拟
现实等。

一、引言
计算机图形学是指通过计算机技术实现图像的生成、处理和显示。

它利用算法和数学模型来模拟和渲染图像,以生成逼真的图像或动画。

计算机图形学在多个领域有着广泛的应用,如电影、游戏、建筑设计等。

二、图形学的基本原理
1. 坐标系统
图形学中常用的坐标系统是笛卡尔坐标系,它由横轴X、纵轴Y和
垂直于二者的Z轴组成。

通过坐标系统,可以定位和描述图像中的点、线和面。

2. 图形的表示
图形可以通过几何图元来表示,常见的几何图元有点、线和面。


由坐标表示,线由两个端点的坐标表示,面由多个点或线组成。

3. 变换和投影
变换是指对图像进行平移、旋转和缩放等操作,通过变换可以改变图像的形状和位置。

投影是将三维图像映射到二维平面上的过程,常见的投影方式有平行投影和透视投影。

4. 着色模型
着色模型用于为图像添加颜色和材质信息,常见的着色模型有平均着色模型和Phong着色模型。

平均着色模型通过计算图像的平均颜色来实现简单的着色效果,Phong着色模型考虑了光照的影响,能够产生更加逼真的效果。

三、图形学的应用
1. 电影和动画
计算机图形学在电影和动画领域有着广泛的应用。

通过计算机图形学技术,电影制作人能够创建逼真的特效,包括爆炸、碰撞和飞行等场景。

动画片的制作也离不开计算机图形学的技术支持,它能够实现角色的自由移动、表情的变化等特效效果。

2. 游戏开发
计算机图形学是游戏开发中不可或缺的一部分。

游戏中的人物、场景和特效都是通过计算机图形学技术来实现的。

游戏开发人员利用图形学算法和引擎来创建游戏中的3D场景和角色,并通过渲染技术使其看起来逼真。

3. 虚拟现实
虚拟现实是一种模拟真实世界的计算机生成环境。

计算机图形学在虚拟现实领域的应用可以让用户身临其境地感受到虚拟环境的存在。

通过计算机图形学技术,用户可以与虚拟环境中的对象进行交互,如触摸、移动等。

4. 建筑设计
计算机图形学在建筑设计领域起到了重要的作用。

通过计算机图形学技术,建筑师能够利用CAD软件进行建筑设计和模拟,快速生成建筑模型,并进行虚拟演示和可视化。

四、结论
计算机图形学作为计算机科学的一个重要领域,对于许多领域的发展起到了积极的推动作用。

它在电影、游戏、虚拟现实和建筑设计等领域的应用日益广泛,为我们带来了更加丰富多彩的视觉体验。

随着技术的不断进步,计算机图形学将继续发展壮大,为人们带来更多的惊喜和创新。

相关文档
最新文档