管道机器人结构设计(精)

合集下载

管道攀爬机器人结构设计及行走动力特性分析

管道攀爬机器人结构设计及行走动力特性分析

管道攀爬机器人结构设计及行走动力特性分析一、结构设计:1.机器人主体结构:管道攀爬机器人的主体结构一般由多个可伸缩的模块组成,每个模块包括一个电机、行走轮和一个伸缩杆。

2.伸缩机构:机器人通过伸缩杆来适应不同管道尺寸。

伸缩杆一般采用多节设计,每个节段之间通过齿轮或链条进行连接,以实现伸缩功能。

3.行走轮和传动机构:机器人采用行走轮来实现在管道内的行走。

行走轮通常由橡胶材料制成,提供良好的摩擦力。

传动机构一般为电机与行走轮的传动装置,通常采用齿轮传动或链条传动。

4.控制系统:机器人的控制系统包括传感器、执行器和控制器。

传感器可以感知机器人的位置、姿态和环境条件等信息,以便进行自主导航和任务执行。

执行器包括电机和伸缩杆等组件,用于控制机器人的运动和伸缩。

控制器负责接收传感器信息,并根据预设的算法控制机器人的运动。

二、行走动力特性分析:1.爬行速度:管道攀爬机器人的爬行速度取决于行走轮的直径、电机的转速和传动机构的设计等因素。

一般来说,机器人爬行速度应该足够快,以提高任务完成效率。

2.负载能力:机器人承载工具和传感器进行任务执行,因此需要具有较大的负载能力。

负载能力的大小与机器人的结构强度和设计参数有关。

3.自稳定性:机器人在管道内行走时需要具备较好的自稳定性,以应对管道内的复杂环境。

自稳定性主要通过控制系统实现,通过传感器检测机器人的姿态和环境条件,并及时做出调整。

4.能耗与动力供应:管道攀爬机器人通常采用电池供电,因此需要考虑能耗和续航时间。

一般通过优化结构设计和控制算法,减小阻力和能耗,延长电池寿命。

5.适应性:管道攀爬机器人需要适应多种管道的尺寸和形状。

因此,其结构设计应具有一定的自适应性,能够根据管道的不同尺寸进行伸缩和调整。

综上所述,管道攀爬机器人的结构设计和行走动力特性是保证机器人能够在管道内进行任务执行的关键要素。

通过合理的结构设计和动力调节,可以使机器人具有较高的工作效率和可靠性,适应不同尺寸和形状的管道。

小型管道清洁机器人行走机构设计

小型管道清洁机器人行走机构设计

目录1引言 (3)1.1 论文背景、意义及要求 (3)1.2 国外、国内研究概况 (4)1.3 市场需求预测 (6)1.4 设计的重点与难点 (6)2 机器人行走机构的设计 (7)2.1空调管道系统介绍及清洗原理 (7)2.2 机器人移动载体方案设计 (8)2.2.1 总体方案设计 (8)2.2.2 传动方案的设计 (9)2.3张紧机构的设计 (11)3. 具体设计计算 (12)3.1 移动载体传动计算 (12)3.1.1 左右驱动轮传动计算 (12)3.1.2 后万向轮传动计算 (20)3.2张紧启动系统的设计计算 (24)3.2.1气缸的选择 (24)3.2.2启动辅助元件和回路的选择设计 (26)3.3 传动齿轮﹑蜗轮蜗杆的尺寸计算 (27)3.4 轴的设计﹑计算和校核 (27)3.5 轴承的寿命计算 (32)4 机器人转弯时的管道通过性分析 (33)4.1 管道机器人在水平直角弯管的通过性分析 (33)4.2 管道机器人在矩形管水平圆弧形弯头的通过性分析 (35)5 结构设计 (36)1 引言1.1 论文背景、意义及要求清洁机器人作为服务机器人领域中的一个新产品,尽管目前国内在这方面的研究开发方面已经取得一定的成果, 但是仍有许多关键技术问题需要解决或提高, 行走机构就是其中的一个比较重要的技术。

有的可在房间内随机移动,但要求有一定的动力和对地面有足够大的摩擦。

事实上,虽然有一些公司推出了一些样品或产品,但却不能达到满意程度:清洁效果不佳,遍历时间长。

随着当今社会的发展,空调通风系统在日常生活中发挥着越来越重要的作用。

中央空调系统主宰着楼宇中空气的新陈代谢,被称为“建筑物之肺”。

中央空调管道在长期使用中会积累许多灰尘、病菌及放射物等,这些有害物质在送风过程中便污染了空气,长期被人体吸入,就会危害大众的健康。

因此人们在迫切要求提高生活质量的同时,要求提高工作居住场所及其他公共场所环境质量(特别是空气质量)的呼声也越来越急切。

管道机器人设计

管道机器人设计
题产生的。它是由可沿管道内部或外部自动行走装置、携有一种或多种传感器及操作装置如:机械手、喷枪、焊枪、刷子。管道机器人的工作空间是复杂、封闭的各种管道,包括水平直管、各角度弯管、斜坡管、垂直管以及变径管接口等,所以需要在操作人员的遥控操作或计算机自动控制下,进行一系列管道作业。管道机器人可完成的管道作业有以下几类:
The operating arm of the power source for the steering gear, a total of 5 steering gear, which respectively control the rotating arm, waist, arm, wrist swing, and the gripper opening and closing, this design of in pipe clearing ash robot can be used in small working space to complete small mass transfer work to achieve the pipeline cleaning purposes, while at the same time can be used as a carrying robot.
钳爪式手部机构是最常见的形式之一。手爪有两个、三个或多个,其中两个的最多。抓取工件的方式有两种:外卡式和内撑式。从其机械机构特征、外观与功用来看,有多种形式,它们分别是:
(1)拨杆杠杆式钳爪
(2)平行连杆式钳爪
(3)齿轮齿条移动式钳爪
1.生产、安装过程中的管内外质量检测。
2.恶劣环境下管道清扫、喷涂、焊接、内部抛光等维护。
3.使用过程中焊缝情况、表面腐蚀、裂缝破损等故障诊断。

供热管道机器人技术实现项目设计方案

供热管道机器人技术实现项目设计方案

供热管道机器人技术实现项目设计方案1简介在我国北方供热管道大量存在,16个地区的调查资料显示,运行时间在15年以上的供热管道占26%。

由于建设时间较早,这部分管道大部分采用管沟和架空敷设方式,技术落后,再加上运行时间长,维护管理不善,问题尤其突出。

管沟敷设供热管道长度占34.3%。

管沟防水质量差,地下水和地表水渗漏使得管道泡水,热损失严重,也是较大问题之一。

为了解决管道运行时出现裂缝而导致无法向居民提供供热问题,需要对管道进行检测,测评,得到管道的运行状态。

供热管道都是金属制成,金属可能腐蚀,特别是在链接的部位,而这些裂缝是用视觉很难发现的。

我们要得到金属内部状态,我们必须采用X射线探伤。

由于X射线对人员身体伤害比较大,并且鉴于某些管道较小,人员在里面很难活动,我们针对这些问题设计出了我们用于管道裂缝检测的机器人。

我们小组讨论最后得出了一套机器人设计的解决方案,并在郑旭学长帮助把机器人本体搭建好了,通过测试,基本能达到预期的效果。

2系统设计方案站在设计者角度,管道检测机器人可以分为机械本体和控制系统两大部分,本文主要研究管道机器人的控制系统设计。

本节首先对目标机器人的机械结构作简单介绍,然后详细讨论控制系统的三层结构模型,并根据模块功能的相关性,对目标控制系统进行模块划分。

2.1目标机械系统简介本文针对一种轮式管道机器人进行控制系统设计,图2.1是它的机械结构原理图。

从图中可以看出这种管道机器人主要由放射源定位器、横杆、摆杆、底座和车轮等部分组成,其中车轮和底座构成了管道机器人的移动载体,而放射源定位器、横杆和摆杆等部件构成了针对焊缝探伤作业的车载平台,机器人各组成部分的功能如下:(1)横杆。

目标机器人使用横杆安装放射源专用设备、全景摄像头和超声波传感器等负载,在车体端正的情况下,安装在横杆上的各个设备沿管道径向的位置保持一致。

横杆通过一种滑动机构连接在摆杆上,它可以带动放射源专用设备沿摆杆轴向进行移动,移动过程中放射源专用设备与放射源定位器的相对位置保持恒定。

中央空调管道清洁机器人机构设计毕业设计

中央空调管道清洁机器人机构设计毕业设计

中央空调管道清洁机器人机构设计一、课题训练内容本课题基于国内外已经取得的科研成果,针对中央空调矩形通风管道系统的特点作了深入的分析和论证,在查阅和掌握大量有关文献的基础上,针对矩形的空调管道提出了管道机器人的机构设计方案。

本课题训练内容:1.移动载体的设计﹑撑紧装置的设计﹑机械手的设计2.零件设计计算以及强度校核3.对机器人在转弯时的通过性进行了分析二、设计(论文)任务和要求(包括说明书、论文、译文、计算程序、图纸、作品等数量和质量等具体要求)论文任务:针对矩形的空调管道设计管道清洁机器人。

论文要求:1.设计说明书按《武汉科技学院毕业设计(论文)格式模板》要求书写。

2.译文见附页。

3.程序要求框图详细完整,硬件图纸完备,程序清单作为附页附在论文后,程序及电子文档刻成光盘与报告同时上交。

4.设计指标需考虑技术经济性要求。

三、毕业设计(论文)主要参数及主要参考资料主要参数:机器人车体长为501mm,宽438mm,高为294mm,车体加上机械手附带毛刷总长为1281mm;机械手总长为水平最高行进速度:1m/s;垂直攀爬速度:100mm/s;垂直攀爬载重:10kg;回转半径:0;机械手自由度:4;监视器回转速度:2度/秒;监视器水平回转范围:360°;监视器俯仰回转范围:240度。

主要参考资料:[1] GB/T 19210-2003.空调通风系统清洗规范[S].中国标准化,2003,(9):66-67[2] 甘小明,徐滨士,董世运等.管道机器人的发展现状[J].机器人技术与应用,2003,(6):5-10[3] 龚振邦等编著.机器人机械设计[M].北京:电子工业出版社,1995[4] 濮良贵,纪名刚等编著.第8版.机械设计[M].北京:高等教育出版社,2005[5] 孙桓,陈作模,葛文杰等编著.第7版.机械原理[M].北京:高等教育出版社,2006[6] 宋章军,陈恳,杨向东等.通风管道智能清污机器人MDCR-I的研制与开发[J].机器人,2005,27(2):142-146[7] 韩晓明,车立新,谢霄鹏等.中央空调管道清扫机器人的设计[J].机械,2005,32(1):39-41[8] 谢文彬,杨建国,李蓓智等.管道检测机器人的研制[J].机械工程师,2005,(1):16-18四、毕业设计(论文)进度表武汉纺织大学毕业设计(论文)进度表注:1.本任务书一式两份,一份院(系)留存,一份发给学生,任务完成后附在说明书内。

管道攀爬机器人结构设计及行走动力特性分析

管道攀爬机器人结构设计及行走动力特性分析

虽然串联机器人动力学特性及结构优化设计已经取得了许多重要成果,但仍 然存在许多研究方向值得进一步探索。例如,如何建立更加精确、高效的动力学 模型,以满足实时控制的需求;如何将新型优化算法应用于结构优化设计中,以 获得更好的优化效果;如何提高机器人的柔性和自适应性,以适应更加复杂和动 态的环境等。
此外,随着和机器学习技术的快速发展,这些技术也开始被应用于串联机器 人的设计和控制中。例如,通过机器学习方法,可以实现对机器人的自适应控制、 故障诊断和维护等。这为串联机器人的进一步发展提供了新的机遇和挑战。
因此,在未来的研究中,可以综合考虑这两种方法,设计一种混合式的控制 策略,以实现机器人在不同条件下的稳定攀爬。此外,还可以进一步研究机器人 感知和决策等方面的技术,以提高机器人在复杂环境中的自主能力。
感谢观看
控制算法
管道攀爬机器人的控制算法包括位姿估计、轨迹跟踪等。位姿估计是指对机 器人在管道中的位置和姿态进行估计,通过对传感器数据的处理和分析来实现。 轨迹跟踪是指根据位姿估计结果,控制机器人按照预设的轨迹行走,通过对电机 进行控制来实现。
在控制算法的设计过程中,需要考虑机器人的作业效率和安全性。为了提高 作业效率,需要缩短位姿估计的时间,提高轨迹跟踪的精度。为了确保安全性, 需要加入防抖动和异常情况处理等功能,以避免机器人在行走过程中出现问题。
爬杆机器人是一种能够在垂直杆上自主攀爬的机器人,这种机器人在电力线 路巡检、救援、建筑等领域有广泛的应用前景。然而,要实现机器人的自主攀爬, 需要解决一系列的关键问题,包括对环境的感知、运动规划、控制策略等方面。 在本次演示中,我们将重点探讨爬杆机器人的攀爬控制。
机器人攀爬控制是实现自主攀爬的关键技术之一。在攀爬过程中,机器人需 要通过对环境的感知,获取关于杆子位置、姿态等信息,再根据这些信息调整自 身的运动状态,实现稳定的攀爬。在这个过程中,控制算法起着至关重要的作用。

自适应支撑式管道检测机器人的通过性设计

自适应支撑式管道检测机器人的通过性设计

自适应支撑式管道检测机器人的通过性设计陈潇;吴志鹏;何思宇;肖晓晖【摘要】针对电力和石油天然气领域中直径为250~350 mm管道的检测需求,设计自适应支撑式管道检测机器人,研究其在无障碍弯管与环形台阶障碍管环境下的管道通过性.首先分析管道特点,结合丝杠螺母和弹簧机构设计具有变径自适应能力的机器人行走机构;其次,建立机器人弯管运动学模型及环形台阶障碍动力学模型,进行管内运动的几何约束分析、速度协调分析和动力学分析;然后,在ADAMS中建立虚拟样机仿真平台,对机器人在弯管和环形台阶处的通过性进行仿真研究;最后,搭建机器人管道通过性试验平台进行实验验证.研究结果表明:在无障碍管和障碍管环境下,机器人运行平稳,能顺利通过;在通过弯管时,采用速度协调模型,可减少电机力矩和降低能量消耗;在跨越环形台阶障碍时,机器人电机力矩随台阶高度增大而增加,可通过不高于15 mm的环形台阶障碍.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2018(049)012【总页数】10页(P2953-2962)【关键词】管道机器人;通过性;ADAMS模拟;原型实验【作者】陈潇;吴志鹏;何思宇;肖晓晖【作者单位】武汉大学动力与机械学院,湖北武汉,430072;武汉大学动力与机械学院,湖北武汉,430072;武汉大学动力与机械学院,湖北武汉,430072;武汉大学动力与机械学院,湖北武汉,430072【正文语种】中文【中图分类】TP242.2目前,在电力、石油天然气等行业中,在役管道腐蚀、裂纹或凹陷等缺陷的检测中多采用人工检测方式,存在检测效率低、有检测盲区等问题。

管道机器人替代人工对管道进行定期检测,能进入人所不及、复杂多变的管道环境,从而提高检测效率,降低人工作业的危险性[1]。

国外对管道机器人的研究较多,如:ROH等[2−9]研制的天然气管道机器人MRINSPECT系列,采用差速驱动控制,能通过“T”型管道接头,但适应管径范围小,越障能力有限;KAKOGAWA等[10−11]研制的平行四边形机构管道检测机器人可通过变径接头及垂直管,但机器人转弯能力不足,适用于内径范围为136~226 mm的管道。

管道机器人设计

管道机器人设计

大工微型管道机器人设计一.微型管道机器人的介绍微型管道机器人和微操作系统是在细微空间或狭窄空间中进行精密操作、检测或作业的机器人系统。

其中微机器人一般在三维或两维尺寸上是微小的。

而微操作系统在尺寸上一般不在微小范围之内,但可以实现微米、亚微米的定位和操作。

微型管道机器人在核电站细小管道、发动机等狭窄空间检测、军用侦察、医疗等领域有广泛的用途;微操作系统在生命科学、精密组装和封装等方面有广泛前景。

火力发电厂、核电厂、化工厂、民用建筑等用到各种各样微小管道,其安全使用需要定期检修。

但由于窄小空间的限制,自动维修存在一定难度。

仅以核电站为例,其中内径约20mm的管道有许多根,停堆检查时工人劳动条件恶劣。

因此微小管道内机器人化自动检查技术的研究与应用十分必要。

“细小工业管道机器人移动探测器集成系统”由上海大学研制,包含:20mm内径的垂直排列工业管道中的机器人机构和控制技术(包括螺旋轮移动机构、行星轮移动机构和压电片驱动移动机构等)、机器人管内位置检测技术、涡流检测和视频检测应用技术,在此基础上构成管内自动探测机器人系统。

该系统可实现20mm管道内裂纹和缺陷的移动探测。

宁波广强大工管道机器人适用于100mm-2000mm的管径,有探测式管道机器人、盾构式管道机器人、切割式管道机器人、转弯式管道机器人、牵引电缆绳管道机器人,样式功能皆可定制。

二.微型管道机器人设计原因随着社会经济的发展,人民生活水平的提高,集中空调被广泛地被应用于宾馆、大型商场、影剧院、超市、高档写字楼和洗浴公共场所,为人们创造了舒适、高效、节能的工作和生活环境。

然而,集中空调系统长期运行,没有清洗消毒或清洗消毒不彻底,会聚集和滋生大量对人体有害的污染物和微生物,并成为了污染物和微生物传播与扩散的媒介。

为了预防空气传播传染病在公共场所的传播,保障公众健康,依据《公共场所卫生管理条例实施细则》、《公共场所集中空调通风系统卫生管理办法》的要求,开发区卫生防病站在辖区内对公共场所集中空调通风系统开展专项检查工作,并委托宁波广强机器人科技有限公司对公共卫生场所集中空调通风系统清洗后的卫生状况进行检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

φ700mm-φ1000mm管道机器人结构设计
在工农业生产及日常生活中,管道作为一种重要的物料运输手段,其应用范围极为广泛。

管道在使用过程中,由于各种因素的影响,会产生各种各样的管道堵塞与管道故障和损伤。

如果不及时的管道进行检测、维修及清理就可能产生事故,造成不必要的损失。

然而,管道所处的环境往往是不易直接达到或不允许人们直接进入的,检测及清洗难度很大。

因此最有效的方法之一就是利用管道机器人来实现管道内的在线检测、维修和清洗。

管道机器人在我国处于发展阶段,具有广阔的市场前景。

管道机器人相对于人工操作来说,有无可比拟的优势。

管道机器人在计算机控制下,可进行采样、检测等动作。

而单片机技术的发展,为管道机器人的方便应用提供了一个良好的基础技术。

利用单片机,可以实现管道机器人的控制,是管道机器人设计中较好的选择。

通过对国内外管道机器人研究现状分析,总体看来,国内外已经在管内作业机器人领域取得了大量的成果,主要应用在管道检测、维修及空调通风管道的清洗等方面。

但对于金属冶炼厂烟气输送管道中烟灰堆积层的清理这种特殊管内作业的自动化装置研究目前少有报道。

因此研制适应于金属冶炼厂烟气管道烟灰清理的管道清灰机器人将具有重大的现实意义。

此次设计的管道机器人主要应用在金属冶炼厂、化工企业等烟气输送管道烟灰堆积层的清理,作为载体,通过安装不同的设备可实现排水管道的监测、清理。

编辑:林冰宁波广强机器人科技有限公司管道检测机器人是由控制器、爬行器、高清摄像头、电缆等组成。

在作业的时候主要是由控制器控制爬行器搭载检测设备进入管道进行检测。

检测过程中,管道机器人可以实时传输管道内部情况视频图片以供专业维修人员分析管道内部故障问题。

使用管道检测机器人的优势:
1.安全性高。

使用广强管道机器人进入管道查明管道内部情况或排除管道隐患,如果是人工作业的话,往往存在较大的安全隐患,而且劳动强度高,不利于工人的健康。

广强管道机器人智能作业可有效提高作业的安全性能。

2.节省人工。

管道检测机器人小巧轻便,一个人即可完成作业,控制器可装载在车上,节省人工,节省空间。

3.提高效率和品质。

广强管道机器人智能作业定位准确,可实时显示出日期时间、爬行器倾角(管道坡度、气压、爬行距离(放线米数、激光测量结果、方位角度(选配等信息,并可通过功能键设置这些信息的显示状态;镜头视角时钟显示(管道缺陷方位定位。

4.防护等级高,摄像头防护等级IP68,可用于5米水深,爬行器防护等级IP68,可用于10米水深,均有气密保护,材质防水防锈防腐蚀,无需担心质量问题,因为广强只做国内
最好的管道机器人。

5.高精度电缆盘,收放线互不影响,可选配长度。

宁波广强管道检测机器人适用于管径100mm-2000mm的各类管道,不仅可以提高作业精度,更可以节省人工,提高生产效率,而且在有些不适宜人工作业的环境下轻松查明管道内因,维护保养管道。

有了管道检测机器人的帮助,管道内的故障和损伤就能够轻而易举的找出来,这样不仅节省人力还能减少施工量,大大增强了工作效率。

管道检测机器人将会成为我国管网检测的主要趋势,国家管网普查应用管道机器人也是必然的选择。

管道机器人改变了传统管道检测技术,它让我们的工作更加简单轻松,我司将会继续研发管道机器人致力于做出最好的管道检测机器人。

相关文档
最新文档