汽车空气动力学ppt课件
合集下载
汽车空气动力学[1]
![汽车空气动力学[1]](https://img.taocdn.com/s3/m/2c216af7e45c3b3566ec8b09.png)
汽车空气动力学[1]
空氣動力零件與配件之研究
• 前擾流器 • 後擾流器 • 裝置前後擾流器的效果 • 側護裙 • 其它空氣動力零件
汽车空气动力学[1]
汽车空气动力学[1]
汽车空气动力学[1]
汽车空气动力学[1]
適當面積與角度可減少阻力與 揚力、偏向力矩
汽车空气动力学[1]
汽车空气动力学[1]
•
衰弱現象----煞車鼓過熱摩擦係數降低
汽车空气动力学[1]
汽车空气动力学[1]
汽车空气动力学[1]
汽车空气动力学[1]
汽车空气动力学[1]
汽车空气动力学[1]
汽車行駛性能-- 2.曲線行駛阻力
• 1.操縱性能---可依駕駛者意志而行駛性能
•
1. 轉彎向心力 (道路斜度、輪胎變形
•
2.轉向特性 (轉向過度、不足、
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/23
汽车空气动力学[1]
汽车空气动力学[1]
最高速度如何決定
汽车空气动力学[1]
揚力
• 柏努力定裡
• 上方流速快 壓力就低
• 車輛上方壓 力低於下方, 車輛產生揚 力
汽车空气动力学[1]
• 摩擦阻力 • 誘導阻力 • 壓力阻力
空氣阻力
• 邊界層厚度 • 空氣阻力係數(Cd)
汽车空气动力学[1]
摩擦阻力
• 摩擦阻力:空氣貼於車身表面產生之阻力
風洞
• 空氣阻力測試裝置
汽车空气动力学[1]
車輛與空氣
• 1.空氣的 特性 • 2.空氣的 密度 • 3.空氣的 黏度 • 4.邊界層
汽车空气动力学[1]
经典汽车空气动力学课件.ppt

确定边界类型及边界条件: 入口边界选取远端来流方向为速度入口,速度为X
方向60m/s,出口边界为压力出口,出口相对压力为0。 湍流动能k 和湍流耗散度ε 分别为0.024 和0.01 求解计算
改变车头前缘发动机罩的高度值H,即改变发动机 罩的倾角(图2.3a) ,同时改变发动机罩与挡风玻璃交接 的位置, 从而改变挡风玻璃的倾角γ (图2.3b),对多组 不同参数下的模型进行外流场的数值模拟。
图1.9 1:1模型并加车轮
图1.10 考虑附属空隙设计
.精品课件.
22
1.4 车身整体优化造型概况
2000年我国华南理工大学黄 向东教授所领导的研究小组,也 进行了有关最佳车身气动造型方 面的研究。
在提出相关参数和要求的前 提下,运用CFD(Computational Fluid Dynamics)手段模拟并提出 一个完全数字化的理想基本形体, 如图1.11,并在此基础上制成 1:3模型进行风洞试验,如图 1.12模型实测最小气动阻力系数 为0.122。
图1.7 “鲸状”理论模型
.精品课件.
20
1.4 车身整体优化造型概况
5、Morelli模型
1976年,由意大利科学 院资助,在平宁法力那 (Pininfarina)风洞中进行一 项旨在探求最优化的轿车外形 研究工作,当时的目标是力图 创造出一种具有优异气动性能 的轿车外形。
以A.Morelli教授为首的课 题组在深入研究的基础上首先 获得一个比例为1:2的基本形 体,如图1.8所示,其为阻力 系数0.049。
数值工具的发展取决于对气流复杂流动特性的更深入的了 解和更精确数学模型的建立。因此,数值计算不可完全替 代物理试验,两者是互补的关系。
.精品课件.
29
方向60m/s,出口边界为压力出口,出口相对压力为0。 湍流动能k 和湍流耗散度ε 分别为0.024 和0.01 求解计算
改变车头前缘发动机罩的高度值H,即改变发动机 罩的倾角(图2.3a) ,同时改变发动机罩与挡风玻璃交接 的位置, 从而改变挡风玻璃的倾角γ (图2.3b),对多组 不同参数下的模型进行外流场的数值模拟。
图1.9 1:1模型并加车轮
图1.10 考虑附属空隙设计
.精品课件.
22
1.4 车身整体优化造型概况
2000年我国华南理工大学黄 向东教授所领导的研究小组,也 进行了有关最佳车身气动造型方 面的研究。
在提出相关参数和要求的前 提下,运用CFD(Computational Fluid Dynamics)手段模拟并提出 一个完全数字化的理想基本形体, 如图1.11,并在此基础上制成 1:3模型进行风洞试验,如图 1.12模型实测最小气动阻力系数 为0.122。
图1.7 “鲸状”理论模型
.精品课件.
20
1.4 车身整体优化造型概况
5、Morelli模型
1976年,由意大利科学 院资助,在平宁法力那 (Pininfarina)风洞中进行一 项旨在探求最优化的轿车外形 研究工作,当时的目标是力图 创造出一种具有优异气动性能 的轿车外形。
以A.Morelli教授为首的课 题组在深入研究的基础上首先 获得一个比例为1:2的基本形 体,如图1.8所示,其为阻力 系数0.049。
数值工具的发展取决于对气流复杂流动特性的更深入的了 解和更精确数学模型的建立。因此,数值计算不可完全替 代物理试验,两者是互补的关系。
.精品课件.
29
《低速空气动力学》课件

飞行器的运动状态和运动 方程,飞行器的气动力学 模型,飞行器的动力学特 性分析。
4 第四章:低速气动力 5 第五章:低速飞行器 6 第六章:应用实例与
学特性
的气动设计
研究展望
低速气动力学流动的特性, 粘性效应和不可压缩性的 影响,气动力学的基本定 律和特性。
低速飞行器气动外型设计, 气动力学计算方法,气动 力学试验和验证方法。
《低速空气动力学》PPT 课件
一个引人入胜且易于理解的PPT课件,介绍了低速空气动力学的基本概念和原 理。
低速空气动力学课绍, 学习目标和目的。
2 第二章:气动力学基 3 第三章:飞行器的运
础知识
动学和动力学
气体的物理特性,流动的 基本规律,流体力学的基 本方程,低速近似和网格 生成等基础知识。
低速飞行器的应用案例, 未来低速飞行器的研究展 望。
7 结束语
总结本章内容,激发学习兴趣。
汽车的空气动力学

150
200
速度 (Km/h)
(气动阻力系数)
CD= 0.30
0.25 时
日本JC08工况
3%
北美工况
5%
100km/h定速
8%
以某小型混动轿车为例
特别在高速走行时,低油耗开发是必不可少的技术。
汽车上的气动力
气动力(F) = ½ ρ V2 CD A
气动阻力系数(CD) =
F ½ ρ V2 A
ρ:空气密度 V:速度 A:正投影面积
涡街噪声的特点
风振
由前方来流撞击在天窗开口后部,产生涡 乘员舱内产生强烈震动,发出压迫耳朵的声音。
导风板
天窗开
涡 导风板 ル天ー窗フ前先端端部部分分
车顶钣金 车顶玻璃
特征
・涡较大时⇒ 频率低 ・涡的能量大 ・变化不大
笛吹音 由于压力变动产生、在狭小的空间发生共鸣
现象
发生部位
段差处的笛吹音
去除段差 增大段差
侧倾力矩(CR)
升力(Lift) 横摆力矩(CY)
横力(CS) 纵倾力矩 (CP)
空力性能对整车性能有非常大的影响。
气动阻力的贡献度
100km/h时占全部行驶阻力7成 200km/h时占全部行驶阻力9成
气动阻力降低,燃料经济性提升效果
行驶阻力
空气阻力
空气阻力
行
驶
90%
阻
力
空气阻力
70%
0
50
100
例如:
100km行驶时 ⇒ 140km时!?
50kg
〇98〇kgkg
速度增加1.4倍 ⇒ 那么、汽车行驶阻力增加约2倍
气动阻力较小的车辆
正面投影面积小
汽车动力学之空气动力学

•
•
1.空气动力学基础知识节
1.3 压力系数
定义
常用压力系数来表示物体在气流流场中表面各点压力的大小。 压力系数定义: CP =
P-P∞ V )2 C = 1 - ( ; 可整理为: P 2 V∞ ρV∞ /2
CP≤1。CP=1处,V=0,是驻点。
表示方法
矢量法 坐标法
汽车空气动力学
2.汽车空气动力与空气动力矩
前四种为压力阻力。
Cd总值:0.45 A—形状阻力(Cd=0.262); B—干扰阻力(Cd=0.064); C—形状阻力(Cd=0.053); D—形状阻力(Cd=0.031); E—形状阻力(Cd=0.040)。
3.空气阻力
3.2 形状阻力
形状阻力主要是压差阻力,是由车身的外部形状决定的。
前风窗对空气阻力的影响 • 前风窗对气流的影响 • 减小前风窗处空气阻力的措施
•
1.空气动力学基础知识节 • 减小形状阻力的措施 • 降低逆压梯度 减缓物体背流面的截面变化,使分离 点(分离线)向后移,减小尾流区。 • 增大紊流度 增大物面的粗糙度。 分离是产生在附面层 • 流体没有粘度,就没有附面层。 • 没有附面层,就不会产生气流分离现象。 汽车上的分离区 气流在前风窗下部、车顶前端、行李前 部等处分离后,又重新附着,形成分离区(亦 称为“气泡”( bubble))。
理想的发动机空气冷却系统
• • • • • • 气流通道为密封的直管道; 散热器面积大,进入的气流速度低; 全部气流都流经散热器; 通道面积变化缓和,无涡流产生; 流经散热器的气流为紊流; 可根据散热要求调节气流流量。
汽车空气动力学
4.空气升力
4.1 空气升力
汽车空气动力学课件 第二章

8. 现代SONATA御翔:没查到? 9. 丰田锐志:0.28 10.丰田普锐斯:0.26 11.新Mazda6:没查到? 12.三菱戈蓝:0.32 13.上汽荣威750:没查到?
30万以上热点车型
1. 丰田皇冠:0.27 2. 奥迪 A4 :0.28 3. 奥迪 A6L:0.30 4. 华晨宝马新3系:0.28 5. 华晨宝马5系:0.28 6. 奔驰 E级:0.26 7. 凯迪拉克CTS:0.31 8. 现代Azera(雅尊):0.29 9. Acura讴歌RL:0.29
不考虑空气动力学的卡车流场
分离流的扩展区
考虑空气动力学的卡车流场
分离流的区域变小
摩擦阻力
由于空气的粘性作用使得空气与汽车车身
表面产生摩擦而形成的阻力。约占汽车总 气动阻力的6%~11%。
与车身表面面积和粗糙度有关
宾利
诱导阻力
诱导阻力由车身附着涡诱导而成,实际上是汽 车升力在水平方向的分力。约占汽车总气动阻 力的8%~15%。
汽车正投影面积A的测量
汽车的正投影面积A应 包括车身、轮胎、发动 机及底盘等零部件的前 视投影。其测量方法是 将汽车置于平行光源与 屏幕之间,此时其正投 影面积便既不放大也不 缩小地投在屏幕上。
气动阻力
D
=
1 2
ρv∞2
ACD
D取决于正面投影面积A和气动阻力系数CD;通
常正面投影面积A取决于汽车的外形尺寸,这是由
绕y轴的纵倾力矩MP
绕z轴的横摆力矩MY
阻力系数
CD
=
1 2
D ρυ∞2
⋅
A
升力系数
CL
=
1 2
L ρυ∞2
⋅
A
侧向力系数
《汽车动力学》课件

风阻系数性 的重要参数
阻力面积:影响 汽车空气阻力的 重要参数
空气动力学中心: 影响汽车行驶稳 定性的重要参数
汽车空气动力学设计优化
空气动力学原 理:流体力学、 空气阻力、升
力等
汽车空气动力 学设计:车身 形状、轮胎设 计、发动机进
气口设计等
03 汽车动力学基本原理
牛顿运动定律
第一定律:物体在 没有外力作用的情 况下,保持静止或 匀速直线运动状态
第二定律:物体受 到外力作用时,其 加速度与外力成正 比,与物体的质量 成反比
第三定律:作用力 和反作用力总是大 小相等、方向相反 、作用在同一直线 上
应用:汽车动力学 中,牛顿运动定律 用于分析汽车的加 速、减速、转弯等 运动状态
刚体动力学
刚体动力学定义:研究刚体在力作 用下的运动规律
刚体动力学应用:汽车悬挂系统设 计、汽车转向系统设计等
添加标题
添加标题
添加标题
添加标题
刚体动力学基本方程:牛顿第二定 律
刚体动力学与汽车动力学的关系: 刚体动力学是汽车动力学的基础
弹性力学基本原理
弹性力学的定 义:研究物体 在外力作用下 的变形和应力
侧向力:轮胎在转弯时产生的侧向力 纵向力:轮胎在加速或减速时产生的 纵向力
轮胎磨损:轮胎在使用过程中的磨损 情况
轮胎寿命:轮胎的使用寿命和更换周 期
轮胎噪音:轮胎在行驶过程中产生的 噪音水平
轮胎动力学实验研究
实验目的:研究轮胎在不同路面、速度、载荷下的动力学特性 实验方法:使用轮胎动力学测试设备,如轮胎测试台、道路模拟器等 实验内容:测量轮胎在不同条件下的滚动阻力、侧向力、纵向力等参数 实验结果:分析轮胎在不同条件下的动力学特性,为轮胎设计和优化提供依据
汽车空气动力学

• 省能源與空氣動力之關係 • 風向與空氣阻力係數之關係
賽車的空氣動力
• 車底面與路面間產生的強烈下壓力 • 底盤下的氣流 • 不同角度的底盤下的氣流 • 雨天可觀查到可視化氣流 • 賽車上面的空氣流動狀況 • 前方來的空氣流動狀況 • Up sweep 的氣流情形
環境 乘坐舒適性能
• 1. 噪音 --- (引擎、齒輪、排氣管、輪胎、
•
車身共振、風切聲)
• 2. 座椅及內裝
• 3. 空氣調節性能
何謂空氣動力學
• ans: 討論空氣流動之學問
• 影響車身穩定性、 • 阻礙汽車前進 • 飄浮車輛
空氣阻力實驗
• 依重鎚落下時 間長短決動空 氣阻力大小
風洞
裝置各種空氣動力零件其空氣動力 如何變化
• 裝置擾流器及下屏實驗 • 未裝置空氣動力零件實驗 • 裝置後擾流器實驗 • 裝置前擾流器實驗 • 裝置前、後擾流器實驗 • 裝置前、後擾流器及下屏實驗 • 裝置前、後擾流器、下屏及側護裙實驗
設計不同空氣動力特性如何變化
空氣阻力
• 邊界層厚度 • 空氣阻力係數(Cd)
摩擦阻力
• 摩擦阻力:空氣貼於車身表面產生之阻力
•
與表面積成正比
• 誘導阻力:當揚力發生就產生之阻力,上 下壓差形成渦流,
揚力減少→空氣阻力減少(風閘裙、鴨尾)
壓力阻力
• 壓力阻力:作用於車輛表面空氣壓力進行 方向分力總合
物體表面空氣被剝離→渦流
•
=(μrcosθ+sinθ)W+kAV2
• 加速性能 = Rg+ Rac • 油耗性能 = 燃油消耗量與行駛里程關係
• 最高速度性能=無風狀況、水平路面、最高
•
賽車的空氣動力
• 車底面與路面間產生的強烈下壓力 • 底盤下的氣流 • 不同角度的底盤下的氣流 • 雨天可觀查到可視化氣流 • 賽車上面的空氣流動狀況 • 前方來的空氣流動狀況 • Up sweep 的氣流情形
環境 乘坐舒適性能
• 1. 噪音 --- (引擎、齒輪、排氣管、輪胎、
•
車身共振、風切聲)
• 2. 座椅及內裝
• 3. 空氣調節性能
何謂空氣動力學
• ans: 討論空氣流動之學問
• 影響車身穩定性、 • 阻礙汽車前進 • 飄浮車輛
空氣阻力實驗
• 依重鎚落下時 間長短決動空 氣阻力大小
風洞
裝置各種空氣動力零件其空氣動力 如何變化
• 裝置擾流器及下屏實驗 • 未裝置空氣動力零件實驗 • 裝置後擾流器實驗 • 裝置前擾流器實驗 • 裝置前、後擾流器實驗 • 裝置前、後擾流器及下屏實驗 • 裝置前、後擾流器、下屏及側護裙實驗
設計不同空氣動力特性如何變化
空氣阻力
• 邊界層厚度 • 空氣阻力係數(Cd)
摩擦阻力
• 摩擦阻力:空氣貼於車身表面產生之阻力
•
與表面積成正比
• 誘導阻力:當揚力發生就產生之阻力,上 下壓差形成渦流,
揚力減少→空氣阻力減少(風閘裙、鴨尾)
壓力阻力
• 壓力阻力:作用於車輛表面空氣壓力進行 方向分力總合
物體表面空氣被剝離→渦流
•
=(μrcosθ+sinθ)W+kAV2
• 加速性能 = Rg+ Rac • 油耗性能 = 燃油消耗量與行駛里程關係
• 最高速度性能=無風狀況、水平路面、最高
•
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
25
造型上改善空气动力性能的措施
基本原则: 1、降低高静压区气体静压,升高低静压区的气体静压; 2、延缓分离现象; 3、负迎角造型,疏导底部气流; 4、使风压中心位于汽车质心之后。
汽车的气动阻力由五部分组成:
1、形状阻力 又称表面压差阻力,是由汽车前部的正压力和车身后 部的负压力的压力差而产生的。是气动阻力的主要部 分。汽车车身各个表面的形状及其交接处的转折方式 是影响形状阻力的主耍因素约占60%;
.
17
无粘流绕二元圆柱的流动
.
18
粘流绕二元圆柱的流动
.
19
车身表面压强分布特性
.
20
4、汽车气动阻力的组成
2、摩擦阻力 它是由于空气的粘滞性在车身表面所产生的摩擦力, 其数值取决于车身表面的面积和光滑程度,约占气动 阻力的9%左右。
3、诱导阻力 它是气动升力所产生的纵向水平分力,一般约占气动 阻力的5%~7%。要减小诱导阻力,就应设法减小升 力;
.
21
4、汽车气动阻力的组成
.
9
汽车表面的附面层
.
10
发动机罩与前风窗凹处的涡系
.
11
3、汽车行驶时受到的气动力和力矩
3.1 气动力
将整个汽车外表面上压力合成而得到作用在汽车上的 合力,称为气动力F。合力在汽车上的作用点称为风 压中心,记作C.P。气动力F与气流速度的平方,迎风 面积S以及车身形状系数CF成正比,即:
式中,迎风面积S为汽车正面投影面积,又 称参考面积,CF与车身形状有关。
汽车空气动力学
.
1
空气动力学基础
1、汽车空气动力学研究的主要内容:
①汽车行驶中的气动力和力矩,主要研究怎样使汽车具有较小 的气动阻力,以减少油耗,怎样使汽车具有较小的升力、侧向力 和横摆力矩,以保证良好的稳定性;
②汽车表面及周围的流谱和局部流场的研究,以分析作用在 汽车上的气动力机理,有利于改善汽车表面雨水流的路径, 减少尘土堆积、风噪声和面板振颤;
由于流体流动的连续性,并且流体又不可压缩, 因而在相同的时间内流过前后两个截面的流体质 量应相同,即流速v与截面积A的乘积不变:
v*A=常数
.
6
2.4 伯努利方程式
根据伯努利原理,气流静压强p与动压强pq之和 为常数。
.
7
2.4 附面层
理论上假设空气是非粘滞性的,而实 际上空气具有粘滞性,即当其相对于 表面运动时会产生内摩擦作用。与物 体表面接触的气体将受到该表面的阻 滞使相对速度变为零。邻近该表面的 空气层也被粘滞摩擦力所阻滞,其相 对于表面的运动速度也随与表面的距 离而变化。当与表面的距离超过一定 数值时,空气粒子的运动已不受粘滞 性的影响,其速度与外部气流速度相 等。因此,围绕着运动物体的一个相 对薄的空气层内,气流速度有着急剧 的变化,存在着速度梯度。该气流层 称为附面层,又称为边界层。
.
8
2.5 分离现象与涡流
图所示是物体表面各部位的速度梯度的情况。从a到最 大截面d空气流速逐渐增加,而流过最大截面后,流 速又逐渐减少。由于空气附面层的粘性,e、f、g的流 速已不可能与c、b、a的流速对称,而是更慢,在k处 就使得某微层的速度为零,k以下的微层发生倒流现象, 产生涡流。
分离和涡流耗费能量,使阻力增大。
横摆力矩Mz
MyFyXcpqSLMCz
侧倾力矩Mx
MxFyZcpqSLMCx
Xc、Zc——风压中心到质心距离;
L——为特征长度,一般指轴距。
.
15
气动力和气动力矩
.
16
4、汽车气动阻力的组成
汽车的阻力系数Cd可以定义作用在迎风面积上的平均 压力Fx /S与基准动压的比值,是一个无因次量,与汽 车尺寸无关,仅仅取决于形状。
“流谱”——在某一瞬时的流场中,许多流线的集合,可 通过流谱来描述气体流动的全貌。
.
4
2.2 前提假设
①车速小于360km/h ,空气不受压缩,即空气密 度不变; ②外层空气(远离物体表面)为无粘滞性的理想 气体; ③相对运动等效:把汽车看成静止的,空气绕汽 车周围流动。
.
5
2.3 流体流动的连续性
速度v,压强p,密度 等,表示为空间坐标(x,y,z)和时间t 的函数, 如v=v(x,y,z,t)、p=p(x,y,z,t)、 x,y,分z,别t称为
速度场,压强场和密度场,统称为“流场”。随时间变化 的流场,称为“非定常流场”;不随时间变化的流场,称 做“定常流场”。
“流线”——为了研究气流的运动,在气流中引人一条假 想的曲线,它任何一点切线的方向都与该时刻气流质点速 度向量的方向相同。流线所给出的,是在同一瞬时,线上 各气流质点运动方向的图形。
.
22
典型轿车发动机.室内部的流谱
23
5、汽车的气动升力
汽车的气动升力垂直于汽车的运动方向,即垂直于地面。升力 向上为正,向下为负。气动升力对汽车是有害的,必须尽可能 设法减小。因为它会降低轮胎的附着力从而影响汽车的驱动性、 操纵性和稳定性。
.
24
6、汽车的空气动力稳定性
主要表现为横摆运动的稳定性:
.
12
迎风面积的定义
.
13
3、汽车行驶时受到的气动力和力矩
气动力分量:Fx气动阻力、Fy侧向分力、Fz气动升力。
相应的阻力系数Cd、侧力 系数Cy、升力系数Cz
.
14
3、汽车行驶时受到的气动力和力矩
3.2 气动力矩
气动力的三个分力转化到汽车的质心上,则气动力矩如下:
纵倾力矩又称附仰力矩My
M y F x Z c F z X c p q S ( C d Z c C z X c ) p q SM LyC
③发动机和制动装置的空气冷却问题,目的是减少冷却通路 和散热器的内部空气阻力,提高冷却效果;
④汽车内部的自然通风和换气问题,研究车身进出风口的合 理布置,车内进出风量、风速、风路,使汽车具有良好的通 风和换气性能,保证舒适性。
.
2
轿车空气动力学研究内容
.
3
2.1 空气动力学基本概念
“流场”——空气动力学中,把流经物体的气流的属性,如
4、干扰阻力 又称附件阻力,是由暴露在汽车外部的各种附件引起 气流相互干扰而形成的阻力。这些附件包括后视镜、 门把手、雨刷、流水槽、前牌照、照明灯、前保险杠 以及天线和装饰物等。它约占气动阻力的15%左右;
5、内部阻力 又称内循环阻力,是由冷却发动机等的气流和车内通 风气流而形成的阻力,约占气动阻力的10~13%。