材料分析方法
材料分析方法有哪些

材料分析方法有哪些材料分析方法是指对各种材料进行结构、性能、成分等方面的分析和测试的方法。
在工程实践和科学研究中,材料分析是非常重要的一环,它可以帮助我们更好地了解材料的特性,为材料的设计、选择和应用提供参考依据。
下面将介绍一些常见的材料分析方法。
首先,光学显微镜是一种常见的材料分析工具,它可以通过对材料进行放大观察,来分析材料的晶体结构、表面形貌和断口形貌等信息。
光学显微镜适用于金属、陶瓷、塑料等材料的分析,是材料分析中的常用手段之一。
其次,扫描电子显微镜(SEM)是一种能够对材料进行高分辨率表面成像的分析工具。
通过SEM可以观察材料的表面形貌、微观结构和成分分布等信息,对于微观结构分析非常有用。
除了显微镜,X射线衍射(XRD)是一种常用的材料分析手段,它可以通过衍射图谱来确定材料的晶体结构和晶体学参数,从而揭示材料的结晶性质和晶体结构。
此外,热分析技术也是材料分析中的重要手段之一,包括热重分析(TGA)、差热分析(DSC)等。
这些方法可以用来研究材料的热稳定性、热分解行为、玻璃化转变温度等热性能参数,对于材料的热学性能分析非常有帮助。
另外,光谱分析技术也是材料分析中的重要内容,包括红外光谱、紫外可见光谱、拉曼光谱等。
这些光谱分析方法可以用来研究材料的分子结构、成分组成、化学键性质等信息,对于有机材料和高分子材料的分析非常有用。
最后,电子探针显微分析(EPMA)和能谱仪(EDS)也是常用的材料分析手段,它们可以用来确定材料的成分分布和微区成分分析,对于复杂材料的成分分析非常有帮助。
综上所述,材料分析方法包括光学显微镜、扫描电子显微镜、X射线衍射、热分析技术、光谱分析技术、电子探针显微分析和能谱仪等多种手段,这些方法可以帮助我们全面了解材料的结构、性能和成分,为材料的研究和应用提供重要支持。
在实际工作中,我们可以根据具体的分析需求选择合适的分析方法,以获得准确、全面的材料分析结果。
材料分析方法有哪些

材料分析方法有哪些材料分析是指通过对材料的成分、结构、性能等方面进行研究和分析,以揭示材料的内在特性和规律。
在材料科学领域,材料分析是非常重要的一环,它可以为材料的设计、制备和应用提供重要的参考和支持。
那么,材料分析方法有哪些呢?下面我们就来一一介绍。
首先,常见的材料分析方法包括光学显微镜分析、扫描电子显微镜分析、透射电子显微镜分析等。
光学显微镜分析是通过可见光对材料进行观察和分析,可以直观地观察材料的表面形貌和微观结构。
扫描电子显微镜分析则是利用电子束对材料进行扫描,得到高分辨率的表面形貌和成分分布信息。
透射电子显微镜分析则可以观察材料的内部结构和晶体形貌,对材料的微观结构进行深入分析。
其次,化学分析方法也是材料分析中的重要手段,包括原子吸收光谱分析、X射线荧光光谱分析、质谱分析等。
原子吸收光谱分析可以用于测定材料中的金属元素含量,具有较高的灵敏度和准确性。
X射线荧光光谱分析则可以测定材料中的元素含量和成分分布,对于非金属元素也有一定的分析能力。
质谱分析则可以通过分析材料中的分子离子来确定其化学成分和结构特征。
另外,热分析方法也是常用的材料分析手段,包括差示扫描量热法、热重分析法、热膨胀分析法等。
差示扫描量热法可以通过对样品和参比物进行热量差示扫描,得到材料的热性能参数和相变特征。
热重分析法则是通过对材料在不同温度下的质量变化进行分析,可以得到材料的热稳定性和热分解特性。
热膨胀分析法则可以测定材料在温度变化下的线膨胀系数,对材料的热膨胀性能进行评估。
最后,表面分析方法也是材料分析中的重要内容,包括X射线光电子能谱分析、原子力显微镜分析、电化学阻抗谱分析等。
X射线光电子能谱分析可以对材料表面的化学成分和化学状态进行表征,对表面改性和表面反应过程进行研究具有重要意义。
原子力显微镜分析则可以对材料表面的形貌和结构进行高分辨率的观察和分析。
电化学阻抗谱分析则可以研究材料在电化学条件下的界面特性和电化学性能。
材料分析方法总结

材料分析方法总结材料分析是指对各种材料的成分、结构、性能等进行分析研究的方法。
在工程、科学研究和生产中,材料分析方法的选择和应用对于材料的质量控制、性能评价和新材料的开发具有重要意义。
本文将对常见的材料分析方法进行总结,以便读者对材料分析有一个全面的了解。
一、光学显微镜。
光学显微镜是一种常用的材料分析仪器,通过对材料进行放大观察,可以得到材料的表面形貌、组织结构等信息。
适用于金属、陶瓷、塑料等材料的观察和分析。
二、扫描电子显微镜(SEM)。
扫描电子显微镜是一种使用电子束来扫描样品表面并获取图像的仪器。
相比光学显微镜,SEM具有更高的放大倍数和更高的分辨率,适用于对材料表面微观形貌的分析。
三、X射线衍射(XRD)。
X射线衍射是一种通过照射材料表面并测量衍射图样来分析材料晶体结构的方法。
通过X射线衍射,可以确定材料的晶体结构、晶格常数等信息。
四、透射电子显微镜(TEM)。
透射电子显微镜是一种使用电子束穿透样品并形成透射电子图像的仪器。
TEM 可以观察材料的晶体结构、位错、界面等微观结构特征。
五、质谱分析。
质谱分析是一种通过对材料中的离子进行质量分析来确定材料成分的方法。
质谱分析可以对材料的元素组成、分子结构等进行准确的分析。
六、热分析。
热分析是一种通过对材料在控制温度条件下的热性能进行分析的方法,包括热重分析(TGA)、差示扫描量热法(DSC)等。
热分析可以得到材料的热分解特性、热稳定性等信息。
七、核磁共振(NMR)。
核磁共振是一种通过测量材料中核自旋的共振信号来分析材料成分和结构的方法。
NMR可以对材料的分子结构、化学环境等进行分析。
以上是常见的材料分析方法的简要总结,每种方法都有其适用的范围和特点。
在实际应用中,需要根据具体的分析目的和样品特点选择合适的分析方法,并结合多种方法进行综合分析,以确保获得准确、全面的分析结果。
希望本文对材料分析方法的选择和应用提供一定的参考和帮助。
材料分析方法总结

材料分析方法总结材料分析方法是指通过一系列科学技术手段对材料进行分析和测试,以获取材料的组成、结构、性能等信息的过程。
材料分析方法在材料科学领域具有重要意义,它为材料研究和工程应用提供了可靠的数据支持。
下面将对常见的材料分析方法进行总结和介绍。
一、光学显微镜。
光学显微镜是一种常用的材料分析仪器,它能够通过光学放大原理对材料进行观察和分析。
通过光学显微镜可以观察材料的表面形貌、结构特征和晶体形貌,对金相组织、晶体缺陷等进行分析。
光学显微镜操作简单,成本低,适用于金属、陶瓷、塑料等材料的分析。
二、扫描电子显微镜(SEM)。
扫描电子显微镜是一种高分辨率的显微镜,它通过电子束与样品相互作用,利用信号的不同来获取样品表面形貌、成分分布、晶体结构等信息。
SEM具有高放大倍数、高分辨率、能够对非导电材料进行分析等特点,适用于金属、陶瓷、复合材料等材料的表面形貌和微观结构分析。
三、X射线衍射(XRD)。
X射线衍射是一种利用X射线与材料相互作用来获取材料结构信息的方法。
通过X射线衍射可以确定材料的晶体结构、晶粒尺寸、晶格常数等信息,对于无机材料、金属材料、无机非金属材料的结构分析具有重要意义。
四、质谱分析。
质谱分析是一种通过对材料中各种元素进行分析和检测,以获取材料成分和含量信息的方法。
质谱分析具有高灵敏度、高分辨率、能够对微量元素进行分析的特点,适用于材料成分分析、材料表面成分分析等领域。
五、热分析。
热分析是一种通过对材料在控制温度条件下的物理、化学性质变化进行分析的方法。
常见的热分析方法包括热重分析(TG)、差热分析(DSC)、热膨胀分析(TMA)等,它们可以用于材料的热稳定性、热动力学参数、相变温度等方面的分析。
六、原子力显微镜(AFM)。
原子力显微镜是一种近场显微镜,它能够对材料表面进行原子尺度的表征和分析。
AFM具有高分辨率、三维表征、原子尺度的表面形貌分析等特点,适用于纳米材料、生物材料、薄膜材料等的表面形貌和性能分析。
材料现代分析测试方法

材料现代分析测试方法材料的现代分析测试方法是为了研究材料的组成、结构、性质以及相应的测试手段。
通过分析测试方法,我们可以深入了解材料的特点,进而为材料的研发、优化和应用提供有效的数据支持。
下面将介绍几种常用的材料现代分析测试方法。
一、质谱分析法质谱分析法是一种通过测量样品中不同质荷比(m/z)的离子的相对丰度来确定样品组成和结构的分析方法。
质谱分析法适用于分析有机物和无机物。
其优点是能快速分析出物质组成,提供准确的质量数据,对于结构复杂的样品仍能有效分析。
二、核磁共振(NMR)谱学核磁共振谱学是一种通过测量样品中核自旋与磁场相互作用的现象来分析样品结构和组成的方法。
不同核的共振频率和强度可以提供关于样品分子结构和组成的信息。
核磁共振谱学适用于有机物和无机物的分析。
由于从核磁共振谱图中可以获得丰富的结构信息,所以核磁共振谱学被广泛应用于有机化学、药物研发和材料科学等领域。
三、红外光谱学红外光谱学是一种通过测量样品对不同波长的红外辐射的吸收情况来分析样品结构和组成的方法。
不同官能团在红外区域会有特定的吸收峰位,因此红外光谱能提供有关样品中化学键和官能团的信息。
红外光谱学适用于有机物和无机物的分析。
它具有非破坏性、快速、易于操作等特点,在化学、生物和材料科学领域得到了广泛应用。
四、X射线衍射(XRD)X射线衍射是一种通过测量样品对入射X射线的衍射现象来研究样品结构和晶体结构的方法。
不同物质的晶格结构具有不同的衍射图样,通过分析衍射图样可以获得样品的晶体结构信息。
X射线衍射适用于分析有晶体结构的材料,如金属、陶瓷、单晶等。
它能提供关于晶体结构、晶粒尺寸和应力等信息,被广泛应用于材料科学、地质学和能源领域。
五、扫描电子显微镜(SEM)和透射电子显微镜(TEM)扫描电子显微镜和透射电子显微镜是一种通过聚焦电子束对材料进行观察和分析的方法。
扫描电子显微镜主要用于获得材料的表面形貌、颗粒分布和成分分析。
透射电子显微镜则能提供材料的内部结构和界面微观结构的信息。
材料分析方法

材料分析方法材料分析是指通过实验手段对材料的成分、结构和性质进行系统分析研究的方法。
根据分析样品的性质和需求,目前常用的材料分析方法主要有以下几种:1. 光谱分析方法:包括紫外可见光谱、红外光谱、拉曼光谱等。
紫外可见光谱主要用于分析材料的电子激发态和吸收特性,红外光谱用于分析材料的化学键的振动特性,拉曼光谱则分析物质的分子结构。
2. 热分析方法:主要是通过物质在加热过程中的热效应来测定样品的热稳定性、相变温度、热分解产物等。
常用的热分析方法有差热分析(DTA)、热重分析(TGA)、热量法、热导率法等。
3. 电子显微镜方法:包括扫描电子显微镜(SEM)和透射电子显微镜(TEM)。
SEM主要用于观察样品表面形貌和微观结构,TEM则用于研究材料的结晶性和纳米尺度的结构。
4. 色谱分析方法:包括气相色谱(GC)、液相色谱(LC)、离子色谱(IC)等。
色谱分析是基于物质在固定相和流动相间的分配和迁移作用进行分析的方法。
主要用于分离和定性分析有机化合物、离子等。
5. 质谱分析方法:以质谱仪为工具,将样品中的物质离子化和碎裂,通过测量质谱图,分析出物质的分子量、分子结构、同位素等信息。
常用的质谱分析方法有质谱仪、液质联用等。
6. 磁学分析方法:主要用于研究材料的磁性质。
包括磁化强度的测定、磁滞曲线的测定、磁致伸缩效应的测定等。
常用的磁学分析方法有霍尔效应法、磁滞回线法等。
7. 表面分析方法:主要用于研究材料表面的成分、形貌和性质。
常用的表面分析方法有X射线光电子能谱(XPS)、扫描隧道电镜(STM)、原子力显微镜(AFM)等。
除以上常用的材料分析方法外,还有众多其他的分析方法,如电化学分析方法、微波消解法、核磁共振(NMR)等。
这些方法能够为我们从不同角度对材料进行分析和研究,有助于揭示材料的组成、结构和性能,并为材料的改进和开发提供科学依据。
材料分析方法

材料分析方法材料分析方法是指对各种材料进行分析和检测的方法和技术。
在工程技术、科学研究和质量监督等领域,材料分析方法的应用十分广泛。
材料分析方法的选择对于材料的质量控制、产品性能评价和问题分析具有重要意义。
本文将对常见的材料分析方法进行介绍,希望能够对相关领域的人士有所帮助。
一、光学显微镜。
光学显微镜是一种常见的材料分析工具,通过光学原理对材料进行观察和分析。
光学显微镜可以对材料的表面形貌、晶体结构和组织结构进行观察和分析,对于金属、陶瓷、塑料等材料的组织分析具有重要意义。
二、扫描电子显微镜。
扫描电子显微镜是一种高分辨率的显微镜,能够对材料的表面形貌进行高清观察,并且可以获取材料的微观结构信息。
扫描电子显微镜广泛应用于金属、半导体、纳米材料等领域的表面形貌和微观结构分析。
三、X射线衍射。
X射线衍射是一种常见的材料分析方法,通过照射材料表面,观察X射线的衍射图样来分析材料的晶体结构和晶格参数。
X射线衍射在材料科学、材料物理等领域具有重要应用价值。
四、质谱分析。
质谱分析是一种通过对材料中各种元素和化合物进行质谱检测,从而确定材料成分和结构的方法。
质谱分析在材料科学、化学分析等领域具有广泛的应用。
五、热分析。
热分析是一种通过对材料在不同温度下的物理和化学性质进行测试和分析的方法。
热分析包括热重分析、差示扫描量热分析等方法,可以用于分析材料的热稳定性、热分解过程等。
六、原子力显微镜。
原子力显微镜是一种通过探针对材料表面进行扫描,从而获取材料表面形貌和力学性质的显微镜。
原子力显微镜在纳米材料、生物材料等领域具有重要应用。
七、拉曼光谱。
拉曼光谱是一种通过激光照射样品,观察样品散射的光谱,从而分析材料的分子结构和晶格振动信息的方法。
拉曼光谱在材料科学、化学分析等领域有广泛的应用。
总结:材料分析方法的选择应根据具体的分析目的和要求来确定,不同的材料分析方法具有不同的特点和适用范围。
在实际应用中,可以根据具体情况选择合适的材料分析方法,从而获取准确的分析结果。
材料分析方法总结

材料分析方法总结材料是现代工业中不可缺少的一环,而材料的质量也直接影响着产品的性能和品质。
为了保证材料的质量,科学家们在不断探索新的材料分析方法。
本文将对几种常用的材料分析方法进行总结。
1. X射线衍射法X射线衍射法是一种广泛应用于材料分析的非破坏性测试方法。
它通过将X射线投射到材料上,并记录反射和散射的X射线来分析材料的晶体结构和化学成分。
这种方法适用于分析晶体,陶瓷、金属、粉末、涂料等材料的结构。
2. 扫描电子显微镜(SEM)扫描电子显微镜(SEM)是一种通过扫描专用电子束来实现高分辨率成像的仪器。
它主要用于表面形貌和微观结构的分析。
这种方法适用于分析金属、陶瓷、高分子材料、纳米颗粒等材料。
3. 原子力显微镜(AFM)原子力显微镜(AFM)是一种利用扫描探针进行表面成像的技术。
探针末端的尖端可以感知为表面提供足够的分辨率和精度。
这种方法适用于对纳米颗粒、表面形貌、物性、焊点和电性进行研究。
AFM在纳米领域的研究中应用广泛。
4. 操作模态分析(OMA)操作模态分析(OMA)是一种实验模态分析技术,通过对振动信号的处理和分析来实现材料的动态特性分析。
这种方法适用于设计振动器件、安装大型机器及其分析结构和疲劳寿命。
在固体、液体、气体中的物理情况下可以应用到OMA分析中。
5. 热重分析(TGA)热重分析(TGA)是一种非常有用的方法,可以在微观和宏观水平上实现对材料特性的分析。
它利用热重量差法分析在升温和等温条件下,材料的重量以及重量变化和热学性质。
这种方法适用于材料的分解、氧化和变化温度的测定。
同时还可以提供实际应用中需要的材料密度、表面面积、孔隙度及扰动过程参数等信息。
在工程领域中,材料分析是非常重要的一环,实现高质量,健康和可持续的生产会更加有挑战和漫长。
因此,科学家们一直在不断寻找新的材料分析方法,并不断完善现有的方法。
综合以上几种方法的优缺点,选择合适的方法来分析材料,可以有效提高材料质量,减少生产成本,提升产品品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009
1.在晶体光学鉴定中,哪些晶系的晶体表现为光性非均质体?它们又分属于哪类型的光率体?请阐述光在这些光率体中的传播特点。
2.简述特征X射线的产生及其应用;简述X射线衍射产生的充要条件,写出布拉格方程通用式,并说明公式中各符号的物理意义。
3.简述粉末衍射物相定性分析过程,写出3种以上X射线粉末衍射方法的实际应用,并给出影响表征结果的主要因素。
4.简述如何利用X射线衍射方法来区分金属材料脱溶分解和Spinodal分解的不同?
5.简述高能电子书与物质作用后所产生的主要信号(至少列出4中信号)及其应用;写出SEM的成像基本原理,分辨率以及影响分辨率的主要因素。
6.请分析SEM中二次电子像,背散射电子像,X射线面扫面像的差异,并叙述这三种方法在无机材料中的应用。
7.简述TEM在金属材料研究方面的应用。
8.请阐述差热分析中影响差热曲线的式样方面的因素,为何在差热分析中采用外延起始温度(外延始点)作为吸、放热反应的起始温度?
9.在功率补偿型DSC量热法中,是如何实现式样吸、放热定量分析的?请举例说明DSC在材料物性分析中的应用。
10.如何利用DTA、TG与热膨胀分析技术区分材料热分解、玻璃化转变、氧化(老化)玻璃析晶、陶瓷烧结等过程?举例说明热分析技术在材料研究领域的应用。
11.试写出有机化合物ETIR谱图的主要基团特征频率,并说出FTIR在材料分析中有哪些应用。
12.试写出胡克定律的数学表达式,并根据该表达式举例解释IR集团频率的变化规律。
13.请画出一张乙醇的质子NMR示意谱图,并说明该谱图主要给出哪些信息;再请阐述核磁共振分析中影响化学位移的主要因素。
14.简述核磁共振试验中弛豫过程的类型,并解释通常进行的核磁共振实验分析中为何应先将固体式样配成溶液,然后再测式样溶液样品的核磁共振。
15.请利用所学到得或掌握的微观分析和测试方法及手段,结合你的专业,选择某种材料进行微观结构的表征。
请你简要写出微观结构表征的过程。
(所用表征方法不得少于2种)。
2010
一、简答题(必答题,每题15分)
1 光在高级晶族、中级晶族、低级晶族中的传播特点,如何用光学显微分析方法区分晶体和非光晶体。
2 特征X射线的产生、性质和应用。
3 高能电子与固体物质碰撞产生哪些物理信号?说明他们在形貌表征中的应用。
(至少三种)
4 试推导布拉格方程,说明各参数的物理意义,限定范围。
5 电子显微分析方法有哪些?SEM和TEM的衬度原理,并说明他们在材料中的应用。
二、叙述题(选做题,任选5道,每题15分)
1 XRD在多晶粉末试样物性分析中的应用,影响表征结果的因素。
2 二次电子、背散射电子、特征X射线表征形貌时的不同,说明他们在材料分析中的应用。
3 影响红外吸收的因素,为什么说红外光谱和拉曼光谱互补,拉曼光谱和红外光谱相比有什么特点。
4 试画出一种典型的热分析曲线,并解释各个吸收峰和转变处的意义。
5 叙述透射电镜的制样方法,并分析其特点。
6 如何用差热分析、热重分析、热膨胀分析区别碳酸盐分解、金属氧化、玻璃析晶、晶型转变。
并举例说明热分析在玻璃中的应用。
7 光谱分析的基础是什么?各种波长的电子与原子作用产生的光谱,并简要叙述其应用。
8 结合乙醇的质谱图,从谱图上可得到哪些信息并叙述谱图解析步骤。
9 介绍材料分析和表征的大致步骤和分析方法。
10 选择分析方法表征碳酸盐水泥水化进程的研究,并评价你选用的方法
2011
1.简述自然光与偏振光的区别,偏振光进入晶体和非晶态物质后分别产生什么不同的光学现象,偏光显微技术在晶体物质研究中的应用。
2.简述光学显微技术与电子显微技术的异同和原因,如何分别利用这两种分析技术鉴定样品中晶体的同质多晶现象。
3.简述差热分析方法的原理,说明为何在材料热过程中产生基线漂移,在吸放热后基线上移或下移现象。
4.为何差热分析方法只能进行定性或半定量分析?何种热分析方法可进行材料热过程的定量分析,简述材料定量热分析的重要意义。
5.在非晶态(玻璃)物质的制备和析晶研究中,如何利用仪器分析方法研究非晶态物质的玻璃转变温度、析晶温度、析出晶体的尺寸、形貌和晶型?简述光谱分析在材料分析中的应用。
6.以布拉格定律为基本原理的材料分析方法有哪些,试举一例说明其主要原理。
7.在透射显微技术中质厚衬度的物理意义。
8.在透射显微技术中
9.有一水化一年的硅酸盐水泥,如何测定其中的熟料是否水化完全?
10.简述吸收光谱的产生原理和几个主要吸收光谱的名称,说明吸收光谱普带产生化学位移的原因,吸收光谱在材料测试中的应用。
11.写出红外光谱的产生条件,通常将红外光谱的特征频率区划分为四个部分,试写出各部分的特征基团名称。
12.任意画出一个质子NMR谱图,指出该谱图能够得出的结构信息,以及影响谱图化学位移的主要因素。
13.简述质谱分析的主要原理,举例说明其应用。
14.利用所学物理表征和化学分析的知识,结合所学专业,阐述材料分析中物理表征和化学分析的过程。
(所用表征方法不少于两种)
15.结合自己的研究领域,谈谈现代仪器分析方法如何解决材料三要素-成分、结构、性能之间关系的
2012(回忆版)
1、阐述几种使用物理原理的仪器的分析方法。
2、如何利用偏光显微镜鉴别非晶体、一轴晶体和二轴晶体。
3、布拉格方程的物理意义是什么,有分析方法中哪些具体的应用。
4、X衍射仪的原理和应用,怎样利用X衍射区分晶体与非晶体。
5、阐述透射电镜的衬度原理和样品的制备方法,并说明透射电镜的应用上有哪些局限。
6、扫描电镜与透射电镜的原理有什么区别。
7、差热分析的基础原理是什么,具体有什么应用。
8、怎样利用热分析技术判断陶瓷烧结过程中的烧结、脱水,晶想型转变。
(P248-249)
9、红外光谱的特征基团,有什么应用。
10、水泥水化过程中水化产物物象的分析方法。
11、红外光谱的特征基团频率有哪些,并举例说明基团频率位移的影响因素。
(大概是这样。
)
12、画出乙醇的质谱图,并且利用它说明质谱图可以给出的信息,说明质谱的化学位移影响因素
13、怎样去分析金属中的第二相弥散相。
14、利用所学物理表征和化学分析的知识,结合所学专业,阐述材料分析中物理表征和化学分析的过程。
(所用表征方法不少于两种)
2013
一、名词解释(每个5分,必答):
1、特征X射线。
2、二次电子。
3、热分析。
4、振转光谱。
5、基团频率。
6、质厚衬度。
二、简答题(每个10分,必答):
1、写出布拉格方程,解释其中的物理意义,该方程在材料分析中的应用。
2、SEM衬度原理。
3、写出四种热分析技术名称和它们各自主要的应用领域。
4、写出胡克定律数学表达式,并根据该表达式举例解释IR集团频率的变化规律。
5、请阐述核磁共振中化学位移的产生原因。
6、试阐述对一未知材料进行化学结构和微观形貌分析的大致步骤。
三:画图谱及解析(4选3,每个20分)
1、画任一XRD示意谱图,解释峰位的表示方式,通过该谱图可以得到哪些材料的信息?
2、画出某一元素的波色散图,每个峰的意思?(这题之前复习压根没注意到过,所以题目大致是这样,不能很保证)
3、画出某一材料的DTA曲线,并解释吸收峰和/或折台的意义。
4、画出某一物质的NMR示意谱图,并解释从谱图中可以得到哪些信息。