第五章 聚合方法
第五章聚合方法

第五章聚合方法一、名称解释1. 自由基聚合实施方法(Process of Radical Polymerization):主要有本体聚合,溶液聚合,乳液聚合,悬浮聚合四种。
2. 离子聚合实施方法:主要有溶液聚合,淤浆聚合。
3. 逐步聚合实施方法:主要有熔融聚合,溶液聚合,界面聚合。
4. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
5. 悬浮聚合:悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
6. 悬浮作用:某些物质对单体有保护作用,能降低水的表面张力,能使水和单体的分散体系变为比较稳定的分散体系,这种作用称为悬浮作用。
7. 本体聚合:本体聚合是单体本身、加入少量引发剂(或不加)的聚合。
8. 溶液聚合:是指单体和引发剂溶于适当溶剂的聚合。
9. 乳液聚合:是单体在水中分散成乳液状而进行的聚合,体系由单体、水、水溶性引发剂、水溶性乳化剂组成。
10. 分散剂:分散剂大致可分为两类,(1)水溶性有机高分子物,作用机理主要是吸咐在液滴表面,形成一层保护膜,起着保护人用,同时还使表面(或界面)张力降低,有利于液滴分散。
(2)不溶于水的无机粉末,作用机理是细粉吸咐在液滴表面,起着机械隔离的作用。
11. 乳化剂:常用的乳化剂是水溶性阴离子表面活性剂,其作用有:(1)降低表面张力,使单体乳化成微小液滴,(2)在液滴表面形成保护层,防止凝聚,使乳液稳定,(3)更为重要的作用是超过某一临界浓度之后,乳化剂分子聚集成胶束,成为引发聚合的场所。
12. 胶束:当乳化剂浓度超过临界浓度(CMC)以后,一部分乳化剂分子聚集在一起,乳化剂的疏水基团伸身胶束回部,亲水基伸向水层的一种状态。
13. 临界胶束浓度:乳化剂开始形成胶束时的浓度称为临界胶束浓度,简称CMC。
14. 亲水亲油平衡值(HLB):该值用来衡量表面活性剂中亲水部分和亲油部分对水溶性的贡献,该值的大小表表亲水性的大小。
第五章自由基溶液聚合原理及生产工艺

二、溶液聚合的优缺点 1、优点
科学研究上,可选用 Cs 较小的溶剂,控制低转化率,容 易建立聚合速率、数均聚合度和单体浓度、引发剂浓度 的定量关系,方便动力学研究。 生产工艺上,散热控温容易,可避免局部过热,体系粘 度较低,可推迟自动加速现象出现,控制较低转化率可 消除自动加速现象,接近匀速反应,分子量分布窄。
四、溶剂的选择
产品为溶液,选择良溶剂;产品为固体,选择非溶剂;
成本低,毒性低。
五、向溶剂链转移的应用-----调节聚合
通过链自由基向溶剂或链转移剂的转移,可制备分子量 低的聚合物,也称低聚物,或调聚物,此过程称为调节聚合。 例如,乙烯在溶剂四氯化碳(调节剂)的作用下,制备低聚 物,反应原理如下:
因此当发生意外事故时,可通氧、降温;事故排 除后,可通氮、升温,恢复生产。
五、PVAc 的醇解反应 (1)直接水解法
醇解速率较慢, 醇解度较低,副 产物醋酸钠较难 回收,工业上一 般不采取此法。
醇解速率快,醇解度高(>90%),副产物主要是 (2)无水低碱醇解法 醋酸甲酯,醋酸钠较少,生产效率高、产品能满足 生产 PVF 纤维的要求,工业上一般采取此法。
生产工艺流程图
第三节 丙烯腈溶液聚合生产工艺
一、丙烯腈 丙烯腈在常温常压下是具有独特气味的无色透明、易流动液 体。相对分子质量为 53.06,沸点为 77.3℃,凝固点为-83.6℃, 相对密度为 0.8060 ,易燃、易爆,在空气中的爆炸极限为 3.05%~ 17.0%(体积)。 丙烯腈能与苯、甲苯、四氯化碳、甲醇、、乙醇、乙醚、丙 酮、醋酸乙酯等许多有机溶剂以任何比例互溶,丙烯腈也能溶于 水。 丙烯腈能与水、苯、甲醇、异丙醇、四氯化碳等形成二元共 沸物。其中丙烯腈与水的共沸温度为 71℃,含水 12%(质量)。 丙烯腈分子中含有碳-碳双键和腈基,化学性质很活泼,能进 行聚合反应(均聚和共聚)、加成反应、氰乙基化反应等。 贮存、运输过程要加入酚类、胺类阻聚剂。
高分子化学第5章

• 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等
–(2)不溶于水的无机粉末
• 主要有碳酸镁、滑石粉、高岭土等
水溶性有机高分子
• 高分子分散剂的作用机理主要是:
–吸附在液滴表面,形成一层保护膜,起着保 护胶体的作用;
–介质的粘度增加,有碍于两液滴的粘合;
–明胶、部分醇解的聚乙烯醇等的水溶液,还 使表面张力和界面张力降低,使液滴变小。
第五章 聚合方法
5.1 引言
聚合反应工程考虑的三个层次:
• 聚合机理和动力学(mechanism and kinetics)
–连锁:自由基、阴、阳离子、配位 –逐步:缩聚、聚加成、开环等
• 聚合过程(polymerization process)
–实施方法:本体、溶液、悬浮、乳液 –相态变化:分散性质、是否沉淀、是否存在界面等
• 丙烯腈连续溶液聚合 ; • 醋酸乙烯酯溶液聚合;
• 丙烯酸酯类溶液聚合。
例1. 聚丙烯腈(PAN)连续溶液聚合
• 连续均相溶液聚合:以51-52%的硫氰化钠(NaSCN)水 溶液为溶剂,AIBN为引发剂,pH5±0.2,温度75~85 ˚C,转化率70~75%。进料单体浓度17%,出料聚合 物浓度13%,脱除单体后直接用于纺制腈纶纤维。 • 连续沉淀聚合:以水为溶剂,过硫酸盐类氧化还原引 发体系,温度40~50 ˚C,转化率80%。聚合产物从反应 体系中沉淀出来,经洗涤、分离、干燥后重新配制成纺 丝溶液用于腈纶纺丝。
–沉淀聚合机理与均相聚合有些不同,主要反 映在凝胶效应上,影响因素和生产控制也有 差异。
• 液相聚合; • 气相聚合; • 固相聚合。
从工程角度考虑(需重视操作方式)
高分子化学第五章聚合方法

体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽;重则 温度失调,引起爆聚。(关键:散热)
➢解决办法:分段聚合
预聚:在反应釜中进行,转化率达10~40%,放出一 部分聚合热,有一定粘度。
后聚:在模板中聚合,逐步升温,使聚合完全。
5
聚合实例:聚苯乙烯,有机玻璃(PMMA)
32
单体 液滴 10000A
水相
单体
增溶胶束
乳化剂分子
胶束 40-50A
乳化剂 少量在水相中
单体
引发剂 大部分在水中
大部分形成胶束 部分吸附于单体液滴
一部分增溶胶束内 大部分在单体液滴内
33
聚合场 所
水相中?
单体液滴?
胶束?
水相中单体浓度小, 反应成聚合物则沉 淀,停止增长,因 此不是聚合的主要 场所。
预聚合:立式搅拌釜内进行,80~90℃ ,BPO或 AIBN引发,转化率30%~35%。
后聚合:预聚体流入聚合塔,可以热聚合或加 少量低活性引发剂,料液从塔顶缓慢流向塔底,温 度从100 ℃增至200 ℃,聚合转化率99%以上。
9
例二. 苯乙烯连续本体聚合
聚苯乙烯也是一种非结晶性聚合物,Tg = 95 ℃, 典型的硬塑料,伸长率仅1%-3%。尺寸稳定性优, 电性能好,透明色浅,流动性好,易加工。性脆、不 耐溶剂、紫外、氧。
2). CMC: 形成胶束的临界浓度。不同乳化剂的CMC不同,愈小, 表示乳化能力愈强
3). 三相平衡点:离子型乳化剂处于分子溶解、胶束、凝胶三相平衡 时的温度。(使用最低温度)
高于此温度,溶解度突增,凝胶消失,乳化剂只以分子溶解和胶 束两种状态存在。
4). 浊点:非离子型乳化剂开始分相变浊时的温度。(使用最高温度)
第五章 聚合方法

缺点
产品中附有少量分散剂 残留物,要生产透明和 绝缘性能高的产品须将 残留分散剂除净。
理论基础
悬浮聚合的关键问题是悬浮粒子的形成与控制。
Winslow-Matreyek成粒过程模型
油状单体
1 搅拌剪切力
5 凝聚
4 黏合、凝聚
由于分散剂 生成的分子 层保护胶体 而稳定化
扩大
2 表面张力
3 黏合、凝聚
胶束的形状
球状 ( 低浓度时 ) 直径 4 ~ 5 nm
棒状 ( 高浓度时 ) 直径 100 ~ 300 nm
胶束的大小和数目取决于乳化剂的用量 乳化剂用量多,胶束的粒子小,数目多
加入单体的情况
在形成胶束的水溶液中加入单体
极小部分单体 以分子分散状 态溶于水中
小部分单体 可进入胶束 的疏水层内
大部分单体 经搅拌形成 细小的液滴
本体聚合 Bulk Polymerization
本体聚合定义: 不加其它介质,只有单体本身,在引发剂、
热、光等作用下进行的聚合反应。说得简单点, 就是纯单体的聚合。
本体聚合的优点
产品纯度高; 生产设备简单,可连续生产; 可以得到高分子量的聚合物; 本体聚合很适于实验室研究。例如单体聚合能力 的初步评价,聚合物的试制、动力学研究及共聚 竞聚率的测定。
乳化剂在水中的情况
乳化剂浓度很低时,是以分子分散状态溶解在水中 达到一定浓度后,乳化剂分子开始形成聚集体(约50~ 150个分子),称为胶束 形成胶束的最低乳化剂浓度,称为临界胶束浓度(CMC) 不同乳化剂的CMC不同,愈小,表示乳化能力愈强 乳液聚合的乳化剂浓度比CMC高2~3个数量级
4.5 乳液聚合
4 乳液聚合动力学
(1)聚合速率
高分子化学第五章_聚合方法

1
聚合物生产实施的方法,称为聚合方法。
气相聚合
在单体沸点以上聚合
单体形态
固相聚合
在单体熔点以下聚合
聚合物—单体不溶
沉淀聚合 均相聚合
聚合物—单体互溶
非均相聚合
溶解性
聚合物—单体部分互溶
2
本体聚合
悬浮聚合
物料起始状态
乳液聚合
溶液聚合
5.1 引言
自由基聚合有四种基本的实施方法。 • 本体聚合: 不加任何其它介质, 仅是单体在引发剂(甚至不 加)、热、光或辐射源作用下引发的聚合反应。 • 溶液聚合: 单体和引发剂溶于适当溶剂中进行的聚合反应。
溶剂对聚合度的溶解性能与凝胶效应有关 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应 沉淀剂,凝胶效应显著,Rp 劣溶剂,介于两者之间
20
4、应用实例
多用于自由基聚合、离子聚合、配位聚合、逐步聚合等。
表4
单体
溶液聚合工业生产实例
溶剂 硫氰化钠 水溶液 水 甲醇 聚合机理 自由基聚合 自由基聚合 自由基聚合 产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维尼纶的原料
聚合物—单体—溶剂体系 均相聚合 乙烯高压聚合、苯乙烯、丙 烯酸酯 苯乙烯—苯、丙烯酸—水、 丙烯腈—二甲基甲酰胺 苯乙烯、甲基丙烯酸甲酯 苯乙烯、丁二烯、丙烯酸酯 沉淀聚合 氯乙烯、丙烯腈、丙 烯酰胺 氯乙烯—甲醇、丙烯 酸—己烷、丙烯腈— 水 氯乙烯 氯乙烯
均相体系
非均相体系
6
如何选择聚合方法: 根据产品性能的要求与经济效益,选用一种或几种方
PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐 光耐候性均十分优异,透光性达90%以上,俗称“有机 玻璃”。广泛用作航空玻璃、光导纤维、标牌、指示灯 罩、仪表牌、牙托粉等。
高分子化学第五章答案

第五章聚合方法思考题 5.1聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。
答聚合方法有不同的分类方法,如下表:按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。
溶液聚合是单体和引发剂溶于适当溶剂中的聚合。
悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。
按聚合体系的溶解性进行分类,聚合反应可以分成均相聚合和非均相聚合。
当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。
聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。
思考题5.2本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。
答间歇本体聚合是制备有机玻璃板的主要方法。
为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。
①预聚合。
在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。
②聚合。
将预聚物灌入无机玻璃平板模,在(40-50℃)下聚合至转化率90%。
低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。
③高温后处理。
转化率达90%以后,在高于PMMA的玻璃化温度的条件(100~120℃)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。
第五章 聚合方法

亲油基
亲水基
珠状胶束 (low concentration)
棒状胶束 (high concentration)
在形成胶束的水溶液中加入单体的情况
极小部分单体 以分子分散状 态溶于水中
小部分单体 可进入胶束 的疏水层内
大部分单体 经搅拌形成 细小的液滴
直径增至6 ~10 nm 直径约为 1000 nm 在搅拌和乳化剂的作用下,不溶于水的单体绝大部分(~95%) 被分散成稳定的乳化单体液滴,另有一小部分单体可渗入到胶束
的疏水(亲油)内部,形成所谓的增溶胶束,这种由于乳化剂的
存在而增大了难溶单体在水中的溶解性的现象称为胶束增溶现象。
乳化剂的作用主要有三点:
(i)降低表面张力,便于单体分散成细小的液滴,即分散单体; (ii)在单体液滴表面形成保护层,防止凝聚,使乳液稳定; (iii)增溶作用:当乳化剂浓度超过一定值时,就会由50~100 个分子聚集一起形成胶束,胶束呈球状或棒状,胶束中乳化剂分
对于第三阶段 单体液滴消失,乳胶粒内单体浓度[M]不断下降 因此,Rp不断下降
Rp
10 3 N k p [ M ]
可见: 乳液聚合速率取决于乳胶粒数 N,与引发速率无关
N高达1014 个/ cm3,[M· ]可达10-7 mol / L,比典型自由 基聚合高一个数量级 乳胶粒中单体浓度高达5 mol / L,故乳液聚合速率较快
阶段Ⅲ:聚合后期(完成)阶段
这阶段乳胶粒数目虽然不变,但单体液滴消失,乳胶粒内单 体得不到补充,所以乳胶粒内单体浓度逐步减小,聚合速率不断 降低,直至聚合完全停止,因此又称减速期。聚合完成后乳胶粒 熟化,外层由乳化剂包围的聚合物颗粒,其相态特征是只有乳胶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚合方法
本体聚合 溶液聚合 悬浮聚合 乳液聚合
1
教学目的及要求:
1. 了解:各种聚合方法的特点; 2. 掌握:乳液聚合的优点及三个阶段的特点; 3. 了解:乳液聚合机理及动力学。
教学重点难点:
1.自由基聚合的实施方法的优缺点;
2.乳液聚合的三个阶段,各阶段的特点,开始和 结束的标志。 3.乳化剂的选择;乳液聚合动力学
缺点
体系很粘稠,聚合热不易扩散,温度难控制 轻则造成局部过热,产品有气泡,分子量分布宽 重则温度失调,引起爆聚
解决办法——两段聚合法 预聚 在反应釜中进行,转化率达10~40%,放出一部 分聚合热,有一定粘度 后聚 在模板中聚合,逐步升温,使聚合完全
6
5.2 溶液聚合
定义 是将单体和引发剂溶于适当溶剂中进行的聚合反应 基本组分 ①单体 ②引发剂 ③溶剂 聚合场所: 在溶液内 溶液聚合的优缺点
形成胶束的最低乳化剂浓度,称为临界胶束浓 度(CMC) 不同乳化剂的CMC不同,愈小,表示乳化能力 愈强
17
胶束的形状
球状 ( 低浓度时 )
棒状 ( 高浓度时 ) 直径 100 ~ 300 nm
直径 4~ 5nm
胶束的大小和数目取决于乳化剂的用量
乳化剂用量多,胶束的粒子小,数目多
18
(c) 加入单体的情况
9
悬 浮剂
水溶性高分 子物质
聚乙烯醇 聚丙烯酸钠 S-MAA共聚物 明胶 纤维素类 淀粉 碳酸盐 硫酸盐 滑石粉 高岭土
吸附 在液 滴表 面形 成一 层保 护膜
吸附在 液滴表 面起机 械隔离 的作用
不溶于水的 无机物
10
W
OH
CH CH3 C O O
单体 液滴
单体液滴
无机粉末的分 散作用模型 部分醇解聚乙烯醇 的分散作用模型
涂料最早使用的胶乳是苯乙烯与丁二烯的共聚物,现在 很少用于建筑涂料,而是用于纸张 偏氯乙烯/丙烯酸酯共聚物乳胶的漆膜具有非常低的水渗 透性 加入丙烯酸和甲基丙烯酸可改善胶体稳定性,提高附着 力和提供交联点
15
2.乳化剂
是一类可使互不相容的油和水转变成难以分层的乳液 的物质,属于表面活性剂
分子通常由两部分组成 如长链脂肪酸钠盐
优点
散热控温容易,可避 免局部过热 体系粘度较低,能消 除凝胶效应
溶剂回收麻烦,设备 利用率低 缺点 聚合速率慢 分子量不高 7
工业上,溶液聚合多用于聚合物溶液直接使用的场合
如涂料、胶粘剂、浸渍液、合成纤维纺丝液
溶剂对聚合的影响:
溶剂的加入可能影响聚合速率、分子量分布
①溶剂导致笼蔽效应使 引发剂效率(f)降低, ②溶剂的加入降低了单体的浓度[M],使 Rp 降低 ③向溶剂链转移的结果使分子量降低
粒状树脂的颗粒形态不同 颗粒形态是指聚合物粒子的外观形状和内部结构状况
颗粒形态
紧密型:有利于增塑剂的吸收,如PVC 疏松型:不利于增塑剂的吸收,难于加工 分散剂的种类 明胶:紧密型
颗粒形态取决于
PVA:疏松型
水与单体的配比 大,有利于 形成疏松型
13
5.4 乳液聚合
一. 乳液聚合介绍
乳液聚合 单体在乳化剂作用和机械搅拌下,在水中分散成乳液状态 进行的聚合反应
溶剂与凝胶效应: 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应 沉淀剂(非溶剂),凝胶效应显著,Rp 不良溶剂,介于两者之间
8
5.3 悬浮聚合
定义 是将不溶于水的单体以小液滴状悬浮在水中进行 的聚合,这是自由基聚合一种特有的聚合方法 基本组分
①单体 ②引发剂 ③水 ④悬浮剂
是一类能将油溶性单 体分散在水中形成稳 定悬浮液的物质。
4
5.1 本体聚合
定义: 不加其它介质,只有单体本身,在引发剂、热、光等作 用下进行的聚合反应 基本组分: ①单体 包括气态、液态和固态单体 ②引发剂 一般为油溶性
色料 ③助剂 增塑剂
润滑剂
聚合场所:本体内
5
本体聚合的优缺点
优点
产品纯净,不存在介质分离问题 可直接制得透明的板材、型材 聚合设备简单,可连续或间歇生产
在形成胶束的水溶液中加入单体
极小部分单体 以分子分散状 态溶于水中 小部分单体 可进入胶束 的疏水层内 体积增至 6 ~10nm
单体 液滴
大部分单体 经搅拌形成 细小的液滴 直径约为 1000nm 周围吸附了一层 乳化剂分子,形 成带电保护层, 乳液得以稳定
19
相似相溶,等于 增加了单体在 水中的溶解度. 这种溶有单体 的胶束称为增 容胶束
亲油基(烷基)
亲水的极性基团 亲油的非极性基团
亲水基(羧酸钠)
(a) 乳化作用:
分散作用:降低界面张力,使单体分散成小液滴; 稳定作用:在液滴表面形成保护层使乳液稳定; 增溶作用:使部分单体溶于胶束内。
16
(b)乳化剂在水中的情况
乳化剂浓度很低时,是以分子分散状态溶解 在水中 达到一定浓度后,乳化剂分子开始 形成聚集体(约50~150个分子),称为胶束
11
悬浮剂的作用机理
油状单体 1
搅拌剪切力
2 5
黏合
表面张力
4
黏合
3
黏合 分散
分散粒子由于 分散剂的作用 而稳定化
由于分散剂 生成的分子 层保护胶体 而稳定化
扩大
12
颗粒大小与形态
悬浮聚合得到的是粒状树脂,粒径在0.01 ~ 5 mm 范围 粒径在1 mm左右,称为珠状聚合
粒径在0.01 mm左右,称为粉状悬浮聚合
(d) 乳化剂的分类
阴离子型乳化剂
2
聚合方法概述
逐步聚合
熔融缩聚 溶液缩聚 界面缩聚 固相缩聚
本体聚合 溶液聚合 悬浮聚合 乳液聚合
5
自由基聚合
3
本体聚合
单体本身加少量引发剂 (甚至不加)的聚合 单体以液滴状悬浮于溶 剂(包括水)中的聚合
悬浮聚合 溶液聚合 乳液聚合
单体和引发剂溶于适当溶 剂中的聚合
单体、水、水溶性引发剂、 乳化剂配成乳液状态所进 行的聚合
聚合场所
在胶束内 乳液聚合优缺点 水作分散介质,传热控温容易 可在低温下聚合 优点 Rp快,分子量高 可直接得到聚合物乳胶
缺点
要得到固体聚合物,后处理麻烦, 成本较高 难以除尽乳化剂残留物
14
二. 基本组分
1.单体 主要要求:可进行自由基聚合且不与水反应 一般为油溶性单体,在水中形成水包油型 涂料用的两个主要胶乳: 丙烯酸酯单体:包括丙烯酸和甲基丙烯酸的各种酯, 醋酸乙烯酯单体 乳胶体系