2015年黑龙江省大庆市中考数学试题及解析
2015年大庆升学中考数学试题模拟

2015年大庆升学中考数学试题模拟27.综合与实践:如图,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.【解答】解:(1)当y=0时,-x2+2x+3=0,解得x1=-1,x2=3.∵点A在点B的左侧,∴A、B的坐标分别为(-1,0),(3,0).当x=0时,y=3.∴C点的坐标为(0,3)设直线AC的解析式为y=k1x+b1(k1≠0),则b1=3, −k1+b1=0,解得k1=3, b1=3,∴直线AC的解析式为y=3x+3.∵y=-x2+2x+3=-(x-1)2+4,∴顶点D的坐标为(1,4).(2)抛物线上有三个这样的点Q,①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3);②当点Q在点Q2位置时,点Q2的纵坐标为-3,代入抛物线可得点Q2坐标为(1+7,-3);③当点Q在Q3位置时,点Q3的纵坐标为-3,代入抛物线解析式可得,点Q3的坐标为(1-7,-3);综上可得满足题意的点Q有三个,分别为:Q1(2,3),Q2(1+7,-3),Q3(1-7,-3).(3)过点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC于点M,则点M为所求,过点B′作B′E⊥x轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2.∴Rt△AOC∽Rt△AFB,∴CO/BF=CA/AE,由A(-1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3,∴AC=10,AB=4.∴3/BF=10/4,∴BF=12/10,∴BB′=2BF=24/10,由∠1=∠2可得Rt△AOC∽Rt△B′E B,∴AO/BE=CO/BE=CA/BB’,∴1/B’E=3/BE=10/24,即1/B’E=3/BE=5/12.∴B′E=12/5,BE=36/5,∴OE=BE-OB=36/5-3=21/5.∴B′点的坐标为(-21/5,12/5).设直线B′D的解析式为y=k2x+b2(k2≠0).∴k2+b2=4, -21/5k2+b2=12/5,解得k2=4/13,b2=49/13,∴直线B′D的解析式为:y=4/13X+48/13,联立B′D与AC的直线解析式可得:y=3x+3,y=4/13X+48/13,解得x=9/35,Y=132/35,∴M点的坐标为(9/35,132/35).27.如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以28.CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,29.EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【解答】解:(1)证明:如图1,∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴S△CFE/S△DAB=(CF/DA)2.∵AD=4,AB=3,∴BD=5,S△CFE=(CF/4)2•S△DAB=CF2/16×0.5×3×4=3CF2/8.∴S矩形EFCG=2S△CFE=3CF2/4.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′)处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,如图2③所示.S△BCD=0.5BC•CD=0.5BD•CF∴4×3=5×CF,∴CF=12/5.∴12/5≤CF≤4.∵S矩形EFCG=3CF2/4,∴3/4×(12/5)2≤S矩形EFCG≤3/4×42.∴108/25≤S矩形EFCG≤12.∴矩形EFCG的面积最大值为12,最小值为108/25.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,如图2②所示,∴点G的移动路线是线段DG″.∵∠G″DC=∠BDA,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴DC/DA=DG’’/DB.∴3/4=DG’’/5.∴DG″=15/4.∴点G移动路线的长为15/4。
2015年黑龙江省中考数学试卷

2015年黑龙江省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为()A.5℃B.6℃C.7℃D.8℃2.用科学记数法表示927 000正确的是()A.9.27×106B.9.27×105C.9.27×104D.927×1033.下列计算正确的是()A.3a﹣2a=1 B.a2+a5=a7C.a2•a4=a6D.(ab)3=ab34.下列图形中,不是中心对称图形的是()A.B.C.D.5.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<16.如图的几何体是由一些小正方形组合而成的,则这个几何体的俯视图是()A.B.C.D.7.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD 的度数是()A.30°B.25°C.20°D.15°8.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.y=﹣2(x+1)2﹣1 B.y﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3 9.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6B.4C.3D.310.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:①打电话时,小刚和妈妈的距离为1250米;②打完电话后,经过23分钟小刚到达学校;③小刚和妈妈相遇后,妈妈回家的速度为150米/分;④小刚家与学校的距离为2550米.其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,共计30分)11.计算:=_________.12.在函数y=中,自变量x的取值范围是_________.13.把多项式3m2﹣6mn+3n2分解因式的结果是_________.14.不等式组的解集是_________.15.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为_________.16.在一个不透明的口袋中,有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球记下标号后放回,再随机地摸取一个小球记下标号,则两次摸取的小球标号都是1的概率为_________.17.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为_________.18.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是_________度.19.如图,在正方形ABCD中,AC为对角线,点E在AB边上,EF⊥AC于点F,连接EC,AF=3,△EFC 的周长为12,则EC的长为_________.20.如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H.若点H是AC的中点,则的值为_________.三、解答题21.先化简,再求代数式﹣的值,其中x=2cos45°+2,y=2.22.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.23.君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校满园内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?24.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案25.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.26.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?27.如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx 与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);28.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠ACB=90°,OA、OB的长分别是一元二次方程x2﹣25x+144=0的两个根(OA<OB),点D是线段BC上的一个动点(不与点B、C重合),过点D作直线DE⊥OB,垂足为E.(1)求点C的坐标.(2)连接AD,当AD平分∠CAB时,求直线AD的解析式.(3)若点N在直线DE上,在坐标系平面内,是否存在这样的点M,使得C、B、N、M为顶点的四边形是正方形?若存在,请直接写出点M的坐标;若不存在,说明理由.。
黑龙江省中考数学真题试题(含答案)

1 黑龙江省中考数学真题试题一、单项选择题:每小题3分,共30分2015年齐齐哈尔市初中毕业考试数学试卷1.(3分)(2015•齐齐哈尔)下列各式正确的是()A A..﹣22=4B =4 B.. 20=0C =0 C..=±2 D.=±2 D. | | |﹣﹣|=2.(3分)(2015•齐齐哈尔)下列汉字或字母中既是中心对称图形又是轴对称图形的是()A A.. B B.. C C.. D D..3.(3分)(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:131313,,1515,,1515,,1616,,1313,,1515,,1414,,1515(单位:岁)(单位:岁).这组数据的中位数和极差分别是() A A.. 15 15,,3 B 3 B.. 14 14,,15 C 15 C.. 16 16,,16 D 16 D.. 14 14,,34.(3分)(2015•齐齐哈尔)如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h 随注水时间t 变化规律的是()A A..B B.. C C.. D D..5.(3分)(2015•齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A A.. 5或6或7B 7 B.. 6或7C 7 C.. 6或7或8D 8 D.. 7或8或96.(3分)(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是()A A.. 8≤AB≤10 B.8≤AB≤10 B. 8 8 8<AB≤10 C.<AB≤10 C.<AB≤10 C. 4≤AB≤5 D.4≤AB≤5 D. 4 4 4<AB≤5<AB≤5<AB≤57.(3分)(2015•齐齐哈尔)关于x 的分式方程=有解,则字母a 的取值范围是( )A A.. a=5或a=0B a=0 B.. a≠0 C.a≠0 C. a≠5 D.a≠5 D. a≠5且a≠0a≠08.(3分)(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(元,购买方案有( )A A.. 1种B B.. 2种C C.. 3种D D.. 4种9.(3分)(2015•齐齐哈尔)抛物线y=ax 2+bx+c +bx+c(a≠0)的对称轴为直线(a≠0)的对称轴为直线x=x=﹣﹣1,与x 轴的一个交点A 在点(﹣在点(﹣33,0)和(﹣)和(﹣22,0)之间,其部分图象如图,则下列结论:①4ac﹣)之间,其部分图象如图,则下列结论:①4ac﹣b b 2<0;②2a﹣②2a﹣b=0b=0b=0;;③a+b+c<③a+b+c<00;④点M (x 1,y 1)、N (x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2,其中正确结论的个数是(其中正确结论的个数是( )A A.. 1个B B.. 2个C C.. 3个D D.. 4个1010..(3分)(2015•齐齐哈尔)如图,在钝角△(2015•齐齐哈尔)如图,在钝角△ABC ABC 中,分别以AB 和AC 为斜边向△为斜边向△ABC ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ACF,,EM 平分∠平分∠AEB AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN DN、、DE DE、、DF DF..下列结论:①EM=DN;②S △CDN =S 四边形ABDN ;③DE=DF;④DE⊥④DE⊥DF DF DF..其中正确的结论的个数是(中正确的结论的个数是( )A A.. 1个B B.. 2个C C.. 3个D D.. 4个二、填空题:每小题3分,共30分1111..(3分)(2015•齐齐哈尔)日前从省教育厅获悉,为改善农村义务教育办学条件,促进教育公平,去年我省共接收163400名随迁子女就学,将163400用科学记数法表示为 .1212..(3分)(2015•齐齐哈尔)在函数y=+中,自变量x 的取值范围是的取值范围是 .1313..(3分)(2015•齐齐哈尔)如图,点B 、A 、D 、E 在同一直线上,在同一直线上,BD=AE BD=AE BD=AE,,BC BC∥∥EF EF,要使,要使△ABC ABC≌△≌△≌△DEF DEF DEF,则只需添加一个适当的条件是,则只需添加一个适当的条件是,则只需添加一个适当的条件是 .(只填一个即可)(只填一个即可)1414..(3分)(2015•齐齐哈尔)△ABC 的两边长分别为2和3,第三边的长是方程x 2﹣8x+15=0的根,则△的根,则△ABC ABC 的周长是的周长是 .1515..(3分)(2015•齐齐哈尔)如图,点A 是反比例函数图象上一点,过点A 作AB AB⊥⊥y 轴于点B ,点C 、D 在x 轴上,且BC BC∥∥AD AD,四边形,四边形ABCD 的面积为3,则这个反比例函数的解析式为 .1616..(3分)(2015•齐齐哈尔)底面周长为10πcm cm,,高为12cm 的圆锥的侧面积为的圆锥的侧面积为 .1717..(3分)(2015•齐齐哈尔)从点A (﹣(﹣22,3)、B (1,﹣,﹣66)、C (﹣(﹣22,﹣,﹣44)中任取一个点,在y=y=﹣﹣的图象上的概率是的图象上的概率是 .1818..(3分)(2015•齐齐哈尔)菱形ABCD 的对角线AC=6cm AC=6cm,,BD=4cm BD=4cm,,以AC 为边作正方形ACEF ACEF,,则BF 长为长为 .1919..(3分)(2015•齐齐哈尔)(2015•齐齐哈尔)BD BD 为等腰△为等腰△ABC ABC 的腰AC 上的高,上的高,BD=1BD=1BD=1,,tan tan∠∠ABD=,则CD 的长为的长为 .2020..(3分)(2015•齐齐哈尔)如图,正方形ABCB 1中,中,AB=1AB=1AB=1..AB 与直线l 的夹角为30°,延长CB 1交直线l 于点A 1,作正方形A 1B 1C 1B 2,延长C 1B 2交直线l 于点A 2,作正方形A 2B 2C 2B 3,延长C 2B 3交直线l 于点A 3,作正方形A 3B 3C 3D 4,…,依此规律,则A 2014A 2015= .三、解答题:满分60分2121..(5分)(2015•齐齐哈尔)先化简,再求值:÷(+1+1)),其中x 是的整数部分.部分.2222..(6分)(2015•齐齐哈尔)如图,在边上为1个单位长度的小正方形网格中:个单位长度的小正方形网格中:(1)画出△)画出△ABC ABC 向上平移6个单位长度,再向右平移5个单位长度后的△个单位长度后的△A A 1B 1C 1.(2)以点B 为位似中心,将△将△ABC ABC 放大为原来的2倍,得到△得到△A A 2B 2C 2,请在网格中画出△请在网格中画出△A A 2B 2C 2.(3)求△)求△CC CC 1C 2的面积.的面积.2323..(6分)(2015•齐齐哈尔)如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、轴、y y 轴的正半轴,抛物线y=y=﹣﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC AC、、BD BD、、CD CD..(1)求此抛物线的解析式.)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.的面积.2424..(7分)(2015•齐齐哈尔)(2015•齐齐哈尔)44月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年(读书活动,以提升青少年的阅读兴趣,九年(11)班数学活动小组对本年级600名学生每天阅读时间进行了统计,根据所得数据绘制了两幅不完整统计图(每组包括最小值不包括最大值).九年(.九年(11)班每天阅读时间在0.5小时以内的学生占全班人数的8%8%.根据统计图解答.根据统计图解答下列问题:下列问题:(1)九年()九年(11)班有)班有 名学生;名学生;(2)补全直方图;)补全直方图; (3)除九年()除九年(11)班外,九年级其他班级每天阅读时间在1~1.5小时的学生有165人,请你补全扇形统计图;你补全扇形统计图;(4)求该年级每天阅读时间不少于1小时的学生有多少人?2525..(8分)(2015•齐齐哈尔)甲、乙两车分别从相距480km 的A 、B 两地相向而行,乙车比甲车先出发1小时,小时,并以各自的速度匀速行驶,途径并以各自的速度匀速行驶,途径C 地,甲车到达C 地停留1小时,小时,因有因有事按原路原速返回A 地.地.乙车从乙车从B 地直达A 地,两车同时到达A 地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x (小时)的关系如图,结合图象信息解答下列问题:问题:(1)乙车的速度是)乙车的速度是 千米千米//时,时,t= t= 小时;小时;(2)求甲车距它出发地的路程y 与它出发的时间x 的函数关系式,并写出自变量的取值范围;围;(3)直接写出乙车出发多长时间两车相距120千米.千米.2626..(8分)(2015•齐齐哈尔)如图1所示,在正方形ABCD 和正方形CGEF 中,点B 、C 、G 在同一条直线上,在同一条直线上,M M 是线段AE 的中点,的中点,DM DM 的延长线交EF 于点N ,连接FM FM,易证:,易证:,易证:DM=FM DM=FM DM=FM,,DM DM⊥⊥F M (无需写证明过程)(无需写证明过程)(1)如图2,当点B 、C 、F 在同一条直线上,在同一条直线上,DM DM 的延长线交EG 于点N ,其余条件不变,试探究线段DM 与FM 有怎样的关系?请写出猜想,并给予证明;有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E 、B 、C 在同一条直线上,在同一条直线上,DM DM 的延长线交CE 的延长线于点N ,其余条件不变,探究线段DM 与FM 有怎样的关系?请直接写出猜想.有怎样的关系?请直接写出猜想.2727..(10分)(2015•齐齐哈尔)母亲节前夕,某淘宝店主从厂家购进A 、B 两种礼盒,已知A 、B 两种礼盒的单价比为2:3,单价和为200元.元.(1)求A 、B 两种礼盒的单价分别是多少元?两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A 种礼盒最多36个,个,B B 种礼盒的数量不超过A 种礼盒数量的2倍,共有几种进货方案?倍,共有几种进货方案?(3)根据市场行情,销售一个A 钟礼盒可获利10元,销售一个B 种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B 种礼盒,为爱心公益基金捐款m 元,每个A 种礼盒的利润不变,在(润不变,在(22)的条件下,要使礼盒全部售出后所有方案获利相同,)的条件下,要使礼盒全部售出后所有方案获利相同,m m 值是多少?此时店主获利多少元?主获利多少元?2828..(10分)(2015•齐齐哈尔)如图,在平面直角坐标系中,已知Rt Rt△△AOB 的两直角边OA OA、、OB 分别在x 轴的负半轴和y 轴的正半轴上,且OA OA、、OB 的长满足的长满足|OA |OA |OA﹣﹣8|+8|+((OB OB﹣﹣6)2=0=0,∠,∠ABO 的平分线交x 轴于点C 过点C 作AB 的垂线,垂足为点D ,交y 轴于点E .(1)求线段AB 的长;的长;(2)求直线CE 的解析式;的解析式;(3)若M 是射线BC 上的一个动点,在坐标平面内是否存在点P ,使以A 、B 、M 、P 为顶点的四边形是矩形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.的坐标;若不存在,请说明理由.黑龙江省中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分2015年齐齐哈尔市初中毕业考试数学试卷1.(3分)(2015•齐齐哈尔)下列各式正确的是((2015•齐齐哈尔)下列各式正确的是( ) A A.. ﹣22=4 B =4 B.. 20=0 C =0 C.. =±2 D.=±2 D. | | |﹣﹣|=考点: 算术平方根;有理数的乘方;实数的性质;零指数幂.算术平方根;有理数的乘方;实数的性质;零指数幂.分析: 根据有理数的乘方,任何非零数的零次幂等于1,算术平方根的定义,绝对值的性质对各选项分析判断即可得解.质对各选项分析判断即可得解. 解答: 解:解:A A 、﹣、﹣222=﹣4,故本选项错误;,故本选项错误; B 、20=1=1,故本选项错误;,故本选项错误;,故本选项错误;C 、=2=2,故本选项错误;,故本选项错误;,故本选项错误;D 、|﹣|=,故本选项正确.,故本选项正确.故选D .点评: 本题考查了算术平方根的定义,有理数的乘方,实数的性质,零指数幂的定义,是基础题,熟记概念与性质是解题的关键.基础题,熟记概念与性质是解题的关键.2.(3分)(2015•齐齐哈尔)下列汉字或字母中既是中心对称图形又是轴对称图形的是( )A A..B B..C C..D D..考点: 中心对称图形;轴对称图形.中心对称图形;轴对称图形.分析: 根据轴对称图形与中心对称图形的概念求解.根据轴对称图形与中心对称图形的概念求解.解答: 解:解:A A 、是轴对称图形,不是中心对称图形.故错误;、是轴对称图形,不是中心对称图形.故错误;B 、是轴对称图形,不是中心对称图形.故错误;、是轴对称图形,不是中心对称图形.故错误;C 、是轴对称图形,也是中心对称图形.故正确;、是轴对称图形,也是中心对称图形.故正确;D 、不是轴对称图形,是中心对称图形.故错误.、不是轴对称图形,是中心对称图形.故错误.故选C .点评: 本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.重合.3.(3分)(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:(2015•齐齐哈尔)下列是某校教学活动小组学生的年龄情况:131313,,1515,,1515,,1616,,1313,,1515,,1414,,1515(单位:岁)(单位:岁).这组数据的中位数和极差分别是(.这组数据的中位数和极差分别是( )A A.. 15 15,,3B 3 B.. 14 14,,15C 15 C.. 16 16,,16D 16 D.. 14 14,,3考点: 极差;中位数.极差;中位数.分析: 根据中位数与极差的定义分别求出即可解答.找中位数要把数据按从小到大的顺序排列,排列,位于最中间的一个数(或两个数的平均数)位于最中间的一个数(或两个数的平均数)位于最中间的一个数(或两个数的平均数)为中位数;为中位数;为中位数;极差就是这组数中最大值与最极差就是这组数中最大值与最小值的差.小值的差.解答: 解:按从小到大的顺序排列为:1313,,1313,,1414,,1515,,1515,,1515,,1515,,1616,,故中位数为(15+1515+15))÷2=15,÷2=15,极差为1616﹣﹣13=313=3..故选A .点评: 本题为统计题,考查中位数与极差的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,如果中位数的概念掌握得不好,不把数据按要求重新排列,不把数据按要求重新排列,不把数据按要求重新排列,就会出错.就会出错.极差是指一组数据中最大数据与最小数据的差.极差最大数据与最小数据的差.极差==最大值﹣最小值.最大值﹣最小值.4.(3分)(2015•齐齐哈尔)如图,匀速地向此容器内注水,直到把容器注满,在注水过程中,下列图象能大致反映水面高度h 随注水时间t 变化规律的是(变化规律的是( )A A..B B..C C..D D..考点: 函数的图象.函数的图象.分析: 由于三个容器的高度相同,由于三个容器的高度相同,粗细不同,粗细不同,那么水面高度h 随时间t 变化而分三个阶段. 解答: 解:最下面的容器容器最小,用时最短,第二个容器最粗,那么第二个阶段的函数图象水面高度h 随时间t 的增大而增长缓慢,用时较长,最上面容器较粗,那么用时较短. 故选B .点评: 此题主要考查了函数图象,解决本题的关键是根据容器的高度相同,每部分的粗细不同得到用时的不同.不同得到用时的不同.5.(3分)(2015•齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是(视图,组成这个几何体的小正方体的个数是( )A A.. 5或6或7B 7 B.. 6或7C 7 C.. 6或7或8D 8 D.. 7或8或9考点: 由三视图判断几何体.由三视图判断几何体.分析: 首先根据几何体的左视图,可得这个几何体共有3层;然后从俯视图中可以看出最底层小正方体的个数及形状;底层小正方体的个数及形状;最后从左视图判断出第一层、最后从左视图判断出第一层、最后从左视图判断出第一层、第二层的个数,第二层的个数,进而求出组成这个几何体的小正方体的个数是多少即可.个几何体的小正方体的个数是多少即可.解答: 解:根据几何体的左视图,可得这个几何体共有3层,层,从俯视图可以可以看出最底层的个数是4个,个,(1)当第一层有1个小正方体,第二层有1个小正方体时,个小正方体时,组成这个几何体的小正方体的个数是:组成这个几何体的小正方体的个数是:1+1+4=61+1+4=6(个)(个); (2)当第一层有1个小正方体,第二层有2个小正方体时,个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,个小正方体时,组成这个几何体的小正方体的个数是:组成这个几何体的小正方体的个数是: 1+2+4=71+2+4=7(个)(个); (3)当第一层有2个小正方体,第二层有2个小正方体时,个小正方体时,组成这个几何体的小正方体的个数是:组成这个几何体的小正方体的个数是:2+2+4=82+2+4=8(个)(个). 综上,可得综上,可得组成这个几何体的小正方体的个数是6或7或8.故选:故选:C C .点评: 此题主要考查了由三视图判断几何体,考查了空间想象能力,要熟练掌握,解答此题的关键是要明确:题的关键是要明确:由三视图想象几何体的形状,由三视图想象几何体的形状,由三视图想象几何体的形状,首先,首先,首先,应分别根据主视图、俯视图和左视应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•齐齐哈尔)如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是(的取值范围是( )A A.. 8≤AB≤10 B.8≤AB≤10 B. 8 8 8<AB≤10 C.<AB≤10 C.<AB≤10 C. 4≤AB≤5 D.4≤AB≤5 D. 4 4 4<AB≤5<AB≤5<AB≤5考点: 直线与圆的位置关系;勾股定理;垂径定理.直线与圆的位置关系;勾股定理;垂径定理.分析: 此题可以首先计算出当AB 与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB=8AB=8.若大圆的弦.若大圆的弦AB 与小圆有公共点,即相切或相交,此时AB≥8;又因为大圆最长的弦是直径1010,则,则8≤AB≤10.8≤AB≤10.解答: 解:当AB 与小圆相切,与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8=8..∵大圆的弦AB 与小圆有公共点,即相切或相交,与小圆有公共点,即相切或相交,∴8≤AB≤10.∴8≤AB≤10.故选:故选:A A .点评: 本题综合考查了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析有公共点时的弦长.切时的弦长,再进一步分析有公共点时的弦长.7.(3分)(2015•齐齐哈尔)关于x 的分式方程=有解,则字母a 的取值范围是( )A A.. a=5或a=0B a=0 B.. a≠0 C.a≠0 C. a≠5 D.a≠5 D. a≠5且a≠0a≠0考点: 分式方程的解.分式方程的解.分析: 先解关于x 的分式方程,求得x 的值,然后再依据“关于x 的分式方程=有解”,即x≠0且x≠2建立不等式即可求a 的取值范围.的取值范围.解答: 解:=, 去分母得:去分母得:55(x ﹣2)=ax =ax,,去括号得:去括号得:5x 5x 5x﹣﹣10=ax 10=ax,,移项,合并同类项得:移项,合并同类项得:(5﹣a )x=10x=10,,∵关于x 的分式方程=有解,有解,∴5﹣a≠0,x≠0且x≠2,x≠2,即a≠5,a≠5,系数化为1得:得:x=x=, ∴≠0且≠2,≠2, 即a≠5,a≠0,a≠5,a≠0,综上所述:关于x 的分式方程=有解,则字母a 的取值范围是a≠5,a≠0,a≠5,a≠0,故选:故选:D D .点评: 此题考查了求分式方程的解,由于我们的目的是求a 的取值范围,根据方程的解列出关于a 的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.8.(3分)(2015•齐齐哈尔)为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有(元,购买方案有( )A A.. 1种B B.. 2种C C.. 3种D D.. 4种考点: 二元一次方程的应用.二元一次方程的应用.分析: 设毽子能买x 个,跳绳能买y 根,依据“某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元”列出方程,并解答.元”列出方程,并解答.解答: 解:设毽子能买x 个,跳绳能买y 根,根据题意可得:根,根据题意可得:3x+5y=353x+5y=35,,y=7y=7﹣﹣x ,∵x 、y 都是正整数,都是正整数,∴x=5时,时,y=4y=4y=4;;x=10时,时,y=1y=1y=1;;∴购买方案有2种.种.故选B .点评: 此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.此题主要考查了二元一次方程的应用,根据题意得出正确等量关系是解题关键.9.(3分)(2015•齐齐哈尔)抛物线y=ax 2+bx+c +bx+c(a≠0)的对称轴为直线(a≠0)的对称轴为直线x=x=﹣﹣1,与x 轴的一个交点A 在点(﹣在点(﹣33,0)和(﹣)和(﹣22,0)之间,其部分图象如图,则下列结论:①4ac﹣)之间,其部分图象如图,则下列结论:①4ac﹣b b 2<0;②2a﹣②2a﹣b=0b=0b=0;;③a+b+c<③a+b+c<00;④点M (x 1,y 1)、N (x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2,其中正确结论的个数是(其中正确结论的个数是( )A A.. 1个B B.. 2个C C.. 3个D D.. 4个考点: 二次函数图象与系数的关系.二次函数图象与系数的关系.分析: 根据函数与x 中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.作出判断. 解答: 解:函数与x 轴有两个交点,则b 2﹣4ac 4ac>>0,即4ac 4ac﹣﹣b 2<0,故①正确;,故①正确;函数的对称轴是x=x=﹣﹣1,即﹣=﹣1,则b=2a b=2a,,2a 2a﹣﹣b=0b=0,故②正确;,故②正确;,故②正确;当x=1时,函数对应的点在x 轴下方,则a+b+c a+b+c<<0,则③正确;,则③正确;则y 1和y 2的大小无法判断,则④错误.的大小无法判断,则④错误.故选C .点评: 本题考查了二次函数的性质,主要考查了利用图象求出a ,b ,c 的范围,以及特殊值的代入能得到特殊的式子.的式子.1010..(3分)(2015•齐齐哈尔)如图,在钝角△(2015•齐齐哈尔)如图,在钝角△ABC ABC 中,分别以AB 和AC 为斜边向△为斜边向△ABC ABC 的外侧作等腰直角三角形ABE 和等腰直角三角形ACF ACF,,EM 平分∠平分∠AEB AEB 交AB 于点M ,取BC 中点D ,AC 中点N ,连接DN DN、、DE DE、、DF DF..下列结论:①EM=DN;②S △CDN =S 四边形ABDN ;③DE=DF;④DE⊥④DE⊥DF DF DF..其中正确的结论的个数是(中正确的结论的个数是( )A A.. 1个B B.. 2个C C.. 3个D D.. 4个考点: 全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析: ①首先根据D 是BC 中点,N 是AC 中点N ,可得DN 是△是△ABC ABC 的中位线,判断出DN=;然后判断出EM=,即可判断出EM=DN EM=DN;;②首先根据DN DN∥∥AB AB,可得△,可得△,可得△CDN CDN CDN∽∽ABC ABC;然后根据;然后根据DN=,可得S △CDN =S △ABC ,所以S △CDN =S 四边形ABDN ,据此判断即可.,据此判断即可.③首先连接MD MD、、FN FN,判断出,判断出DM=FN DM=FN,∠,∠,∠EMD=EMD=EMD=∠∠DNF DNF,然后根据全等三角形判定的方法,判断,然后根据全等三角形判定的方法,判断出△出△EMD EMD EMD≌△≌△≌△DNF DNF DNF,即可判断出,即可判断出DE=DF DE=DF..④首先判断出,DM=FA FA,,∠EMD=EMD=∠∠EAF EAF,,根据相似计三角形判定的方法,判断出△判断出△EMD EMD EMD∽△∠∽△∠∽△∠EAF EAF EAF,即可判断出∠,即可判断出∠,即可判断出∠MED=MED=MED=∠∠AEF AEF,然后根据∠,然后根据∠,然后根据∠MED+MED+MED+∠AED=45°,判断出∠∠AED=45°,判断出∠DEF=45°,再根据DE=DF DE=DF,判断出∠DFE=45°,∠EDF=90°,即可判断出,判断出∠DFE=45°,∠EDF=90°,即可判断出DE DE⊥⊥DF DF.. 解答: 解:∵解:∵D D 是BC 中点,中点,N N 是AC 中点,中点,∴DN 是△是△ABC ABC 的中位线,的中位线,∴DN DN∥∥AB AB,且,且DN=;∵三角形ABE 是等腰直角三角形,是等腰直角三角形,EM EM 平分∠平分∠AEB AEB 交AB 于点M ,∴M 是AB 的中点,的中点,∴EM=,又∵又∵DN=DN=,∴EM=DN EM=DN,,∴结论①正确;∴结论①正确;∵DN DN∥∥AB AB,,∴△∴△CDN CDN CDN∽∽ABC ABC,,∵DN=,∴S △CDN =S △ABC ,∴S △CDN =S 四边形ABDN ,∴结论②正确;∴结论②正确;如图1,连接MD MD、、FN FN,,,∵D 是BC 中点,中点,M M 是AB 中点,中点,∴DM 是△是△ABC ABC 的中位线,的中位线,∴DM DM∥∥AC AC,且,且DM=;∵三角形ACF 是等腰直角三角形,是等腰直角三角形,N N 是AC 的中点,的中点,∴FN=,又∵又∵DM=DM=,∴DM=FN DM=FN,,∵DM DM∥∥AC AC,,DN DN∥∥AB AB,, ∴四边形AMDN 是平行四边形,是平行四边形,∴∠∴∠AMD=AMD=AMD=∠∠AND AND,,又∵∠又∵∠EMA=EMA=EMA=∠FNA=90°,∠FNA=90°,∠FNA=90°,∴∠∴∠EMD=EMD=EMD=∠∠DNF DNF,,在△在△EMD EMD 和△和△DNF DNF 中,中,,∴△∴△EMD EMD EMD≌△≌△≌△DNF DNF DNF,,∴DE=DF DE=DF,,∴结论③正确;∴结论③正确;如图2,连接MD MD,,EF EF,,NF NF,,,∵三角形ABE 是等腰直角三角形,是等腰直角三角形,EM EM 平分∠平分∠AEB AEB AEB,,∴M 是AB 的中点,的中点,EM EM EM⊥⊥AB AB,,∴EM=MA EM=MA,∠EMA=90°,∠,∠EMA=90°,∠,∠EMA=90°,∠AEM=AEM=AEM=∠EAM=45°,∠EAM=45°,∠EAM=45°,∴,∵D 是BC 中点,中点,M M 是AB 中点,中点,∴DM 是△是△ABC ABC 的中位线,的中位线,∴DM DM∥∥AC AC,且,且DM=;∵三角形ACF 是等腰直角三角形,是等腰直角三角形,N N 是AC 的中点,的中点,∴FN=,∠FNA=90°,∠,∠FNA=90°,∠FAN=FAN=FAN=∠AFN=45°,∠AFN=45°,∠AFN=45°,又∵又∵DM=DM=,∴DM=FN=FA FA,,∵∠∵∠EMD=EMD=EMD=∠∠EMA+EMA+∠AMD=90°+∠∠AMD=90°+∠∠AMD=90°+∠AMD AMD AMD,,∠EAF=360°﹣∠∠EAF=360°﹣∠EAM EAM EAM﹣∠﹣∠﹣∠FAN FAN FAN﹣∠﹣∠﹣∠BAC BAC=360°﹣45°﹣45°﹣(180°﹣∠=360°﹣45°﹣45°﹣(180°﹣∠AMD AMD AMD))=90°+∠=90°+∠AMD AMD∴∠∴∠EMD=EMD=EMD=∠∠EAF EAF,,在△在△EMD EMD 和△∠和△∠EAF EAF 中,中,∴△∴△EMD EMD EMD∽△∠∽△∠∽△∠EAF EAF EAF,,∴∠∴∠MED=MED=MED=∠∠AEF AEF,,∵∠∵∠MED+MED+MED+∠AED=45°,∠AED=45°,∠AED=45°,∴∠∴∠AED+AED+AED+∠AEF=45°,∠AEF=45°,∠AEF=45°,即∠DEF=45°,即∠DEF=45°,又∵又∵DE=DF DE=DF DE=DF,,∴∠DFE=45°,∴∠DFE=45°,∴∠EDF=180°﹣45°﹣45°=90°,∴∠EDF=180°﹣45°﹣45°=90°,∴DE DE⊥⊥DF DF,,∴结论④正确.∴结论④正确.∴正确的结论有4个:①②③④.个:①②③④. 故选:故选:D D .点评: (1)此题主要考查了全等三角形的判定和性质的应用,此题主要考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性以及相似三角形的判定和性质的应用,要熟练掌握.质的应用,要熟练掌握.(2)此题还考查了等腰直角三角形的性质和应用,此题还考查了等腰直角三角形的性质和应用,要熟练掌握,要熟练掌握,解答此题的关键是要明确:等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R ,而高又为内切圆的直径.,而高又为内切圆的直径.(3)此题还考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.角形的中位线平行于第三边,并且等于第三边的一半.二、填空题:每小题3分,共30分1111..(3分)(2015•齐齐哈尔)日前从省教育厅获悉,为改善农村义务教育办学条件,促进教育公平,去年我省共接收163400名随迁子女就学,将163400用科学记数法表示为用科学记数法表示为 1.634×105.考点: 科学记数法—表示较大的数.科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<1≤|a|<101010,,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,时,小数点移动了多少位,n n 的绝对值与小数点移动的位数相同.当原数绝对值>原数绝对值>11时,时,n n 是正数;当原数的绝对值<是正数;当原数的绝对值<11时,时,n n 是负数.是负数. 解答: 解:将163400用科学记数法表示为1.634×105, 故答案为:1.634×105. 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<1≤|a|<101010,,n 为整数,表示时关键要正确确定a 的值以及n 的值.的值.1212..(3分)(2015•齐齐哈尔)在函数y=+中,自变量x 的取值范围是的取值范围是 x≥﹣x≥﹣33,且x≠0x≠0 .。
2015 大 庆 中 考 数 学 模 拟 试 卷

2015大庆中考数学模拟试卷一、选择题(每小题后面代号为A、B、C、D的四个选项中,只有一个正确,将它选出来并将答题卡上对应的选项涂黑,选对一题3分,不选和选错0分,本题满分为30分)..、)3.已知两圆的半径分别为R和r(R>r),圆心距为d,且d2+R2﹣r2=2dR,那么两圆的位.6.如图,已知AB是半圆O的直径,弦AD、BC相交于点P,若∠DPB=α,那么CD:AB 等于()7.如图,从一个直径为2的圆形铁皮中剪下一个圆心角为60°的扇形ABC,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径为()...∴=π÷=8.如图,在正方形ABCD中,点E在AB边上,且AE:EB=2:1,AF⊥DE于G,交BC 于F,则△AEG的面积与四边形BEGF的面积之比为()∴();9.如图,菱形ABCD的边长是5,两条对角线交于O点,且AO、BO的长分别是关于x 的方程x2+(2m﹣1)x+m2+3=0的根,则m的值为()<﹣10.二次函数y=ax2+bx+c图象如图所示,OA=OC,则下列结论:①abc<0;②4ac<b2;③ac ﹣b=﹣1;④2a+b<0;⑤;⑥4a﹣2b+c<0.其中正确的有(),故正确;11.分解因式:x3y﹣xy3=xy(x+y)(x﹣y).12.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于﹣3.解:解不等式组13.在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3,,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为.),,()(.=14.如图,把一个长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知α=36°,则长方形卡片的周长为200mm(参考数据tan36°≈),=ADF=,==6015.用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要181个“O”.16.如图,PA切OO于点A,PO交⊙O于C,延长PO交⊙O于点B,PA=AB,PD平分∠APB 交AB于点D,则∠ADP=45°.BPD=17.如图的梯形ABCD中,∠A=∠B=90°,且AD=AB,∠C=45度.将它分割成4个大小一样,都与原梯形相似的梯形.(在图形中直接画分割线,不需要说明).18.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组mx>kx+b>mx﹣2的解集是1<x<2.则有:.三、解答题(共66分)19.先化简,再求值:,其中x满足x2﹣2x﹣3=0.﹣一条与EB相等的线段,并加以证明.22.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.=.粽的概率是23.已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2﹣bx+kc(c≠0)的图象与x轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k的值;(2)求代数式的值.∴.∴=24.如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=,求△ACF的面积.BFA=∴25.在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x 之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大的利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润..﹣26.如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.,﹣a+2∴解得:x x+2x x+2=2代入抛物线的解析式:﹣+=点的坐标为((,﹣a+2﹣(﹣+﹣==a=,,﹣+﹣(﹣+﹣=﹣的坐标为(﹣坐标为(,(﹣,解答:解:作解答:解:(1)把(-2,5)代入二次函数y=x2+bx-3得:5=4-2b-3,∴b=-2,y=x2-2x-3=(x-1)2-4,∴抛物线的开口方向向上,对称轴是直线x=1,把x=1代入得:y=-4,把x=3代入得:y=0,∴当1<x≤3时y的取值范围是-4<y≤0,答:b的值是-2,当1<x≤3时y的取值范围是-4<y≤0.(2)①答:当m=4时,y1、y2、y3不能作为同一个三角形三边的长.理由是当m=4时,P1(4,y1)、P2(5,y2)、P3(6,y3),代入抛物线的解析式得:y1=5,y2=12,y3=21,∵5+12<21,∴当m=4时,y1、y2、y3不能作为同一个三角形三边的长.②理由是:∵把P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)代入y=x2-2x-3=(x-1)2-4得:∴y1=(m-1)2-4,y2=(m+1-1)2-4,y3=(m+2-1)2-4,∴y1+y2-y3=(m-1)2-4+(m+1-1)2-4-[(m+2-1)2-4]=(m-2)2-8,∵m≥5,∴(m-2)2-8>0,∴y1+y2>y3,根据三角形的三边关系定理:三角形的任意两边之和大于第三边(也可求出两小边的和大于第三边),∴当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长.点评:本题主要考查对二次函数图象上点的坐标特征,三角形的三边关系定理等知识点的理解和掌握,能正确根据定理进行计算是解此题的关键.。
2015 年 大 庆 中 考 数 学 模 拟 试 卷

A....【解答】【解答】【解答】解:∵二次函数y=x2+mx+n的图象与x轴没有公共点,∴△<0,即m2-4n<0,∴m2<4n,列表如下:n/m 1 2 3 4 5 61 1, 1 2,2 3,3 4,4 5,5 6,62 2, 1 2,2 2,3 2,4 2,5 2,64 4, 1 4,2 4,3 4,4 4,5 4,65 5, 1 5,2 5,3 5,4 5,5 5,66 6, 1 6,2 6,3 6,4 6,5 6,6共有36种等可能的结果,其中满足m2<4n占17种,所以二次函数y=x2+mx+n的图象.≤BM<≤BM≤.≤BM<.≤BM<3【解答】解:如图,∵;②如图【解答】先将扇形以B为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A、B两点再次触地时停止,半圆的直径为6m,则圆心O所经过的路线长是______6πm.(结果用含π的式子表示)【解答】∴(x-3)2+2x(2+x)-7=x2-6x+9+4x+2x2-7=3x2-2x+2=-1+2=1.22、如图,一次函数y=ax+b的图象与反比例函数y=k/x的图象交于A(x1,-3)、B(x2,y2)两点,已知x1、x2(x1<x2)是方程x2-x-6=0的两个根.(1)求点B的坐标;(2)求一次函数y=ax+b的表达式.【解答】解:(1)∵x1、x2是方程x2-x-6=0的两个根,∴(x-3)(x+2)=0,解得x1=3,x2=-2;∴点A坐标为(-2,-3),代入y=k/x得k=6.∴反比例函数的解析式y=6/k,把x2=3代入反比例函数的解析式得y2=2,∴点B坐标为(3,2);(2)把点A、B代入一次函数的解析式,得−2a+b=−3, 3a+b=2,,解得a=1, b=−1,∴一次函数的表达式为y=x-1.23、某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为_____25%,该扇形圆心角的度数为_____90°;(2)补全条形统计图;(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?【解答】解:(1)扇形统计图中a=1-30%-15%-10%-5%-15%=25%,该扇形所对圆心角的度数为360°×25%=90°;故答案为:25,90°;(2)参加社会实践活动的总人数是:20/10%=200(人),则参加社会实践活动为6天的人数是:200×25%=50(人),补图如下:.【解答】(,∵B(3,6),可得直线AB的解析式为y=x+3.设直线AB下方抛物线上的点M坐标为(x,x2-2x+3),过M点作y轴的平行线交直线AB 于点N,则N(x,x+3).(如图1)∴S△ABM=S△AMN+S△BMN=0.5MN•|x B−x A|=3.∴0.5[x+3−(x2−2x+3)]×3=3.解得 x1=1,x2=2.故点M的坐标为(1,2)或(2,3).(3)如图2,由 PA=PO,OA=c,可得PD=c/2.∵抛物线y=x2+bx+c的顶点坐标为P(−b/2,(4c−b2)/4),∴(4c−b2)/4=c/2.∴b2=2c.∴抛物线y=x2+bx+0.5b2,A(0,0.5b2),P(−0.5b,0.25b2),D(−0.5b,0).可得直线OP的解析式为y=−0.5bx.∵点B是抛物线y=x2+bx+0.5b2与直线y=−0.5bx的图象的交点,令−0.5bx=x2+bx+0.5b2.解得x1=−b,x2=−0.5b.可得点B的坐标为(-b,0.5b2).由平移后的抛物线经过点A,可设平移后的抛物线解析式为y=x2+mx+0.5b2.将点D(−0.5b,0)的坐标代入y=x2+mx+0.5b2,得m=1.5b.则平移后的抛物线解析式为y=x2+1.5bx+0.5b2.令y=0,即x2+1.5bx+0.5b2=0.解得x1=−b,x2=−0.5b.依题意,点C的坐标为(-b,0).则BC=0.5b2.则BC=OA.又∵BC∥OA,∴四边形OABC是平行四边形.∵∠AOC=90°,∴四边形OABC是矩形.ABCD【解答】解:(1)当x=2s时,AP=2,BQ=2∴y=2,当x=4.5s,时,AP=4.5,Q点在EC上,∴y=9,故答案为:2;9(2)当5≤x≤9时y=S梯形ABCQ-S△ABP-S△PCQ=0.5(5+x-4)×4-0.5×5(x-5)-0.5(9-x)(x-4),即y=0.5x2-7x+32.5,当9<x≤13时,y=0.5(x-9+4)(14-x), y=-0.5x2+9.5x-35,当13<x≤14时y=0.5×8(14-x). y=-4x+56;(3)当动点P在线段BC上运动时,∵y=S梯形ABCD=4/15×0.5(4+8)×5=8,∴8=0.5x2-7x+32.5,即x2-14x+49=0,解得:x1=x2=7∴当x=7时,y=4/15S梯形ABCD.数学试题标准答案1、D;2、C;3、C;4、A;5、B;6、C;7、D;8、B;9、C;10、C 11、4.86×1010 12、x≠-3;13、8;14、15π;15、2;16、2537;17、1.5;18、6π19、11;20、-1<x≤1/3; 21、3;22、(1)A(-2,-3),y=6/x,B(3,2);(2)y=x-123、(1)25;90°;(2)15000人;24、。
2015年黑龙江省大庆市中考数学试卷和解析答案

2015年黑龙江省大庆市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)sin60°=()A.B.C.1 D.2.(3分)将0.00007用科学记数法表示为()A.7×10﹣6 B.70×10﹣5C.7×10﹣5D.0.7×10﹣63.(3分)a2地算术平方根一定是()A.a B.|a|C.D.﹣a4.(3分)正n边形每个内角地大小都为108°,则n=()A.5 B.6 C.7 D.85.(3分)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份地销售量比1月份增加10%,每辆车地售价比1月份降低了80元.2月份与1月份地销售总额相同,则1月份地售价为()A.880元B.800元C.720元D.1080元6.(3分)在⊙O中,圆心O到弦AB地距离为AB长度地一半,则弦AB所对圆心角地大小为()A.30°B.45°C.60°D.90°7.(3分)以下图形中对称轴地数量小于3地是()A.B.C.D.8.(3分)某射击小组有20人,教练根据他们某次射击地数据绘制成如图所示地统计图,则这组数据地众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.59.(3分)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确地是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>010.(3分)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=地交点,且AP=2AB,则满足条件地点P地个数是()A.0个 B.1个 C.2个 D.3个二、填空题(共8小题,每小题3分,满分24分)11.(3分)函数y=地自变量x地取值范围是.12.(3分)已知=,则地值为.13.(3分)底面直径和高都是1地圆柱侧面积为.14.(3分)边长为1地正三角形地内切圆半径为.15.(3分)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果地序号).16.(3分)方程3(x﹣5)2=2(x﹣5)地根是.17.(3分)若a2n=5,b2n=16,则(ab)n=.18.(3分)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动地滚动,点A再次落在x轴时停止滚动,则点A经过地路线与x轴围成图形地面积为.三、解答题(共10小题,满分66分)19.(4分)求值:+()2+(﹣1)2015.20.(4分)解关于x地不等式:ax﹣x﹣2>0.21.(5分)已知实数a,b是方程x2﹣x﹣1=0地两根,求+地值.22.(6分)已知一组数据x1,x2,…x6地平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据地方差(结果用分数表示)23.(7分)某商场举行开业酬宾活动,设立了两个可以自由转动地转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元地商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠地概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.24.(7分)小敏同学测量一建筑物CD地高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C地仰角为45°(BFD在同一直线上).已知小敏地眼睛与地面距离为1.5m,求这栋建筑物CD地高度(参考数据:≈1.732,≈1.414.结果保留整数)25.(7分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA地中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B地度数.26.(8分)如图,一次函数y=kx+b地图象与反比例函数y=﹣地图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数地解析式;(2)求△AOB地面积.27.(9分)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:D P•BD=AD•BC;(3)证明:BD2=AB2+AD•BC.28.(9分)已知二次函数y=x2+bx﹣4地图象与y轴地交点为C,与x轴正半轴地交点为A,且tan∠ACO=(1)求二次函数地解析式;(2)P为二次函数图象地顶点,Q为其对称轴上地一点,QC平分∠PQO,求Q 点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y地取值范围为≤y≤?若存在,直接写出x1,x2地值;若不存在,说明理由.2015年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)sin60°=()A.B.C.1 D.【分析】原式利用特殊角地三角函数值解得即可得到结果.【解答】解:sin60°=,故选:D.2.(3分)将0.00007用科学记数法表示为()A.7×10﹣6 B.70×10﹣5C.7×10﹣5D.0.7×10﹣6【分析】绝对值小于1地正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数地科学记数法不同地是其所使用地是负指数幂,指数由原数左边起第一个不为零地数字前面地0地个数所决定.【解答】解:0.00007=7×10﹣5.故选:C.3.(3分)a2地算术平方根一定是()A.a B.|a|C.D.﹣a【分析】根据算术平方根定义,即可解答.【解答】解:=|a|.故选:B.4.(3分)正n边形每个内角地大小都为108°,则n=()A.5 B.6 C.7 D.8【分析】利用正多边形地性质得出其外角,进而得出多边形地边数.【解答】解:∵正n边形每个内角地大小都为108°,∴每个外角为:72°,则n==5.故选:A.5.(3分)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份地销售量比1月份增加10%,每辆车地售价比1月份降低了80元.2月份与1月份地销售总额相同,则1月份地售价为()A.880元B.800元C.720元D.1080元【分析】设1月份每辆车售价为x元,则2月份每辆车地售价为(x﹣80)元,依据“2月份地销售量比1月份增加10%,每辆车地售价比1月份降低了80元.2月份与1月份地销售总额相同”列出方程并解答.【解答】解:设1月份每辆车售价为x元,则2月份每辆车地售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.6.(3分)在⊙O中,圆心O到弦AB地距离为AB长度地一半,则弦AB所对圆心角地大小为()A.30°B.45°C.60°D.90°【分析】利用等腰直角三角形地性质以及垂径定理得出∠BOC地度数进而求出.【解答】解:如图所示:连接BO,AO,∵圆心O到弦AB地距离为AB长度地一半,∴DO=DB,DO⊥AB,∴∠BOD=∠B=45°,∠A=∠AOD=45°,∴∠AOB=90°.故选:D.7.(3分)以下图形中对称轴地数量小于3地是()A.B.C.D.【分析】根据对称轴地概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选:D.8.(3分)某射击小组有20人,教练根据他们某次射击地数据绘制成如图所示地统计图,则这组数据地众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6.5【分析】中位数,因图中是按从小到大地顺序排列地,所以只要找出最中间地一个数(或最中间地两个数)即可,本题是最中间地两个数;对于众数可由条形统计图中出现频数最大或条形最高地数据写出.【解答】解:由条形统计图中出现频数最大条形最高地数据是在第三组,7环,故众数是7(环);因图中是按从小到大地顺序排列地,最中间地环数是7(环)、8(环),故中位数是7.5(环).故选:C.9.(3分)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确地是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0【分析】分a>0和a<0两种情况根据二次函数地对称性确定出y1与y2地大小关系,然后对各选项分析判断即可得解.【解答】解:①a>0时,二次函数图象开口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2地正负情况,a(y1﹣y2)>0,②a<0时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,无法确定y1+y2地正负情况,a(y1﹣y2)>0,综上所述,表达式正确地是a(y1﹣y2)>0.故选:C.10.(3分)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=地交点,且AP=2AB,则满足条件地点P地个数是()A.0个 B.1个 C.2个 D.3个【分析】如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,有A(﹣2,0),得到OA=2,OC=1,AC=1,BC∥y轴,推出,于是得到这样地点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,求得满足条件地点P(﹣4,﹣),于是得到满足条件地点P地个数是1,【解答】解:如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,∵A(﹣2,0),∴OA=2,OC=1,∴AC=1,BC∥y轴,∴,∴P1,P3在y轴上,这样地点P不存在,点P 4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,∴P2Q∥B1C,∴=,∴=,∴m=﹣4,∴P(﹣4,﹣),∴满足条件地点P地个数是1,故选:B.二、填空题(共8小题,每小题3分,满分24分)11.(3分)函数y=地自变量x地取值范围是x>0.【分析】根据二次根式地性质和分式地意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:x≥0且x≠0,解得:x>0.故答案为:x>0.12.(3分)已知=,则地值为﹣.【分析】根据已知设x=k,y=3k,代入求出即可.【解答】解:∵=,∴设x=k,y=3k,∴==﹣,故答案为:﹣.13.(3分)底面直径和高都是1地圆柱侧面积为π.【分析】圆柱地侧面积=底面周长×高.【解答】解:圆柱地底面周长=π×1=π.圆柱地侧面积=底面周长×高=π×1=π.故答案是:π.14.(3分)边长为1地正三角形地内切圆半径为.【分析】根据等边三角形地三线合一,可以构造一个由其内切圆地半径、外接圆地半径和半边组成地30°地直角三角形,利用锐角三角函数关系求出内切圆半径即可.【解答】解:∵内切圆地半径、外接圆地半径和半边组成一个30°地直角三角形,则∠OBD=30°,BD=,∴tan∠OBD==,∴内切圆半径OD==.故答案为:.15.(3分)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果地序号).【分析】当截面地角度和方向不同时,圆柱体地截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形地有3个.故答案为:①③④.16.(3分)方程3(x﹣5)2=2(x﹣5)地根是x1=5,x2=.【分析】方程移项变形后,利用因式分解法求出解即可.【解答】解:方程变形得:3(x﹣5)2﹣2(x﹣5)=0,分解因式得:(x﹣5)[3(x﹣5)﹣2]=0,可得x﹣5=0或3x﹣17=0,解得:x1=5,x2=.故答案为:x1=5,x2=17.(3分)若a2n=5,b2n=16,则(ab)n=.【分析】根据幂地乘方与积地乘方,即可解答.【解答】解:∵a2n=5,b2n=16,∴(a n)2=5,(b n)2=16,∴,∴,故答案为:.18.(3分)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动地滚动,点A再次落在x轴时停止滚动,则点A经过地路线与x轴围成图形地面积为π+.【分析】由勾股定理求出AB,由题意得出点A经过地路线与x轴围成地图形是一个圆心角为135°,半径为地扇形,加上△ABC,再加上圆心角是90°,半径是1地扇形;由扇形地面积和三角形地面积公式即可得出结果.【解答】解:∵∠C=90°,AC=BC=1,∴AB==;根据题意得:△ABC绕点B顺时针旋转135°,BC落在x轴上;△ABC再绕点C顺时针旋转90°,AC落在x轴上,停止滚动;∴点A地运动轨迹是:先绕点B旋转135°,再绕点C旋转90°;如图所示:∴点A经过地路线与x轴围成地图形是:一个圆心角为135°,半径为地扇形,加上△ABC,再加上圆心角是90°,半径是1地扇形;∴点A经过地路线与x轴围成图形地面积=+×1×1+=π+.故答案为:π+.三、解答题(共10小题,满分66分)19.(4分)求值:+()2+(﹣1)2015.【分析】原式第一项利用算术平方根定义计算,第二项利用乘方地意义化简,第三项利用乘方地意义化简,计算即可得到结果.【解答】解:原式=+﹣1=﹣.20.(4分)解关于x地不等式:ax﹣x﹣2>0.【分析】利用不等式地基本性质,把不等号左边地﹣2移到右边,再根据a﹣1地取值,即可求得原不等式地解集.【解答】解:ax﹣x﹣2>0.(a﹣1)x>2,当a﹣1=0,则ax﹣x﹣2>0为空集,当a﹣1>0,则x>,当a﹣1<0,则x<.21.(5分)已知实数a,b是方程x2﹣x﹣1=0地两根,求+地值.【分析】根据根与系数地关系得到a+b=1,ab=﹣1,再利用完全平方公式变形得到+==,然后利用整体代入地方法进行计算.【解答】解:∵实数a,b是方程x2﹣x﹣1=0地两根,∴a+b=1,ab=﹣1,∴+===﹣3.22.(6分)已知一组数据x1,x2,…x6地平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据地方差(结果用分数表示)【分析】(1)先由数据x1,x2,…x6地平均数为1,得出x1+x2+…+x6=1×6=6,再根据方差为,得到S2=[(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2]=,利用完全平方公式求出(x12+x22+…+x62﹣2×6+6)=,进而求解即可;(2)先由数据x1,x2,…x7地平均数为1,得出x1+x2+…+x7=1×7=7,而x1+x2+…+x6=6,所以x7=1;再根据[(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2]=,得出(x1﹣1)2+(x﹣1)2+…+(x6﹣1)2=10,然后根据方差地计算公式即可求出这7个数据2地方差.【解答】解:(1)∵数据x1,x2,…x6地平均数为1,∴x1+x2+…+x6=1×6=6,又∵方差为,∴S2=[(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2]=[x12+x22+…+x62﹣2(x1+x2+…+x6)+6]=(x12+x22+…+x62﹣2×6+6)=(x12+x22+…+x62)﹣1=,∴x12+x22+…+x62=16;(2)∵数据x1,x2,…x7地平均数为1,∴x1+x2+…+x7=1×7=7,∵x1+x2+…+x6=6,∴x7=1,∵[(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2]=,∴(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2=10,∴S2=[(x1﹣1)2+(x2﹣1)2+…+(x7﹣1)2]=[10+(1﹣1)2]=.23.(7分)某商场举行开业酬宾活动,设立了两个可以自由转动地转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元地商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠地概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.【分析】(1)根据转盘1,利用概率公式求得获得优惠地概率即可;(2)分别求得转动两个转盘所获得地优惠,然后比较即可得到结论.【解答】解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)==;(2)转盘1能获得地优惠为:=25元,转盘2能获得地优惠为:40×=20元,所以选择转动转盘1更优惠.24.(7分)小敏同学测量一建筑物CD地高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C地仰角为45°(BFD 在同一直线上).已知小敏地眼睛与地面距离为1.5m,求这栋建筑物CD地高度(参考数据:≈1.732,≈1.414.结果保留整数)【分析】延长AE交CD于点G,设CG=xm,在直角△CGE中利用x表示出EG,然后在直角△ACG中,利用x表示出AG,根据AE=AG﹣EG即可列方程求得x地值,进而求出CD地长.【解答】解:延长AE交CD于点G.设CG=xm,在直角△CGE中,∠CEG=45°,则EG=CG=xm.在直角△ACG中,AG==xm.∵AG﹣EG=AE,∴x﹣x=30,解得:x=15(+1)≈15×2.732≈40.98(m).则CD=40.98+1.5=42.48(m).答:这栋建筑物CD地高度约为42m.25.(7分)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA地中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B地度数.【分析】(1)根据直角三角形斜边上地中线等于斜边地一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一地性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等地四边形是平行四边形证明;(2)根据菱形地四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC 是等边三角形,再根据等边三角形地每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.【解答】(1)证明:∵∠ACB=90°,E是BA地中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC地中点,∴ED是等腰△BEC底边上地中线,∴ED也是等腰△BEC地顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.26.(8分)如图,一次函数y=kx+b地图象与反比例函数y=﹣地图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数地解析式;(2)求△AOB地面积.【分析】(1)把A与B坐标代入反比例解析式求出m与n地值,确定出A与B 坐标,代入一次函数解析式求出k与b地值,即可确定出一次函数解析式;(2)由A与B地坐标求出AB地长,利用点到直线地距离公式求出原点O到直线AB地距离,即可求出三角形AOB面积.【解答】解:(1)把A(﹣1,m),B(n,﹣1)代入反比例函数y=﹣,得:m=7,n=7,即A(﹣1,7),B(7,﹣1),把A与B坐标代入一次函数解析式得:,解得:k=﹣1,b=6,则一次函数解析式为y=﹣x+6;(2)∵A(﹣1,7),B(7,﹣1),∴AB==8,∵点O到直线y=﹣x+6地距离d==3,=AB•d=24.∴S△AOB27.(9分)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(3)证明:BD2=AB2+AD•BC.【分析】(1)利用平行线地性质结合圆周角定理得出=,进而得出答案;(2)首先得出△ADP∽△DBC,进而利用相似三角形地性质得出答案;(3)利用相似三角形地判定方法得出△ABP∽△DBA,进而求出AB2=DB•PB,再利用(2)中所求得出答案.【解答】证明:(1)∵AD∥BC,∴∠ADB=∠DBC,∴=,∴AB=CD;(2)∵∠APB=∠BAD,∠BAD+∠BCD=180°,∠APB+∠APD=180°,∴∠BCD=∠APD,又∵∠ADB=∠CBD,∴△ADP∽△DBC,∴=,∴DP•BD=AD•BC;(3)∵∠APB=∠BAD,∠BAD=∠BPA,∴△ABP∽△DBA,∴=,∴AB2=DB•PB,∴AB2+AD•BC=DB•PB+AD•BC∵由(2)得:DP•BD=AD•BC,∴AB2+AD•BC=DB•PB+DP•BD=DB(PB+DP)=DB2,即BD2=AB2+AD•BC.28.(9分)已知二次函数y=x2+bx﹣4地图象与y轴地交点为C,与x轴正半轴地交点为A,且tan∠ACO=(1)求二次函数地解析式;(2)P为二次函数图象地顶点,Q为其对称轴上地一点,QC平分∠PQO,求Q 点坐标;(3)是否存在实数x 1、x2(x1<x2),当x1≤x≤x2时,y地取值范围为≤y≤?若存在,直接写出x1,x2地值;若不存在,说明理由.【分析】(1)首先根据tan∠ACO=,求出OA地值,即可判断出A点地坐标;然后把A点地坐标代入y=x2+bx﹣4,求出b地值,即可判断出二次函数地解析式.(2)首先根据Q为抛物线对称轴上地一点,设点Q地坐标为(﹣,n);然后根据∠OQC=∠CQP、∠CQP=∠OCQ,可得∠OQC=∠OCQ,所以OQ=OC,据此求出n地值,进而判断出Q点坐标即可.(3)根据题意,分3种情况:①当x1≤x2≤﹣时;②当x1≤﹣≤x2时;③当﹣<x1≤x2时;然后根据二次函数地最值地求法,求出满足题意地实数x1、x2(x1<x2),使得当x1≤x≤x2时,y地取值范围为≤y≤即可.【解答】解:(1)如图1,连接AC,,∵二次函数y=x2+bx﹣4地图象与y轴地交点为C,∴C点地坐标为(0,﹣4),∵tan∠ACO=,∴,又∵OC=4,∴OA=1,∴A点地坐标为(1,0),把A(1,0)代入y=x2+bx﹣4,可得0=1+b﹣4,解得b=3,∴二次函数地解析式是:y=x2+3x﹣4.(2)如图2,,∵y=x2+3x﹣4,∴抛物线地对称轴是:x=﹣,∵Q为抛物线对称轴上地一点,∴设点Q地坐标为(﹣,n),∵抛物线地对称轴平行于y轴,∴∠CQP=∠OCQ,又∵∠OQC=∠CQP,∴∠OQC=∠OCQ,∴OQ=OC,∴,∴,解得n=±,∴Q点坐标是(﹣,)或(﹣,﹣).(3)①当x1≤x2≤﹣时,二次函数y=x2+3x﹣4单调递减,∵y地取值范围为≤y≤,∴由+3x1﹣4=,解得x1=﹣3,﹣2,2,由+3x2﹣4=,解得x2=﹣3,﹣2,2,∵x1≤x2≤﹣,∴②当x1≤﹣≤x2时,Ⅰ、当﹣时,可得x1+x2≤﹣3,∵y地取值范围为≤y≤,∴由(1),可得,由(2),可得x1=﹣3,﹣2,2,∵x1≤﹣<x2,,∴没有满足题意地x1、x2.Ⅱ、当﹣时,可得x1+x2>﹣3,∵y地取值范围为≤y≤,∴解得∵x1+x2=≈﹣1.98﹣1.92=﹣3.9<﹣3,∴没有满足题意地x1、x2.③当﹣<x1≤x2时,二次函数y=x2+3x﹣4单调递增,∵y地取值范围为≤y≤,∴(1)×x2﹣(2)×x1,可得(x1﹣x2)(x1x2+4)=0,∵x1﹣x2≠0,∴x1x2+4=0,∴…(1),把(3)代入(1),可得,∵,∴,∴,∵,∴没有满足题意地x1、x2.综上,可得x1=﹣3,x2=﹣2时,当x1≤x≤x2时,y地取值范围为≤y≤.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2008----2015大庆中考数学考点分析

大 庆 中 考 数 学 考 点 分 析中考数学总分为120分,其中选择题10题,填空题8题,共占54分,解答题10题,占66分。
题型可分为两大类:第一类填空选择题,主要考查基础知识和基本技能,第二类解答题,主要考查解题技巧和综合能力,为了明确考点,把握方向,我对近八年的大庆中考试卷进行了认真分析,现总结如下:一、填空、选择题考点:1、倒数、相反数、绝对值、数轴、平方根、算术平方根、立方根的概念及某两个概念的混合应用。
实数的运算、大小比较以及实数非负性的应用等,例:(1)(2008年)1.12-等于( )A .12B .12-C .2D .2-(2)(2008年)4.实数a b ,在数轴上对应点的位置如图所示,则下列各式中正确的是( ) A .0a b ->B .0a b +>C .0a b -<D .0a b +=(3)(2009年)1.一个数a 的倒数是-2,则a 等于 ( ) A .2 B .-2 C .21 D .-21(4)(2009年)12.计算:=--+-)1()2()31(01_________.(5)(2009年)17.按照如图所示的程序计算,如果输出的数2-=n ,那么输入的数m =_________. (6)(2012年)15、按照如图所示的程序计算: 若输入x=8.6,则m= _____(7)(2010年)1.3-的相反数是( )A .3- B .3 C .13-D .13(8)(2010年)3.一块面积为10m 2的正方形草坪,其边长( )A .小于3mB .等于3mC .在3m 与4m 之间D .大于4m(9)(2011年)1.与21互为倒数的是 ( )A.-2 B .-21 C .21 D .2(10)(2011年)3.对任意实数a ,则下列等式一定成立的是 ( )A .a a =2B .a a -=2C .a a ±=2D .a a =2(11)(2011年)5.若a+b>0,且b<0,贝a ,b ,-a ,-b 的大小关系为( ) A.-a<-b<b<a B .-a<b<-b<a C. -a<b<a<-b D .b<-a<-b<a (12)(2012年)l.一个实数a 的相反数是5,则a 等于( ) A.51B.5C.- 51D.-5(13)(2012年)5 .实数a 、b 在数轴上对应点的位置如图所示,则下列各式正确的是( )A.b a >B.b a =C.ba > D.ba <(14)(2012年) 11.计算:3321--= _____ . (15)(2013年)2.若实数a 满足aa a 2=-,则( ) A.0>a B.0<a C.0≥a D.0≤a(16)(2014年)1.下列式子中成立的是( )A .-|-5|>4B .-3<|-3|C .-|-4|=4D .|-5.5|<5(17)(2014年)3.已知a >b 且a+b=0,则( )A .a <0 B .b >0 C .b ≤0 D .a >0(18)(2015年)3.a 2的算术平方根一定是( ) A .aB .||aC .aD .-a(19)(2014年)11.若2=-+-y y x ,则3-y x的值为________2、科学记数法:直接记数、保留有效数字、规定精确度、带单位、计算后记数。
2015年黑龙江省大庆三十六中中考数学模拟试卷(答案解析版)

2015年黑龙江省大庆三十六中中考数学模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.|﹣2015|的相反数是()A.2015 B.﹣2015 C.D.﹣2.面积为10m2的正方形地毯,它的边长介于()A.2m与3m之间B.3m与4m之间C.4m与5m之间D.5m与6m之间3.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个4.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.5.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得()A.B.C.D.6.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根7.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A,B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2,一次函数的解析式()A.y1=x﹣6 B.y1=x+6 C.y1=x﹣5 D.y1=x+58.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)9.如图,在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A.1 B.C.D.510.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.在函数y=中,自变量x的取值范围是.12.已知a2+b2=6ab且a>b>0,则=.13.由我国倡议筹建的亚洲基础设施投资银行(简称亚投行),法定资本100000000000美元.若1美元兑换6.254元人民币,则亚投行法定资本换算成人民币为元人民币(用科学记数法表示).14.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为.15.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第题使用“求助”.16.函数y=x2+2mx+m﹣7与x轴的两个交点在(1,0)的两旁,则m的取值范围是.17.如图,抛物线y=﹣x2+4x+5与x轴交于A、B两点,与y轴交于点C.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.△PCM是以CM为底的等腰三角形,则点P的坐标为;当a=时,四边形PMEF周长最小.18.如图,已知,正方形ABCD的边长为1,点E、F分别在AC、DC上,若EC=BC,EF⊥BE,BF与EC交于G,则BG与GF的乘积为.三、解答题(本大题共9小题,共66分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)19.+|﹣2|.20.已知实数a满足a2+2a﹣13=0,求的值.21.解不等式组.22.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=12,求DE的长及四边形ADEF的面积.23.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)24.已知函数y=x2+(2m+1)x+m2﹣1.(1)m为何值时,y有最小值0;(2)求证:不论m取何值,函数图象的顶点都在同一直线上.25.如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),B两点,交y轴于点D.(1)求点B、点D的坐标,(2)判断△ACD的形状,并求出△ACD的面积.26.设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).27.在平面直角坐标系xOy中,点A在直线l上,以A为圆心,OA为半径的圆与y轴的另一个交点为E.给出如下定义:若线段OE,⊙A和直线l上分别存在点B,点C和点D,使得四边形ABCD 是矩形(点A,B,C,D顺时针排列),则称矩形ABCD为直线l的“理想矩形”.例如,下图中的矩形ABCD为直线l的“理想矩形”.(1)若点A(﹣1,2),四边形ABCD为直线x=﹣1的“理想矩形”,则点D的坐标为;(2)若点A(3,4),求直线y=kx+1(k≠0)的“理想矩形”的面积;(3)若点A(1,﹣3),直线l的“理想矩形”面积的最大值为,此时点D的坐标为.2015年黑龙江省大庆三十六中中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.|﹣2015|的相反数是()A.2015 B.﹣2015 C.D.﹣考点:相反数;绝对值.分析:根据绝对值的性质求出﹣2015的绝对值,再根据相反数的概念求出相反数.解答:解:|﹣2015|=2015,2015的相反数是﹣2015,故选:B.点评:本题考查的是相反数和绝对值的知识,掌握绝对值的性质和相反数的概念是解题的关键,解答时,先求出绝对值然后求相反数.2.面积为10m2的正方形地毯,它的边长介于()A.2m与3m之间B.3m与4m之间C.4m与5m之间D.5m与6m之间考点:估算无理数的大小.分析:易得正方形的边长,看在哪两个正整数之间即可.解答:解:正方形的边长为,∵<<,∴3<4,∴其边长在3m与4m之间.故选:B.点评:考查估算无理数的大小;常用夹逼法求得无理数的范围.3.下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个考点:因式分解-运用公式法;因式分解-提公因式法.专题:因式分解.分析:直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.解答:解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.点评:此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.4.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,它的俯视图为()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上向下看得到的视图,结合选项即可作出判断.解答:解:所给图形的俯视图是B选项所给的图形.故选B.点评:本题考查了简单组合体的三视图,属于基础题,关键掌握俯视图是从上向下看得到的视图.5.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得()A.B.C.D.考点:由实际问题抽象出分式方程.专题:压轴题.分析:若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解答:解:设走路线一时的平均速度为x千米/小时,﹣=.故选:A.点评:本题考查理解题意的能力,关键是以时间做为等量关系列方程求解.6.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.﹣﹣苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根考点:抛物线与x轴的交点.分析:将方程变形为:(x﹣1)2=﹣1,设y1=﹣1,y2=(x﹣1)2,在坐标系中画出两个函数的图象,看其交点个数即可.解答:解:将方程变形﹣1=(x﹣1)2,设y1=﹣1,y2=(x﹣1)2,在坐标系中画出两个函数的图象如图所示:可看出两个函数有一个交点(1,0).故方程x2﹣2x=﹣2有一个实数根.故选C.点评:本题考查了抛物线与x轴的交点.解答该题时采用了“数形结合”的数学思想,减少了解题过程中的繁琐的计算.7.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A,B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2,一次函数的解析式()A.y1=x﹣6 B.y1=x+6 C.y1=x﹣5 D.y1=x+5考点:反比例函数与一次函数的交点问题.分析:由条件可知函数图象一交点的横坐标为1,代入反比例函数解析式可求得该交点坐标,再代入一次函数可求得m值,可求得一次函数解析式.解答:解:∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴两函数图象一交点的横坐标为1,当x=1时,y2=6,∴两函数图象的一交点坐标为(1,6),把(1,6)代入一次函数解析式可得6=1+m,解得m=5,∴一次函数解析式y1=x+5,故选D.点评:本题主要考查函数图象的交点,由条件确定出x=1是两函数图象一交点的横坐标是解题的关键.8.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)考点:切线的性质;坐标与图形性质;勾股定理;垂径定理.专题:压轴题;网格型.分析:根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可.解答:解:连接AC,作AC的垂直平分线BO′,交格点于点O′,则点O′就是所在圆的圆心,∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.点评:此题主要考查了切线的性质以及垂径定理和坐标与图形的性质,得出△BOD≌△FBE时,EF=BD=2,即得出F点的坐标是解决问题的关键.9.如图,在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A.1 B.C.D.5考点:切线的性质;勾股定理.分析:以AC为直径作⊙O,当BC为⊙O的切线时,即BC⊥AC时,∠B最大,根据勾股定理即可求出答案.解答:解:以AC为直径作⊙O,当BC为⊙O的切线时,即BC⊥AC时,∠B最大,此时BC===.故选B.点评:本题考查了切线的性质,勾股定理,利用切线的性质判断出BC为⊙O的切线时∠B最大是解题的关键.10.如图①,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形.如图②,将四边形ACBD折叠,使D与C重合,EF为折痕,则∠ACE的正弦值为()A.B.C.D.考点:翻折变换(折叠问题).分析:在Rt△ABC中,设AB=2a,已知∠ACB=90°,∠CAB=30°,即可求得AB、AC的值,由折叠的性质知:DE=CE,可设出DE、CE的长,然后表示出AE的长,进而可在Rt△AEC中,由勾股定理求得AE、CE的值,即可求∠ACE的正弦值.解答:解:∵△ABC中,∠ACB=90°,∠BAC=30°,设AB=2a,∴AC=a,BC=a;∵△ABD是等边三角形,∴AD=AB=2a;设DE=EC=x,则AE=2a﹣x;在Rt△AEC中,由勾股定理,得:(2a﹣x)2+3a2=x2,解得x=;∴AE=,EC=,∴sin∠ACE==.故选:B.点评:本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.在函数y=中,自变量x的取值范围是x≥2且x≠3.考点:函数自变量的取值范围.专题:计算题.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,可知x﹣2≥0;分母不等于0,可知:x﹣2≠1,则可以求出自变量x的取值范围.解答:解:根据题意得:,即,解得:x≥2且x≠3.故答案为:x≥2且x≠3.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.已知a2+b2=6ab且a>b>0,则=.考点:分式的化简求值.专题:计算题.分析:已知a2+b2=6ab,变形可得(a+b)2=8ab,(a﹣b)2=4ab,可以得出(a+b)和(a﹣b)的值,即可得出答案.解答:解:∵a2+b2=6ab,∴(a+b)2=8ab,(a﹣b)2=4ab,∵a>b>0,∴a+b=,a﹣b=,∴==.点评:本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a、b的大小关系以及本身的正负关系,属于比较简单的题目.13.由我国倡议筹建的亚洲基础设施投资银行(简称亚投行),法定资本100000000000美元.若1美元兑换6.254元人民币,则亚投行法定资本换算成人民币为 6.254×1011元人民币(用科学记数法表示).考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:100000000000美元=6.254×100000000000元人民币,将6.254×100000000000用科学记数法表示为6.254×1011.故答案为:6.254×1011.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.14.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为(3,3).考点:位似变换;坐标与图形性质.分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解答:解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故答案为:(3,3).点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.15.小明参加“一站到底”节目,答对最后两道单选题就通关:第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).从概率的角度分析,你建议小明在第一题使用“求助”.考点:概率的意义.分析:首先根据概率的求法,求出第一题使用“求助”小明顺利通关的概率是多少,然后求出在第二题使用“求助”小明顺利通关的概率为多少;最后比较大小,判断出小明在第几题使用“求助”即可.解答:解:第一题使用“求助”小明顺利通关的概率是:;第二题使用“求助”小明顺利通关的概率是:;∵,∴建议小明在第一题使用“求助”.故答案为:一.点评:此题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是分别求出第一题使用“求助”小明顺利通关的概率、第二题使用“求助”小明顺利通关的概率各是多少.16.函数y=x2+2mx+m﹣7与x轴的两个交点在(1,0)的两旁,则m的取值范围是m<2.考点:抛物线与x轴的交点.分析:设抛物线y=x2+2mx+m﹣7与x轴的两个交点的坐标分别为(α,0)、(β,0),且α<β,因为α、β是关于x的方程x2+2mx+m﹣7=0的两个不相等的实数根,所以由根与系数关系得:α+β=﹣2m,αβ=m﹣7,再根据抛物线y=x2+2mx+m﹣7与x轴的两个交点分别位于点(1,0)的两旁可得α<1,β>1,进而可求出m的取值范围.解答:解:∵抛物线y=x2+2mx+m﹣7与x轴的两个交点在(1,0)两旁,∴关于x的方程x2+2mx+m﹣7=0有两个不相等的实数根,∴△=b2﹣4ac>0,即:(2m)2﹣4(m﹣7)>0,∴m为任意实数①设抛物线y=x2+2mx+m﹣7与x轴的两个交点的坐标分别为(α,0)、(β,0),且α<β∴α、β是关于x的方程x2+2mx+m﹣7=0的两个不相等的实数根,由根与系数关系得:α+β=﹣2m,αβ=m﹣7,∵抛物线y=x2+2mx+m﹣7与x轴的两个交点分别位于点(1,0)的两旁∴α<1,β>1∴(α﹣1)(β﹣1)<0∴αβ﹣(α+β)+1<0∴(m﹣7)+2m+1<0解得:m<2②由①、②得m的取值范围是m<2,故答案为:m<2.点评:本题考查了抛物线与x轴的交点问题,注:当抛物线y=ax2+bx+c与轴有两个交点时,一元二次方程ax2+bx+c=0有两个不等的实数根即△>0;当抛物线y=ax2+bx+c与轴有一个交点时,一元二次方程ax2+bx+c=0有两个相等的实数根即△=0;当抛物线y=ax2+bx+c与轴无交点时,一元二次方程ax2+bx+c=0无实数根即△<0.17.如图,抛物线y=﹣x2+4x+5与x轴交于A、B两点,与y轴交于点C.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.△PCM是以CM为底的等腰三角形,则点P的坐标为(2+,3);当a=时,四边形PMEF周长最小.考点:抛物线与x轴的交点;轴对称-最短路线问题.分析:根据抛物线的解析式易求点C的坐标,再根据四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.解答:解:∵y=﹣x2+4x+5与y轴交于点C,∴点C的坐标为(0,5)又∵M(0,1),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.(如图所示)将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.故答案为:(2+,3),.点评:本题是二次函数综合题,用到的知识点等腰三角形的判定和性质、二元一次方程组的运用以及二次函数的最值和轴对称﹣最短路线的性质.试题计算量偏大,注意认真计算.18.如图,已知,正方形ABCD的边长为1,点E、F分别在AC、DC上,若EC=BC,EF⊥BE,BF与EC交于G,则BG与GF的乘积为.考点:正方形的性质;全等三角形的判定与性质;相似三角形的判定与性质.分析:连接DE,根据等腰三角形得出∠DEF=45°,再利用三角形全等得出EF=BE,进而得出△EGF~△BGC,利用相似三角形的性质得出BG•GF=EG•GC,进而得出GC=AE=,EG=1﹣GC=2﹣,即可得出两者乘积.解答:解:连接DE,如图:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°,BC=DC=1,∵EC=BC,∴∠CBE=∠BEC=67.5°,∵EF⊥BE,∴∠CEF=22.5°,∵EC=BC=DC,∴∠DEF=45°,∠EDC=67.5°,∴△EFD是等腰三角形,∴ED=EF,∵△BEC和△DEC是等腰三角形,且BC=CE=CD,∴BE=ED,∴BE=EF,∴△BEF是等腰直角三角形,∴∠GBC=∠EBC﹣∠EBF=67.5°﹣45°=22.5°=∠CEF,∵∠EGF=∠BGC,∴△EGF∽△BGC,∴BG•GF=EG•GC,∵CE=AB=CB=1,∴AE=,∴EG=EC﹣GC=2﹣,∴EG•GC=,∴BG•GF=.故答案为:.点评:此题考查正方形的性质,关键是利用全等三角形和相似三角形的判定和性质分析解答.三、解答题(本大题共9小题,共66分,请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)19.+|﹣2|.考点:二次根式的混合运算;特殊角的三角函数值.分析:根据二次根式的运算顺序,首先分别求出、|﹣2|的值各是多少,然后把它们相加,求出算式+|﹣2|的值是多少即可.解答:解:+|﹣2|===1点评:(1)此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.(2)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.20.已知实数a满足a2+2a﹣13=0,求的值.考点:分式的化简求值.专题:计算题.分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,将已知方程变形后代入计算即可求出值.解答:解:原式=﹣•=﹣=﹣==,∵a2+2a﹣13=0,∴a2+2a=13,∴原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.解不等式组.考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,解不等式①得,x≥1,解不等式②得,x<6.5,所以,不等式组的解集是1≤x<6.5.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=12,求DE的长及四边形ADEF的面积.考点:平行四边形的判定与性质;解直角三角形.分析:(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.解答:(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)解:如图,过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×12=6,∵BE=DE,∴BH=DH=BD=6,∴BE==.∴DE=BE=,∴四边形ADEF的面积为:DE•DG=.点评:此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.23.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;(3)根据圆周角乘以3级所占的百分比,可得答案;(4)根据样本数据估计总体,可得答案.解答:解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.点评:本题考查了条形统计图,观察函数图象获得有效信息是解题关键.24.已知函数y=x2+(2m+1)x+m2﹣1.(1)m为何值时,y有最小值0;(2)求证:不论m取何值,函数图象的顶点都在同一直线上.考点:二次函数的最值;二次函数的性质.分析:(1)直接将y=0代入=0求出即可;(2)首先求出函数顶点坐标,设顶点在直线y1=kx+b上,代入函数解析式求出k,b的值即可.解答:(1)解:当y=0时,===0,解得:m=﹣;(2)证明:函数y=x2+(2m+1)x+m2﹣1的顶点坐标为:(﹣,)设顶点在直线y1=kx+b上,则﹣k+b=,故﹣mk=﹣m,解得:k=1,b=,不论m取何值,该函数图象的顶点都在直线y1=x﹣上.点评:此题主要考查了二次函数的性质以及二次函数最值求法,得出k的值是解题关键.25.如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),B两点,交y轴于点D.(1)求点B、点D的坐标,(2)判断△ACD的形状,并求出△ACD的面积.考点:抛物线与x轴的交点.分析:(1)由顶点坐标和A点坐标,可求得抛物线的解析式,容易求出B、D的坐标;(2)根据点的坐标,利用勾股定理可求得AD、AC、CD的长,可判断△ACD的形状解答:解:(1)∵抛物线的顶点坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵与x轴交于点A(3,0),∴0=4a+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3,令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3,令x=0,可得y=3∴B点坐标为(﹣1,0),D点坐标为(0,3);(2)∵A(3,0),D(0,3),C(1,4),∴AD==3,CD==,AC==2,∴AD2+CD2=(3)2+()2=20=(2)2=AC2,∴△ACD是以AC为斜边的直角三角形,∴S△ACD=AD•CD=×3×=3.点评:本题主要考查待定系数法及勾股定理的逆定理,根据抛物线的顶点坐标写出其顶点式求得抛物线的解析式是解题的关键.26.设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”.(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y=x2﹣2x﹣k是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式(用含m,n的代数式表示).考点:二次函数的性质;一次函数的性质;反比例函数的性质.专题:新定义.分析:(1)根据反比例函数y=的单调区间进行判断;(2)由于二次函数y=x2﹣2x﹣k的图象开口向上,对称轴为x=1,所以二次函数y=x2﹣2x﹣k在闭区间[1,2]内,y随x的增大而增大.当x=1时,y=1,所以k=﹣2.当x=2时,y=2,所以k=﹣2.即图象过点(1,1)和(2,2),所以当1≤x≤2时,有1≤y≤2,符合闭函数的定义,所以k=﹣2.(3)根据新定义运算法则,分两种情况:k>0,k<0,列出关于系数k、b的方程组,通过解该方程组即可求得系数k、b的值,即可解答.解答:解:(1)反比例函数y=是闭区间[1,2015]上的“闭函数”.理由如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年黑龙江省大庆市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2015•大庆)sin60°=()A.B.C.1D.2.(3分)(2015•大庆)将0.00007用科学记数法表示为()A.7×10﹣6B.70×10﹣5C.7×10﹣5D.0.7×10﹣63.(3分)(2015•大庆)a2的算术平方根一定是()A.a B.|a| C.D.﹣a4.(3分)(2015•大庆)正n边形每个内角的大小都为108°,则n=()A.5B.6C.7D.85.(3分)(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元6.(3分)(2015•大庆)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30°B.45°C.60°D.90°7.(3分)(2015•大庆)以下图形中对称轴的数量小于3的是()A.B.C.D.8.(3分)(2015•大庆)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,69.(3分)(2015•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0 10.(3分)(2015•大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB 与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()A.0个B.1个C.2个D.3个二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2015•大庆)函数y=的自变量x的取值范围是.12.(3分)(2015•大庆)已知=,则的值为.13.(3分)(2015•大庆)底面直径和高都是1的圆柱侧面积为.14.(3分)(2015•大庆)边长为1的正三角形的内切圆半径为.15.(3分)(2015•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).16.(3分)(2015•大庆)方程3(x﹣5)2=2(x﹣5)的根是.17.(3分)(2015•大庆)若a2n=5,b2n=16,则(ab)n=.18.(3分)(2015•大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x 轴时停止滚动,则点A经过的路线与x轴围成图形的面积为.三、解答题(共10小题,满分66分)19.(4分)(2015•大庆)求值:+()2+(﹣1)2015.20.(4分)(2015•大庆)解关于x的不等式:ax﹣x﹣2>0.21.(5分)(2015•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.22.(6分)(2015•大庆)已知一组数据x1,x2,…x6的平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)23.(7分)(2015•大庆)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.24.(7分)(2015•大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)25.(7分)(2015•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.26.(8分)(2015•大庆)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.27.(9分)(2015•大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.28.(9分)(2015•大庆)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.2015年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2015•大庆)sin60°=()A.B.C.1D.考点:特殊角的三角函数值.专题:计算题.分析:原式利用特殊角的三角函数值解得即可得到结果.解答:解:sin60°=,故选D点评:此题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解本题的关键.2.(3分)(2015•大庆)将0.00007用科学记数法表示为()A.7×10﹣6B.70×10﹣5C.7×10﹣5D.0.7×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00007=7×10﹣5.故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2015•大庆)a2的算术平方根一定是()A.a B.|a| C.D.﹣a考点:算术平方根.分析:根据算术平方根定义,即可解答.解答:解:=|a|.故选:B.点评:本题考查了对算术平方根定义的应用,能理解定义并应用定义进行计算是解此题的关键,难度不是很大.4.(3分)(2015•大庆)正n边形每个内角的大小都为108°,则n=()A.5B.6C.7D.8考点:多边形内角与外角.分析:利用正多边形的性质得出其外角,进而得出多边形的边数.解答:解:∵正n边形每个内角的大小都为108°,∴每个外角为:72°,则n==5.故选:A.点评:此题主要考查了多边形内角与外角,正确得出其外角度数是解题关键.5.(3分)(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()A.880元B.800元C.720元D.1080元考点:一元一次方程的应用.分析:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依据“2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同”列出方程并解答.解答:解:设1月份每辆车售价为x元,则2月份每辆车的售价为(x﹣80)元,依题意得100x=(x﹣80)×100×(1+10%),解得x=880.即1月份每辆车售价为880元.故选:A.点评:本题考查了一元一次方程的应用.根据题意得到“2月份每辆车的售价”和“2月份是销售总量”是解题的突破口.6.(3分)(2015•大庆)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30°B.45°C.60°D.90°考点:垂径定理;等腰直角三角形.分析:利用等腰直角三角形的性质以及垂径定理得出∠BOC的度数进而求出.解答:解:如图所示:连接BO,AO,∵圆心O到弦AB的距离为AB长度的一半,∴DO=DB,DO⊥AB,∴∠BOC=∠BOC=45°,则∠A=∠AOC=45°,∴∠AOB=90°.故选:D.点评:此题主要考查了垂径定理以及等腰直角三角形的性质,得出∠BOC=∠BOC=45°是解题关键.7.(3分)(2015•大庆)以下图形中对称轴的数量小于3的是()A.B.C.D.考点:轴对称图形.分析:根据对称轴的概念求解.解答:解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.点评:本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.8.(3分)(2015•大庆)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是()A.7,7 B.8,7.5 C.7,7.5 D.8,6考点:众数;条形统计图;中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解答:解:在这一组数据中7是出现次数最多的,故众数是7;排序后处于中间位置的那个数是7,8,那么由中位数的定义可知,这组数据的中位数是=7.5;故选:C.点评:本题为统计题,考查极差、众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.(3分)(2015•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0考点:二次函数图象上点的坐标特征.分析:分a>0和a<0两种情况根据二次函数的对称性确定出y1与y2的大小关系,然后对各选项分析判断即可得解.解答:解:①a>0时,二次函数图象开口向上,∵|x1﹣2|>|x2﹣2|,∴y1>y2,无法确定y1+y2的正负情况,a(y1﹣y2)>0,②a<0时,二次函数图象开口向下,∵|x1﹣2|>|x2﹣2|,∴y1<y2,无法确定y1+y2的正负情况,a(y1﹣y2)>0,综上所述,表达式正确的是a(y1﹣y2)>0.故选C.点评:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性,难点在于根据二次项系数a的正负情况分情况讨论.10.(3分)(2015•大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB 与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()A.0个B.1个C.2个D.3个考点:反比例函数与一次函数的交点问题.分析:如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,有A(﹣2,0),得到OA=2,OC=1,AC=1,BC∥y轴,推出,于是得到这样的点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,求得满足条件的点P(﹣4,﹣),于是得到满足条件的点P的个数是1,解答:解:如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,∵A(﹣2,0),∴OA=2,OC=1,∴AC=1,BC∥y轴,∴,∴P1,P3在y轴上,这样的点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,∴P2Q∥B1C,∴=,∴=,∴m=﹣4,∴P(﹣4,﹣),∴满足条件的点P的个数是1,故选B.点评:本题考查了一次函数与反比例函数的焦点问题,平行线分线段成比例,注意数形结合思想的应用.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2015•大庆)函数y=的自变量x的取值范围是x>0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:解:根据二次根式有意义,分式有意义得:x≥0且x≠0,解得:x>0.故答案为:x>0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(3分)(2015•大庆)已知=,则的值为﹣.考点:比例的性质.分析:根据已知设x=k,y=3k,代入求出即可.解答:解:∵=,∴设x=k,y=3k,∴==﹣,故答案为:﹣.点评:本题考查了比例的性质的应用,能选择适当的方法求出结果是解此题的关键,难度不大.13.(3分)(2015•大庆)底面直径和高都是1的圆柱侧面积为π.考点:圆柱的计算.分析:圆柱的侧面积=底面周长×高.解答:解:圆柱的底面周长=π×1=π.圆柱的侧面积=底面周长×高=π×1=π.故答案是:π.点评:本题考查了圆柱的计算,熟记公式即可解答该题.14.(3分)(2015•大庆)边长为1的正三角形的内切圆半径为.考点:三角形的内切圆与内心.分析:根据等边三角形的三线合一,可以构造一个由其内切圆的半径、外接圆的半径和半边组成的30°的直角三角形,利用锐角三角函数关系求出内切圆半径即可.解答:解:∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=,∴tan∠BOD==,∴内切圆半径OD==.故答案为:.点评:此题主要考查了三角形的内切圆,注意:根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形.15.(3分)(2015•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).考点:截一个几何体.分析:当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.解答:解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.点评:本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.16.(3分)(2015•大庆)方程3(x﹣5)2=2(x﹣5)的根是x1=5,x2=.考点:解一元二次方程-因式分解法.专题:计算题.分析:方程移项变形后,利用因式分解法求出解即可.解答:解:方程变形得:3(x﹣5)2﹣2(x﹣5)=0,分解因式得:(x﹣5)[3(x﹣5)﹣2]=0,可得x﹣5=0或3x﹣17=0,解得:x1=5,x2=.故答案为:x1=5,x2=点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.17.(3分)(2015•大庆)若a2n=5,b2n=16,则(ab)n=.考点:幂的乘方与积的乘方.分析:根据幂的乘方与即的乘方,即可解答.解答:解:∵a2n=5,b2n=16,∴(a n)2=5,(b n)2=16,∴,∴,故答案为:.点评:本题考查了幂的乘方与即的乘方,解决本题的关键是注意公式的逆运用.18.(3分)(2015•大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为π+.考点:旋转的性质;扇形面积的计算.专题:规律型.分析:由勾股定理求出AB,由题意得出点A经过的路线与x轴围成的图形是一个圆心角为135°,半径为的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;由扇形的面积和三角形的面积公式即可得出结果.解答:解:∵∠C=90°,AC=BC=1,∴AB==;根据题意得:△ABC绕点B顺时针旋转135°,BC落在x轴上;△ABC再绕点C 顺时针旋转90°,AC落在x轴上,停止滚动;∴点A的运动轨迹是:先绕点B旋转135°,再绕点C旋转90°;如图所示:∴点A经过的路线与x轴围成的图形是:一个圆心角为135°,半径为的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;∴点A经过的路线与x轴围成图形的面积=+×1×1+=π+;故答案为:π+.点评:本题考查了旋转的性质、扇形面积的计算公式;根据题意得出点A经过的路线与x 轴围成的图形由三部分组成是解决问题的关键.三、解答题(共10小题,满分66分)19.(4分)(2015•大庆)求值:+()2+(﹣1)2015.考点:实数的运算.专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用乘方的意义化简,第三项利用乘方的意义化简,计算即可得到结果.解答:解:原式=+﹣1=﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(4分)(2015•大庆)解关于x的不等式:ax﹣x﹣2>0.考点:解一元一次不等式.专题:分类讨论.分析:利用不等式的基本性质,把不等号左边的﹣2移到右边,再根据a﹣1的取值,即可求得原不等式的解集.解答:解:ax﹣x﹣2>0.(a﹣1)x>2,当a﹣1=0,则ax﹣x﹣2>0为空集,当a﹣1>0,则x>,当a﹣1<0,则a<.点评:此题考查了解简单不等式的能力,掌握解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.21.(5分)(2015•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.考点:根与系数的关系.分析:根据根与系数的关系得到a+b=1,ab=﹣1,再利用完全平方公式变形得到+==,然后利用整体代入的方法进行计算.解答:解:∵实数a,b是方程x2﹣x﹣1=0的两根,∴a+b=1,ab=﹣1,∴+===﹣3.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.22.(6分)(2015•大庆)已知一组数据x1,x2,…x6的平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)考点:方差;算术平均数.分析:(1)先由数据x1,x2,…x6的平均数为1,得出x1+x2+…+x6=1×6=6,再根据方差为,得到S2=[(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2]=,利用完全平方公式求出(x12+x22+…+x62﹣2×6+6)=,进而求解即可;(2)先由数据x1,x2,…x7的平均数为1,得出x1+x2+…+x7=1×7=7,而x1+x2+…+x6=6,所以x7=1;再根据[(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2]=,得出(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2=10,然后根据方差的计算公式即可求出这7个数据的方差.解答:解:(1)∵数据x1,x2,…x6的平均数为1,∴x1+x2+…+x6=1×6=6,又∵方差为,∴S2=[(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2]=[x12+x22+…+x62﹣2(x1+x2+…+x6)+6]=(x12+x22+…+x62﹣2×6+6)=(x12+x22+…+x62)﹣1=,∴x12+x22+…+x62=16;(2)∵数据x1,x2,…x7的平均数为1,∴x1+x2+…+x7=1×7=7,∵x1+x2+…+x6=6,∴x7=1,∵[(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2]=,∴(x1﹣1)2+(x2﹣1)2+…+(x6﹣1)2=10,∴S2=[(x1﹣1)2+(x2﹣1)2+…+(x7﹣1)2]=[10+(1﹣1)2]=.点评:本题考查了平均数与方差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.计算公式是:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].23.(7分)(2015•大庆)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.考点:列表法与树状图法.分析:(1)根据转盘1,利用概率公式求得获得优惠的概率即可;(2)分别求得转动两个转盘所获得的优惠,然后比较即可得到结论.解答:解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,∴P(得到优惠)==;(2)转盘1能获得的优惠为:=25元,转盘2能获得的优惠为:40×=20元,所以选择转动转盘1更优惠.点评:本题考查了几何概率,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.24.(7分)(2015•大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)考点:解直角三角形的应用-仰角俯角问题.分析:延长AE交CD于点G,设CG=xm,在直角△CGE中利用x表示出EG,然后在直角△ACG中,利用x表示出AG,根据AE=AG﹣EG即可列方程求得x的值,进而球儿CD的长.解答:解:延长AE交CD于点G.设CG=xm,在直角△CGE中,∠CEG=45°,则EG=CG=xm.在直角△ACG中,AG==xm.∵AG﹣EG=AE,∴x﹣x=30,解得:x=15(+1)≈15×2.732≈40.98(m).则CD=40.98+1.5=42.48(m).答:这栋建筑物CD的高度约为42m.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.25.(7分)(2015•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.考点:菱形的性质;平行四边形的判定.分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是菱形证明;(2)根据菱形的四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC 是等边三角形,再根据等边三角形的每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.解答:(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.点评:本题考查了菱形的性质,平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,以及直角三角形两锐角互余的性质,熟记各性质与判定方法是解题的关键.26.(8分)(2015•大庆)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)把A与B坐标代入反比例解析式求出m与n的值,确定出A与B坐标,代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)由A与B的坐标求出AB的长,利用点到直线的距离公式求出原点O到直线AB的距离,即可求出三角形AOB面积.解答:解:(1)把A(﹣1,m),B(n,﹣1)代入反比例函数y=﹣,得:m=7,n=7,即A(﹣1,7),B(7,﹣1),把A与B坐标代入一次函数解析式得:,解得:k=﹣1,b=6,则一次函数解析式为y=﹣x+6;(2)∵A(﹣1,7),B(7,﹣1),∴AB==8,∵点O到直线y=﹣x+6的距离d==3,∴S△AOB=AB•d=24.点评:此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法求一次函数解析式,两点间的距离公式,以及点到直线的距离公式,熟练掌握待定系数法是解本题第一问的关键.27.(9分)(2015•大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.考点:相似三角形的判定与性质;圆周角定理.专题:证明题.分析:(1)利用平行线的性质结合圆周角定理得出=,进而得出答案;(2)首先得出△ADP∽△DBC,进而利用相似三角形的性质得出答案;(3)利用相似三角形的判定方法得出△ABP∽△DBA,进而求出AB2=DB•PB,再利用(2)中所求得出答案.解答:证明:(1)∵AD∥BC,∴∠ADB=∠BDC,∴=,∴AB=BC;(2)∵∠APB=∠BAD,∠BAD+∠BCD=180°,∠APB+∠APD=180°,∴∠BCD=∠APD,又∵∠ADB=∠CBD,∴△ADP∽△DBC,∴=,∴DP•BD=AD•BC;(3)∵∠APB=∠BAD,∠BAD=∠BPA,∴△ABP∽△DBA,∴=,∴AB2=DB•PB,∴AB2+AD•BC=DB•PB+AD•BC∵由(2)得:DP•BD=AD•BC,∴AB2+AD•BC=DB•PB+DP•BD=DB(PB+DP)=DB2,即BD2=AB2+AD•BC.点评:此题主要考查了相似三角形的判定与性质以及圆周角定理,熟练应用相似三角形的判定与性质是解题关键.28.(9分)(2015•大庆)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.考点:二次函数综合题.分析:(1)首先根据tan∠ACO=,求出OA的值,即可判断出A点的坐标;然后把A点的坐标代入y=x2+bx﹣4,求出b的值,即可判断出二次函数的解析式.(2)首先根据Q为抛物线对称轴上的一点,设点Q的坐标为(﹣,n);然后根据∠OQC=∠CQP、∠CQP=∠OCQ,可得∠OQC=∠OCQ,所以OQ=OC,据此求出n 的值,进而判断出Q点坐标即可.(3)根据题意,分3种情况:①当x1≤x2≤﹣时;②当x1≤﹣≤x2时;③当﹣<x1≤x2时;然后根据二次函数的最值的求法,求出满足题意的实数x1、x2(x1<x2),使得当x1≤x≤x2时,y的取值范围为≤y≤即可.解答:解:(1)如图1,连接AC,,∵二次函数y=x2+bx﹣4的图象与y轴的交点为C,∴C点的坐标为(0,﹣4),∵tan∠ACO=,∴,又∵OC=4,∴OA=1,∴A点的坐标为(1,0),把A(1,0)代入y=x2+bx﹣4,可得0=1+b﹣4,解得b=3,∴二次函数的解析式是:y=x2+3x﹣4.(2)如图2,,∵y=x2+3x﹣4,∴抛物线的对称轴是:x=﹣,∵Q为抛物线对称轴上的一点,∴设点Q的坐标为(﹣,n),∵抛物线的对称轴平行于y轴,∴∠CQP=∠OCQ,又∵∠OQC=∠CQP,∴∠OQC=∠OCQ,∴OQ=OC,∴,∴,解得n=±,∴Q点坐标是(﹣,)或(﹣,﹣).(3)①当x1≤x2≤﹣时,二次函数y=x2+3x﹣4单调递减,∵y的取值范围为≤y≤,∴由+3x1﹣4=,解得x1=﹣3,﹣2,2,由+3x2﹣4=,解得x2=﹣3,﹣2,2,∵x1≤x2≤﹣,∴②当x1≤﹣≤x2时,Ⅰ、当﹣时,可得x1+x2≤﹣3,∵y的取值范围为≤y≤,∴由(1),可得,由(2),可得x1=﹣3,﹣2,2,∵x1≤﹣<x2,,∴没有满足题意的x1、x2.Ⅱ、当﹣时,可得x1+x2>﹣3,∵y的取值范围为≤y≤,∴解得∵x1+x2=≈﹣1.98﹣1.92=﹣3.9<﹣3,∴没有满足题意的x1、x2.③当﹣<x1≤x2时,二次函数y=x2+3x﹣4单调递增,∵y的取值范围为≤y≤,∴(1)×x2﹣(2)×x1,可得(x1﹣x2)(x1x2+4)=0,∵x1﹣x2≠0,∴x1x2+4=0,∴…(1),把(3)代入(1),可得,∵,∴,∴,∵,∴没有满足题意的x1、x2.综上,可得x1=﹣3,x2=﹣2时,当x1≤x≤x2时,y的取值范围为≤y≤.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了待定系数法求二次函数的解析式的方法,以及二次函数的最值的求法,要熟练掌握.。