八年级数学期末试卷(含答案)-

合集下载

2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷(含解析)

2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷(含解析)

2023-2024学年辽宁省大连市沙河口区八年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列亚运会的会徽中,是轴对称图形的是( )A. B. C. D.2.下列长度的三条线段中,能组成三角形的是( )A. 3cm,5cm,8cmB. 8cm,8cm,18cmC. 1cm,1cm,1cmD. 3cm,4cm,8cm3.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC三个内角度数分别是( )A. 30°,60°,90°B. 45°,45°,90°C. 20°,40°,60°D. 36°,72°,108°4.点(−4,3)关于x轴对称的点坐标是( )A. (−4,−3)B. (4,3)C. (4,−3)D. (3,−4)5.计算2−3的结果是( )A. 8B. 0.8C. −8D. 186.下列计算正确的是( )A. x3⋅x−3=0B. x2⋅x3=x6C. (x2)3=x5D. x2÷x5=1x37.如图是一个钝角△ABC,利用一个直角三角板作边AC上的高,下列作法正确的是( )A. B.C. D.8.在解一个分式方程时,老师设计了一个接力游戏,规则是:每人只能看见前一个人给的式子,进行一步计算后将结果传递给下一个人,最后完成计算.下面是其中一个组的解答过程,老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.老师:3x−1=1−xx+1.甲:3(x+1)=(x+1)(x−1)−x(x−1).乙:3x+3=x2+1−x2+x.丙:3x−x=1−3.丁:解得,x=−1.在接力中,出现计算错误步骤的同学是( )A. 甲B. 乙C. 丙D. 丁9.如果二次三项式a2+mab+b2是一个完全平方式,那么m的值是( )A. 1B. 2C. ±2D. ±110.在如图的3×3正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数是( )A. 2B. 3C. 4D. 5二、填空题:本题共5小题,每小题3分,共15分。

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷(含答案)

人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。

2023-2024学年上海市杨浦区八年级(上)期末数学试卷(含解析)

2023-2024学年上海市杨浦区八年级(上)期末数学试卷(含解析)

2023-2024学年上海市杨浦区八年级(上)期末数学试卷一、选择题:本题共6小题,每小题2分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各式中与2是同类二次根式的是( )A. 20B. 1C. 24D. 0.222.用配方法解一元二次方程x2−6x−7=0,则方程变形为( )A. (x−6)2=43B. (x+6)2=43C. (x−3)2=16D. (x+3)2=163.下面各组变量的关系中,成正比例关系的有( )A. 人的身高与年龄B. 汽车从甲地到乙地,所用时间与行驶速度C. 正方形的面积与它的边长D. 圆的周长与它的半径4.如图,点P在反比例函数y=k(x>0)第一象限的图象上,PQ垂直x轴,垂足为xQ,设△POQ的面积是s,那么s与k之间的数量关系是( )A. s=k4B. s=k2C. s=kD. 不能确定5.下列给出的三条线段中,不能构成直角三角形的是( )A. 4,8,43B. 4,8,45C. 7,24,25D. 7,14,156.已知下列命题中:①有两条边分别相等的两个直角三角形全等;②有一条腰相等的两个等腰直角三角形全等;③有一条边与一个锐角分别相等的两个直角三角形全等;④顶角与底边分别对应相等的两个等腰三角形全等.其中真命题的个数是( )A. 1B. 2C. 3D. 4二、填空题:本题共12小题,每小题3分,共36分。

7.计算:2a⋅6a=______ .8.方程x2=5x的根是______.9.函数y=2x−1的定义域是______.10.已知f(x)=12+x,那么f(3)=______ .11.若函数y=(k+1)x是正比例函数,且y的值随x的值增大而减小,则k的取值范围是______ .12.关于x的一元二次方程mx2−2x+1=0有两个不相等的实数根,则实数m的取值范围是______ .13.到点A的距离等于2厘米的点的轨迹是______ .14.若直角三角形斜边上的高是3,斜边上的中线是6,则这个直角三角形的面积是______.15.如图,在△ABC中,∠C=90°,边AB的垂直平分线DE交AC于D,CD=10cm,AD=20cm,则∠A=______ .16.若点P在x轴上,点A坐标是(2,−1),且PA=2,则点P的坐标是______.17.在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成一个大正方形(如图所示,AB<BC).如果小正方形的面积是25,大正方形的面积为49,那么BCAB=______.18.我们规定:如果一个三角形一边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.如图,已知直线l1//l2,l1与l2之间的距离是3,“等高底”△ABC的“等底”BC在直线l1上(点B在点C的左侧),点A在直线l2上,AB=2BC,将△ABC绕点B顺时针旋转45°得到△A1BC1,点A、C的对应点分别为点A1、C1,那么A1C 的长为.三、解答题:本题共8小题,共52分。

2023-2024学年北京市房山区八年级(上)期末数学试卷(含解析)

2023-2024学年北京市房山区八年级(上)期末数学试卷(含解析)

2023-2024学年北京市房山区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列式子为最简二次根式的是( )A. 3B. 4C. 8D. 122.下面的四个图案分别是“向左转弯”、“直行”、“直行和向右转弯”和“环岛行驶”的交通标志,其中可以看作是轴对称图形的是( )A. B. C. D.3.如果分式2x−3x+2的值为0,那么x的值是( )A. x=2B. x=−2C. x=23D. x=324.如图,数字代表所在正方形的面积,则A所代表的正方形的面积为( )A. 5B. 25C. 27D. 525.下列事件中,属于随机事件的是( )A. 用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形B. 用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形C. 如果一个三角形有两个角相等,那么两个角所对的边也相等D. 有两组对应边和一组对应角分别相等的两个三角形全等6.如图,把两根钢条的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),卡钳交叉点O为AA′,BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据是( )A. 两边和它们的夹角分别相等的两个三角形全等B. 两角和它们的夹边分别相等的两个三角形全等C. 三边分别相等的两个三角形全等D. 两点之间线段最短7.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为( )A. 60°B. 75°C. 90°D. 120°8.如图,在等边△ABC外作射线AD,使得AD和AC在直线AB的两侧,∠BAD=α(0°<α<180°),点B关于直线AD的对称点为P,连接PB,PC.则∠BPC的度数是( )C. 30°D. 30°+αA. 60°−αB. 45°−α2二、填空题:本题共8小题,每小题2分,共16分。

四川省雅安市2023-2024学年八年级上学期期末数学试题(含答案)

四川省雅安市2023-2024学年八年级上学期期末数学试题(含答案)

2023-2024学年上期期末检测八年级数学试题本试卷分A 卷和B 卷两部分,共4页,全卷满分120分,答题时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卷规定的位置上.2.回答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案编号.3.回答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡指定的位置内.4.所有题目必须在答题卷作答,在试题卷上答题无效.5.考试结束后,只将答题卷交回.A 卷(共100分)一、选择题(每题3分,共36分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.下列数中,无理数是( )A .3.14BC .-2D .2.下列方程中是二元一次方程的是( )A .B .C .D .3.在平面直角坐标系中,到轴的距离为( )A .3B .4C .5D .-44在下列哪两个数之间( )A .2和3B .3和4C .4和5D .5和65.的三边分别是,,,其中能构成直角三角形的是()A .,,B .,,C .,,D .,,6.下列命题中真命题是()A .有理数和数轴上的点一一对应B .三角形的一个外角大于任何一个内角C .两条直线被第三条直线所截,同旁内角互补D .一次函数的图象是一条直线7.某学校规定学生的体育成绩由三部分组成:大课间体育锻炼及体育课外活动表现占成绩的40%,体育理论测试占10%,体育技能测试占50%,小张的上述三项成绩依次是:95分,80分,86分,则小张这学期的体育成绩是( )A .86分B .87分C .88分D .89分22710xy +=4x y +=30xy+=220x x +=()3,4P --y ABC △a b c 2a =3b =4c =3a =4b =5c =4a =5b =6c =6a =7b =8c =8.已知一次函数的图象经过二,三,四象限,则一次函数的图象大致是( )A .B .C .D .9.已知直线与的交点为,则方程组的解是( )A .B .C .D .10,则点关于原点对称的点的坐标是( )A .B .C .D .11.“抖空竹”是典型的基础性节律性运动项目,深受广大人民的喜爱.图1是“抖空竹”时的一个瞬间,小莉把它抽象成图2的数学问题:已知,,,则的度数是()A .60°B .70°C .80°D .90°12.如图,在平面直角坐标系中,点的坐标为,轴,轴,是的中点,是上的一点,当的周长最小时,点的坐标是()A .B .C .D .二、填空题(每小题3分,共12分)将答案填在答题卡相应的横线上.13=______.()0y kx b k =+≠y bx k =-4y x =-3y x b =+()1,a 4030y x y x b +=⎧⎨--=⎩14x y =-⎧⎨=-⎩14x y =⎧⎨=-⎩14x y =⎧⎨=⎩41x y =-⎧⎨=⎩10b ++=(),P a b ()2,1-()2,1--()2,1-()2,1AB CD ∥30E ∠=︒110ECD ∠=︒A ∠P ()2,3PA x ⊥PB y ⊥C OA D OB PCD △D ()0,130,2⎛⎫ ⎪⎝⎭10,3⎛⎫ ⎪⎝⎭()0,214.数据2,4,6,8,10,这组数据的方差为______.15.已知是的正比例函数,则=______.16.对角线互相垂直的四边形叫做“垂美”四边形,如图所示的“垂美”四边形的对角线,交于点,若,,则=______.三、解答题(本大题共6个小题,满分52分)解答应写出文字说明,证明过程或演算步骤.17.(本题12分)(1(2)解方程组:18.(本题7分)如图,已知,,试猜想与之间有怎样的位置关系?并说明理由.19.(本题8分)为进一步提升学生数学核心素养,落实双减提质,某校八年级开展了“感受数学魅力,提升数学素养”为主题的趣味数学知识竞赛,现从八年级一班和二班参与竞赛的学生中各随机抽取10名同学的成绩进行整理、描述和分析(单位:分,满分100分,90分及90分以上为优秀),将学生竞赛成绩分为,,三个等级::,:,:.下面给出了部分信息:一班10名学生的竞赛成绩为:75,75,84,84,84,86,86,94,95,97;二班10名学生的竞赛成绩为:86,85,85,85,96,92,94,76,75,86.两组数据的平均数、中位数、众数、方差如下表所示:班级平均数中位数众数方差一班868552二班8542.4根据以上信息,解答下列问题:(1)填空:=______,=______;(2)求的值;(3)根据以上数据,你认为在此次知识竞赛中,哪个班的成绩更稳定?并说明理由.()283m y m x-=-x m ABCD AC BD D 5AB =4CD =22AD BC +)11--+2133x y x y -=⎧⎨-=⎩A D ∠=∠C B ∠=∠CF BE A B C A 90100x ≤≤B 8090x ≤<C 7080x <<bc aa b c20.(本题8分)如图,在平面直角坐标系中,点,点,点.(1)在图中画出关于轴的对称图形,并写出的坐标;(2)求的面积;(3)以点,,为顶点的三角形与全等,请你直接写出点的坐标.21.(本题8分)第31届世界大学生运动会于2023年7月28日至8月8日在成都举行.某玩具店购进大运会吉祥物“蓉宝”摆件和“蓉宝”钥匙扣玩偶共100个,费用为4600元,这两种吉祥物的进价、售价如表:进价(元/个)售价(元/个)“蓉宝”摆件5070“蓉宝”钥匙扣4050(1)该玩具店购进“蓉宝”摆件和“蓉宝”钥匙扣玩偶各多少个?(列二元一次方程组解答)(2)该玩具店计划一次性购进两种样式吉祥物共300个,设购进“蓉宝”摆件个,且“蓉宝”钥匙扣不能少于100个,这300个玩具的销售总利润为元.请写出关于的函数关系式,并判断利润能否达到5100元,并说明理由.22.(本题9分)如图,,,,,,是上一动点,设.(1)用表示;(2)当为何值时,;()1,1A -()3,1B ()4,4C ABC △y 111A B C △1B ABC △A B D ABC △D n w w n CA BD ∥CA AB ⊥5AC =3BD =8AB =E AB AE x =x CE x CE DE =(3是否有最小值,若有请求出最小值,若没有请说明理由B 卷(共20分)四、填空题(每小题4分,共8分)将答案填在答题卡相应的横线上.23.已知=______.24.如图,在平面直角坐标系中,直线交轴于点,点,…在直线上,点,,…在轴的正半轴上,若,,…依次均为等腰直角三角形,直角顶点都在轴上,则第2024个等腰直角三角形顶点的横坐标为______.五、解答题(12分)解答应写出文字说明,证明过程或演算步骤.25.(本题12分)如图,已知直线:与轴,轴交于点,点,直线经过点,与直线交于点.(1)求点的坐标及直线的函数表达式;(2)求的面积;(3)点为直线上一动点,若有,求点的坐标.+a =227a a -+1y x =+y A 1A 2A l 1B 2B 3B x 1AOB △112A B B △213A B B △x 202320232024A B B 2023B 1l 25y x =+x y A B 2l ()2,0C 1l (),3D m D 2l AGD △P 2l 43PAB ACD S S =△△P雅安市2023-2024学年上期期末检测八年级数学参考答案及评分标准A 卷一、选择题(每题3分,共36分)1.B 2.B 3.A 4.D5.B6.D7.D8.C9.B10.C11.C12.A二、填空题(每题3分,共12分)13.214.815.-316.41三、解答题(共52分)17(1).(6分)解:原式==2-1=1(2).(6分)解:①×3-②,得解,得将带入①得∴18.(7分)解:,理由如下:∵∴∴∵∴∴()21--2133x y x y -=⎧⎨-=⎩①②363313x y x y --+=⨯-0y =0y =1x =10x y =⎧⎨=⎩CF BE ∥A D ∠=∠AB DC ∥B BED ∠=∠C B ∠=∠C BED ∠=∠CF BE∥19.(8分)解:(1),(2)(3)∵42.4<53.7∴二班的成绩更稳定20.(8分)解:(1)(2)∵,,∴,点到直线的距离∴(3),,21.(8分)解(1)设“蓉宝”摆件购进个,“蓉宝”钥匙扣购进个由题意可得855a =.84b =()1868585859692947675868610c =⨯+++++++++=()13,1B -()1,1A -()3,1B ()4,4C 4AB =C AB 3h =1143622ABC S AB h ⋅==⨯⨯=△()14,2D -()22,4D -()32,2D --x y 10050404600x y x y +=+=⎧⎨⎩解,得(2)∵购进“蓉宝”摆件购进个,则购进“蓉宝”钥匙扣购进个∴整理,得∵∴当时,∵5000<5100∴利润不能达到5100元.22.(9分)(1)∵,,.∴(2)∵,,,∴,,∴∵∴解,得(3)作点关于直线的对称点,过点作交的延长线于点,连接,可知,,∴的最小值为6040xy =⎧⎨=⎩n ()300n -()2010300w n n =+-()1030000200w n n =+≤≤100n =>200n =max 1020030005000W =⨯+=CA AB ⊥5AC =AE x =CE ==CA BD ∥3BD =8AB =BD AB ⊥8BE x =-DE ==CE DE=()222589x x +=-+3x =C AB F F FG BD ⊥DB G FD 5BG AF AC ===8FG AB ==8DG =CE DE+=+CE DE +=+B 卷四、填空题(每题4分,共8分)23.924.五、解答题(共12分)25.解:(1)∵点在直线上∴即设直线的表达式为,且直线过点,∴解,得∴直线的解析式(2)∵直线与轴交于点202321-(),3D m 25y x =+1m =-()1,3D -2l y kx b =+()2,0C ()1,3D -203k b k b +=⎧⎨-+=⎩12k b =-⎧⎨=⎩2l 2y x =-+25y x =+x A∴∴∴(3)作交于点,设,,∴.∵,,∴.∵,∴,解得或,∴或5,02A ⎛⎫-⎪⎝⎭92AC =1192732224ACD D S AC y =⨯=⨯⨯⨯=△PE OB ⊥AB E (),2P m m -+13,222E m m ⎛⎫---+ ⎪⎝⎭13332222PE m m m =---=+5,02A ⎛⎫-⎪⎝⎭()0,5B 113352222PAB OB S EP m ⋅==⨯⨯+△44279334PAB ACD S S ==⨯=△△13359222m ⨯⨯+=2115m =5115m =-219,1515P ⎛⎫⎪⎝⎭5181,1515P ⎛⎫- ⎪⎝⎭。

2023-2024学年四川省成都市高新区八年级(上)期末数学试卷(含答案)

2023-2024学年四川省成都市高新区八年级(上)期末数学试卷(含答案)

2023-2024学年四川省成都市高新区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)下列各数中,属于无理数的是()A.B.C.D.0.572.(4分)下列运算正确的是()A.B.C.D.3.(4分)下面4组数值中,是二元一次方程3x+y=10的解是()A.B.C.D.4.(4分)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系以正东方向为x轴的正方向,以正北方向为y轴的正方向,并且综合楼和教学楼的坐标分别是(﹣4,﹣1)和(1,2)则食堂的坐标是()A.(3,5)B.(﹣2,3)C.(2,4)D.(﹣1,2)5.(4分)甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:,,,,则成绩最稳定的是()A.甲B.乙C.丙D.丁6.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,CD是斜边的高,则CD 的长为()A.B.C.5D.107.(4分)某城市几条道路的位置关系如图所示,道路AB∥CD,道路AB与AE的夹角∠BAE=80°,城市规划部门想新修一条道路CE,要求CF=EF,则∠C的度数为()A.30°B.40°C.50°D.80°8.(4分)关于一次函数y=﹣2x+4,下列说法正确的是()A.函数值y随自变量x的增大而减小B.图象与x轴交于点(4,0)C.点A(1,6)在函数图象上D.图象经过第二、三、四象限二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)一块面积为3m2的正方形桌布,其边长为m.10.(4分)在平面直角坐标系xOy中,点A的坐标是(2,3),若AB∥x轴,且AB=4,则点B的坐标是.11.(4分)下表是小明参加一次“青春风采”才艺展示活动比赛的得分情况:项目书法舞蹈演唱得分859070总评分时,按书法占40%,舞蹈占30%,演唱占30%考评,则小明的最终得分为.12.(4分)若直线y=x向上平移m个单位长度后经过点(3,5),则m的值为.13.(4分)如图,有两棵树,一棵高12米,另一棵高7米,两树相距12米,一只小鸟从一棵树的树梢A飞到另一棵树的树梢B,则小鸟至少要飞行米.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(12分)(1)计算:;(2)解方程组:.15.(8分)学校组织七、八年级学生参加体育综合素质评价测试,已知七、八年级各有160人,现从两个年级分别随机抽取8名学生的测试成绩(单位:分)进行统计.七年级:89,87,91,91,93,98,94,97八年级:98,84,92,93,95,95,88,95整理如下:年级平均数中位数众数七年级92.5x91八年级92.594y根据以上信息,回答下列问题:(1)填空:x=,y=;(2)甲同学说:“这次测试我得了93分,位于年级中等偏上水平”,你认为甲同学在哪个年级,并简要说明理由;(3)若规定测试成绩不低于90分为“优秀”,估计该学校这两个年级测试成绩达到“优秀”的学生总人数.16.(8分)在平面直角坐标系xOy中,△ABC的顶点A(1,1),B(3,2),C(2,3)均在正方形网格的格点上.(1)画△ABC关于y轴的对称图形△A1B1C1;(2)已知点D的坐标为(3,﹣3),判断△ABD的形状,并说明理由.17.(10分)某单位准备购买一种水果,现有甲、乙两家超市进行促销活动,该水果在两家超市的标价均为13元/千克.甲超市购买该水果的费用y(元)与该水果的质量x(千克)之间的关系如图所示;乙超市该水果在标价的基础上每千克直降3元.(1)求y与x之间的函数表达式;(2)现计划用290元购买该水果,选甲、乙哪家超市能购买该水果更多一些?18.(10分)如图,在△ABC中,∠BAC=90°,AB=AC.点D是△ABC所在平面内一点,且∠ADB=90°.(1)如图1,当点D在BC边上,求证:AD=CD;(2)如图2,当点D在△ABC外部,连接CD,若AB=5,AC=CD,求线段BD的长;(3)如图3,当点D在△ABC内部,连接CD,若∠ADC=∠BDC,AD=3,求点D到BC的距离.一、填空题(本大题共5个小题,每小题4分,共20分)19.(4分)如图,数轴上的点A表示的实数是.20.(4分)已知直线y=﹣3x与y=x+n(n为常数)的交点坐标为(1,m),则方程组的解为.21.(4分)如图,在平面直角坐标系xOy中,△ABC的顶点坐标分别为A(0,3),B(0,1),C(﹣4,0),点D在y轴右侧,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标为.22.(4分)在Rt△ABC中,∠BAC=90°,BD=AD=2,在BC的延长线上有一点E使得AE=AD,过点E作AC的垂线,垂足为F,若∠FEA=67.5°,则CE =.23.(4分)定义:若三个正整数a,b,c满足a<b,a2+b2=c2,且c﹣b=2,则称(a,b,c)为“偶差”勾股数组.例如:(6,8,10),(8,15,17)都是“偶差”勾股数组.令m=a+b+c,将m从小到大排列,分别记为m1,m2,m3,…,m n(n为正整数),则m20的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)2023年12月4日至10日,国际乒联混合团体世界杯在四川成都举行,在此期间,成都某酒店对三人间及双人间客房进行优惠大酬宾,优惠方案为:三人间为每天每间360元,双人间为每天每间300元,一个40人的旅游团于2023年12月4日在该酒店入住,住了一些三人间及双人间客房,且每个客房正好住满.(1)若旅游团一天共花去住宿费5100元,求该旅行团租住了三人间、双人间各多少间?(2)设有x人住三人间,这个团一天共花去住宿费y元,请求出y与x的函数表达式.25.(10分)如图1,在边长为2的正方形ABCD中,点E是射线BC上一动点,连接AE,以AE为边在直线AE右侧作正方形AEFG.(1)当点E在线段BC上,连接DG,求证:BE=DG;(2)当点E是线段BC的中点,连接CF,求线段CF的长;(3)如图2,点E在线段BC的延长线上,连接BG,若ED的延长线恰好经过BG的中点P,求线段EP的长.26.(12分)如图,直线l1:y=﹣x+3与x轴,y轴分别交于A,B两点,点C坐标为(﹣5,﹣2),连接AC,BC,点D是线段AB上的一动点,直线l2过C,D两点.(1)求△ABC的面积;(2)若点D的横坐标为1,直线l2上是否存在点E,使点E到直线l1的距离为,若存在,求出点E的坐标,若不存在,请说明理由;(3)将△BCD沿直线CD翻折,点B的对应点为M,若△ADM为直角三角形,求线段BD 的长.参考答案一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.C;2.D;3.D;4.B;5.C;6.A;7.B;8.A;二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.;10.(6,3)或(﹣2,3);11.32.16;12.2;13.13;三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)4;(2).;15.92;95;16.(1)见解答.(2)△ABD为直角三角形,理由见解答.;17.(1)y1与x之间的函数解析式为y1=;(2)在甲商店购买更多一些.;18.(1)证明见解析.(2);(3).;一、填空题(本大题共5个小题,每小题4分,共20分)19.1+; 20.;21.(4,4)或(4,0);22.2﹣2;23.1012;二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(1)此旅游团住了三人间客房10间,住了双人间客房5间;(2)y与x的函数表达式为y=﹣30x+6000.;25.(1)证明见解答;(2)线段CF的长为;(3)EP=3.;26.(1)S△ABC=15;(2)存在,点E的坐标为或;(3)BD的长为或﹣.。

2023-2024学年上海市重点学校八年级(上)期末数学试卷(含解析)

2023-2024学年上海市重点学校八年级(上)期末数学试卷(含解析)

2023-2024学年上海市重点学校八年级(上)期末数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各式中,与2不是同类根式的是( )A. 12B. 0.2 C. 18D. 50x22.如果方程mx2−6x+1=0有实数根,那么m的取值范围是( )A. m<9且m≠0B. m≤9且m≠0C. m<9D. m≤93.下列说法正确的是( )A. 面积一定的平行四边形的一边和这边上的高成正比例B. 面积一定的平行四边形的一边和这边上的高成反比例C. 周长一定的等腰三角形的腰长与它底边的长成正比例D. 周长一定的等腰三角形的腰长与它底边的长成反比例4.某工厂第四季度的每月产值的增长率都是x,其中12月份的产值是100万元,那么10月份的产值是是( )A. 100(1−x2)B. 100(1−x)2C. 100(1+x)2D. 1001+x25.用下列长度的三条线段为边能构成直角三角形是( )A. 13,14,15B. 4,5,6C. 17,8,15D. 1,3,236.下列说法中正确的是( )A. 每个命题都有逆命题B. 每个定理都有逆定理C. 真命题的逆命题是真命题D. 假命题的逆命题是假命题二、填空题:本题共12小题,每小题2分,共24分。

7.当a<−1时,(a+1)2=______ .8.如果x2(2+x)=−x⋅2+x,那么等式成立的条件是______ .9.计算:a−ba12−b12=______ .10.不等式:(3−2)x<1的解集是______ .11.在实数范围内因式分解x2y2−3xy−2=______ .12.函数y=x−32−x的定义域是______ .13.函数y=25x的图象经过的象限是______ .14.函数y=x2m−3(m为常数)中,y的值随x的增大而减小,那么m的取值范围是______ .15.“等腰三角形两腰上的高相等”的逆命题是______.16.已知线段AB,以∠A为顶角的等腰△ABC的顶点C的轨迹是______ .17.如果一个直角三角形两条边的长分别为5、12,那么斜边上中线的长为______ .18.在Rt△ABC中,∠C=90°,∠A=15°,AB=6(如图),点D是AB的中点,将△ACD沿直线CD翻折后点A落在点E,那么BE的长为______ .三、计算题:本大题共1小题,共6分。

2024—2025学年最新人教新版八年级下学期数学期末考试试卷(精品试卷含有参考答案)

2024—2025学年最新人教新版八年级下学期数学期末考试试卷(精品试卷含有参考答案)

2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、函数y=﹣x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2、一个直角三角形的模具,量得其中两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C.cm D.5cm或cm 3、为了推进“阳光体育”,学校积极开展球类运动,在一次定点投篮测试中,每人投篮5次,七年级某班统计全班50名学生投中的次数,并记录如下:投中次数(个)012345人数(人)1●1017●6表格中有两处数据不小心被墨汁遮盖了,下列关于投中次数的统计量中可以确定的是()A.平均数B.中位数C.众数D.方差4、以下列各组数为边长,能构成直角三角形的是()A.1、2、3B.3、4、5C.4、5、6D.、、5、P1(x1,y1),P2(x2,y2)是一次函数y=2x﹣3图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1>y2D.当x1<x2时,y1<y26、在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2 7、已知四边形ABCD是平行四边形,下列条件中,不能判定▱ABCD为矩形的是()A.∠A=90°B.∠B=∠C C.AC=BD D.AC⊥BD8、勾股定理被誉为“几何明珠”,如图是我国古代著名的“赵爽弦图”,它由4个全等的直角三角形拼成,已知大正方形面积为25,小正方形面积为1,若用a,b(a>b)表示直角三角形的两直角边,则下列结论不正确的是()A.a2+b2=25B.a+b=5C.a﹣b=1D.ab=129、如图1,动点P从菱形ABCD的点A出发,沿边AB→BC匀速运动,运动到点C时停止.设点P的运动路程为x,PO的长为y,y与x的函数图象如图2所示,当点P运动到BC中点时,PO的长为()A.2B.3C.D.10、已知非负数x、y、z满足==,设ω=3x+4y+5z,则ω的最大值和最小值的和为()A.54B.56C.35D.46二、填空题(每小题3分,满分18分)11、二次根式中,字母x的取值范围是.12、某校5个小组在一次植树活动中植树株数的统计图如图所示,则平均每组植树株.13、直线y=kx+b经过点(3,﹣2),当﹣1≤x≤5时,y的最大值为6,则k的值为.14、如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=4,OH=2,则菱形ABCD的面积为.15、一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式ax+4<2x的解集是.16、已知:如图,正方形ABCD中,AB=2,AC,BD相交于点O,E,F分别为边BC,CD上的动点(点E,F不与线段BC,CD的端点重合).且BE=CF,连接OE,OF,EF.在点E,F运动的过程中,有下列四个说法:①△OEF是等腰直角三角形;②△OEF面积的最小值是1;③至少存在一个△ECF,使得△ECF的周长是;④四边形OECF的面积是1.其中正确的是.第14题图第15题图第16题图2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19、已知y+1与x﹣2成正比例,且当x=1时,y=﹣3.(1)求y关于x的函数关系式;(2)当m≤x≤m+3时,y的最大值为7,求m的值.20、在某次体育节中,实验中学学生会开展“爱心义卖”活动,准备笔记本和便利贴两种文创产品共100本.若售出3本笔记本和2本便利贴收入65元,售出4本笔记本和3个便利贴收入90元.(1)求笔记本和便利贴的售价各是多少元;(2)已知笔记本数量不超过便利贴的3倍,则准备笔记本和便利贴各多少本的时候总收入最多,并求出总收入的最大值?21、为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的数量最少的是5本,最多的是8本,并根据调查结果绘制了如图不完整的图表.(1)补全条形统计图,扇形统计图中的a=;(2)本次抽样调查中,中位数是,扇形统计图中课外阅读6本的扇形的圆心角大小为度;(3)若该校八年级共有1200名学生,请估计该校八年级学生课外阅读至少7本的人数.22、已知:矩形ABCD,AC、BD交于点O,过点O作EF⊥BD分别交AB、CD于E、F.(1)求证:四边形BEDF是菱形..(2)若BC=3,CD=5,求S菱形BEDF23、直线y=﹣2x+4与x轴,y轴分别交于点A、B,过点A作AC⊥AB于点A,且AC=AB,点C在第一象限内.(1)求点A、B、C的坐标;(2)在第一象限内有一点P(3,t),使S△P AB =S△ABC,求t的值.24、如图,直线与x轴,y轴分别交于点A,B,直线y=kx﹣1与线段AB交于点C,与y轴交于点P,与x轴交于点D.(1)直接写出点A,B,P的坐标;(2)连接BD,若BD=AD,求S△PBC的值;(3)若∠PCB=45°,求点C的坐标.25、如图,直线y=kx﹣4k(k≠0)与坐标轴分别交于点A,B,过点A、B作直线AB,以OA为边在y轴的右侧作四边形AOBC,S=8.△AOB(1)求点A,B的坐标;(2)如图,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE;①如图1,问点E是否在定直线上,若是,求该直线的解析式;若不是,请说明理由;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请直接写出点H的坐标.2024—2025学年最新人教新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、x≥2且x≠3 12、513、﹣2或4 14、16 15、x>1.516、①③④三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、018、证明略19、(1)y=2x﹣5 (2)m的值为320、(1)笔记本的售价是15元,便利贴的售价是10元(2)总收入的最大值为1375元21、(1)图略20 (2)6,129.6(3)52822、(1)证明(2)10.223、(1)C(6,2)(2)t的值为824、(1)P(0,﹣1)(2)(3)C(,)25、(1)A(0,4),B(4,0)(2)①点E在定直线y=x﹣4上②点H坐标为(12,8)或(6,2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一学期期末考试八年级数学试卷题号 一 二 三 四 五 六 七 总分 21 22 23 24 25 26 27 28得分注意事项:1.本试卷满分100分,考试时间90分钟;2.答卷前,将密封线左侧的项目添写清楚。

一、选择题(每小题所给出的四个选项中有且只有一个是正确的,请将正确选项的字母填在题后的括号内。

每小题2分,共20分)1. 下列各数中,无理数是( )(A )••14.1 (B )61.3 (C )3.14 (D )32. 在俄罗斯方块游戏中,已拼好的图案如右图所示,现又出现一小方格体正向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整图案,使其自动消失( ) (A )顺时针旋转90°,向右平移; (B )逆时针旋转90°,向右平移; (C )顺时针旋转90°,向下平移; (D )逆时针旋转90°,向下平移。

3. 如图,有一个棱长为1m 且封闭的正方体纸盒,一只昆虫从顶点A 爬到顶点B ,那么这只昆虫爬行的最短路程是( )(A )3m (B )(2+1)m (C )5m (D )3m 4. 若(2x -3)2和2+y 互为相反数,则y x 的值是( )(A )94 (B )49 (C )32 (D )-945. 将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是( ) (A )矩形; (B )三角; (C )梯形; (D )菱形6. 某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状是( )(A )正方形; (B )正六边形; (C )正八边形; (D )正十二边形。

7. 如图,l 1反映了某公司产品的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,根据图象判断该公司盈利时的销售量为( )(A )小于4件; (B )大于4件; (C )等于4件; (D )大于或等于4件。

8. 用方块布料缝制一块棋盘花纹的挂毯,如图所示,则当黑点重叠的时候,要使花纹继得分 评卷人y (元)x (件) O 1 500 400300200 100 2 3 4 5 6 l 1 l 2AB续原来的模式,应在1处选择的图案是( )9. 如图所示的象棋盘上,若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( ) (A )(-1,1) (B )(-1,2) (C )(-2,1) (D )(-2,2)10.如图是跳棋盘,其中格点的黑色点为棋子,剩余的格点上没有棋子,我们约定跳棋游戏的规则是:把跳棋棋子的棋盘内沿直线隔着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A 跳进对方区域(阴影部分的格点),则跳行的最少步数为( ) (A )2步(B )3步(C )4步(D )5步二、填空题(每小题2分,共20分)11.若m 的平方根是53±,则m = ; 12.化简:555-= ;13.已知一个矩形的长为3cm ,宽为2cm ,试估计它的对角线长为 cm ; 14.如图是以直角坐标原点O 为圆心的两个同心圆,则其阴影部分的面积之和为 ;(结果保留π)(第14题) (第15题) (第16题)15.如图,有一勾股树,所有的四边形都是正方形,所有的三角形都是直角三角形,其中A (A ) (B ) (C ) (D ) 1 A B D C ABCD 炮 帅 相最大的正方形的边长为7cm ,则正方形A 、B 、C 、D 的面积的和是 cm 2; 16.如图,梯形ABCD 中,AB ∥CD ,若AB =2,CD =8,AD =4,则腰BC 的取值范围是 ;17.一个函数的图象过点(1,2),且y 随x 的增大而增大,则这个函数的表达式是(任写一个);18.如图所示,若将四根木条钉成的矩形木框变形为平行四边形ABCD 的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于 ; 19.用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,若其中两块木板的边数均为5,则第三块木板的边数为 ; 20.许多同学喜欢下五子棋,行棋规则是:以在任一方向上连五子成一条直线为胜.设A的位置记为(1,4),如图所示是甲乙两同学的对弈图.甲执黑子先走,乙执白子后走,当乙走完第七步后,你认为甲该把黑子放在 的位置,才不至于让乙在最短时间内获胜;三、试试基本功(每小题4分,共12分)21.解方程组:⎩⎨⎧=+=+1341632y x y x ;22.已知x =-1,求代数式x 2+2x +2的值.23.如图,直线l 1∥l 2,AB ⊥l 1,CD ⊥l 2,垂足分别是B 、D ,且AE ∥DF ,问BE 与CF相等吗?为什么?四、判断与决策(本题8分)A DB CA DBC E Fl 2 l 124.某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这五、探究与应用(本题8分)25.探究规律:如图,已知 ABCD ,试用三种方法将它分成面积相等的两部分.由上述方法,你能得到什么一般性的结论?解决问题:有兄弟俩分家时,原来共同承包的一块平行四边形田地ABCD ,现要进行平均划分,由于在这块地里有一口水井P ,如图所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了.聪明的你能帮他们解决这个问题吗?六、操作与设计(本题8分)26.如右图所示,它既是轴对称图形,又是中心对称图形.请你在下面3个网格(两相邻格点的距离均为1个单位长度)内,分别设计1个图案,要求:在⑴中所设计的图案是面积等于3的轴对称图形;在⑵中所设计的图案是面积等于23的中心对称图形;在⑶中所设计的图案既是轴对称图形又是中心对称图形,并且面积等于33.将你设计的图案用铅笔涂黑.A DBC AD B C A D B C七、综合与应用(每道题12分,共24分)27.下面是同学们玩过的“锤子、剪子、布”的游戏规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”.现在我们约定:“布”赢“锤子”得9分;“锤子”赢“剪子”得5分;“剪子”赢“布”得2分.⑴小明和某同学玩此游戏过程中,小明赢了21次,得108分,其中“剪子”赢“布”7次,聪明的同学,请你用所学的知识求出小明“布”赢“锤子”、“锤子”赢“剪子”各多少次?⑵如果小明与某同学玩了若干次,得了30分,请你探究一下小明各种可能的赢法,并选择其中的三种赢法添入下表.28.如图,l 1、l 2分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样.⑴根据图象分别求出l 1、l 2的函数关系式; ⑵当照明时间为多少时,两种灯的费用相同?⑶小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,现有两种用法:①先用白炽灯,再用节能灯;②先用节能灯,再用白炽灯;请你帮他选择一下,使用哪种方案省钱?可省多少钱?参考答案一、 选择题⒈ D ⒉ A ⒊ C ⒋ A ⒌ D ⒍ C ⒎ B ⒏ D ⒐ C ⒑ B 二、 填空题⒒53;⒓51 ;⒔3.5或3.6或3.7或3.8中任意一个都正确;⒕2π;⒖49;⒗2<BC <10;⒘y =2x 或y =3x -1等;⒙30°;⒚10;⒛(5,3)或(1,7)填对一个即可; 三、 试试基本功 21.解:由②,得x =13-4y ,③……………………………………………1分将③代入①,得2(13-4y )+3y =16,26-8y +3y =16, -5y =-10,y =2,………………………………………2分将y =2代入③,得x =5,…………………………………………3分 所以原方程组的解是⎩⎨⎧==25y x …………………………………………4分22.解:由已知得x +1=2003,……………………………………1分x 2+2x +2=x 2+2x +1+1=(x +1)2+1…………………………………………………3分=(2003)2+1=2004……………………………………………………………4分 23.答:BE 与CF 相等.(1分)理由:四边形ABCD 是矩形,四边形AEFD 是平行四边形(2分),对边AD 与BC 、AD 与EF 分别相等(3分),于是,BE =BC -EC =EF -EC =CF (4分) 四、 判断与决策 24.解:⑴平均数为320件;中位数为210件;众数为210件;(各1分,计3分)⑵不合理(4分),因为15人中有13人的销售额达不到320件,320虽是所给一组数据的平均数,它却不能反映营销人员的一般水平。

(6分) 销售额定为210件合适一些(7分),因为210既是中位数,又是众数,是大多数人能达到的定额。

(8分) 五、 探究与应用25.每种画法各1分,计3分,结论:过平行四边形对角线交点的任意一条直线都将平行四边形分成面积相等的两部分。

…………………………………………………………………………5分解决问题:………………………………………………………………………8分 解:连结AC 、BD 相交于点O ,过O 、P 作直线分别交AD 、BC 于M 、N ,则一人分四边形ABNM ,另一人分四边形CDMN .六、 操作与设计 26. 答:2分(1(2A D BC AD B C A D B C……………………………5分8分说明:以上每题只给出了三种涂法,其它涂法只要符合要求,可给相应的分数。

七、 综合与应用 27.解:⑴设“布”赢“锤子”x 次,“锤子”赢“剪子”y 次,得方程组…………1分⎩⎨⎧=+=+149459y x y x ,………………………………………………………………3分 解得⎩⎨⎧==86y x ………………………………………………………………………5分答:小明“布”赢“锤子”6次,“锤子”赢“剪子”8次。

……………………6分⑵(每种赢法各得2分,共6分)28解:⑴设l 1的函数关系式为y 1=k 1x +b 1,由图象知,l 1过点(0,2)、(500,17),可得方程组⎩⎨⎧+==111500172b k b ,解得⎪⎩⎪⎨⎧==1003211k b ,故,l 1的函数关系式为y 1=1003x +2;…………………………………………2分设l 2的函数关系式为y 2=k 2x +b 2,由图象知,l 2过点(0,20)、(500,26),可得方程组⎩⎨⎧+==2225002620b k b ,解得⎪⎩⎪⎨⎧==25032022k b ,故,l 2的函数关系式为y 2=2503x +20;…………………………………………4分(3)⑵由题意得,1003x +2=2503x +20,解得x =1000,…………………………6分 故,当照明时间为1000小时时,两种灯的费用相同;…………………………7分⑶①假如先用白炽灯,再用节能灯,则应有当x =2000时,y 1=1003×2000+2=62, 当x =500时,y 2=2503×500+20=26,故,费用为88元;…………………………………………………………………9分 ②假如先用节能灯,再用白炽灯,则应有当x =2000时,y 2=2503×2000+20=44, 当x =500时,y 1=1003×500+2=17,故,费用为61元;………………………………………………………………11分 因此,两种方案中,先用节能灯,再用白炽灯省钱,可节省27元.………12分。

相关文档
最新文档