第4章 轨迹规划
机械臂的轨迹规划

机械臂运动的轨迹规划摘要空间机械臂是一个机、电、热、控一体化的高集成的空间机械系统。
随着科技的发展,特别是航空飞机、机器人等的诞生得到了广泛的应用,空间机械臂作为在轨迹的支持、服务等以备受人们的关注。
本文将以空间机械臂为研究对象,针对空间机械臂的直线运动、关节的规划、空间直线以及弧线的轨迹规划几个方面进行研究,对机械臂运动和工作空间进行了分析,同时对机械臂的轨迹规划进行了验证,利用MATLAB软件对机械臂的轨迹进行仿真,验证算法的正确性和可行性,同时此路径规划方法可以提高机械臂的作业效率,为机械臂操作提高理论指导,为机器人更复杂的运动仿真与路径规划打下基础。
本文一共分为四章:第一章,首先总结了机械臂运动控制与轨迹规划问题的研究现状及研究方法,归纳了各种轨迹规划的算法及其优化方法,阐述了机械臂的研究背景和主要内容。
第二章,对机械臂的空间运动进行分析研究,采用抽样求解数值法—蒙特卡洛方法,进行机械臂工作空间求解,同时在MATLAB中进行仿真,直观展示机械臂工作范围,为下一章的轨迹规划提供理论基础;同时通过D-H参数法对机械臂的正、逆运动分析求解,分析两者的区别和联系。
第三章,主要针对轨迹规划的一般性问题进行分析,利用笛卡尔空间的轨迹规划方法对机械臂进行轨迹规划,同时利用MATLAB对空间直线和空间圆弧进行轨迹规划,通过仿真验证算法的正确性和可行性。
第四章,总结全文,分析本文应用到机械臂中的控制算法,通过MATLAB 结果可以得出本文所建立的算法正确性,能够对机械臂运动提供有效的路径,而且改进了其他应用于空间机械臂的路径规划问题。
【关键词】运动分析工作空间算法研究轨迹规划ABSTRACTSpace manipulator is a machine, electricity, heat, charged with high integration of space mechanical system integration. With the development of science and technology, especially the birth of aviation aircraft, a robot has been widely used, the trajectory of space manipulator as the support and services to people's attention. This article will space manipulator as the research object, according to the linear motion of the space manipulator, joint planning, space of the straight line and curve, the trajectory planning of several aspects of mechanical arm movement and working space are analyzed, and the trajectory planning of manipulator is verified, the trajectory of manipulator is to make use of MATLAB software simulation, verify the correctness and feasibility of the algorithm, at the same time this path planning method can improve the efficiency of mechanical arm, improve the theoretical guidance for mechanical arm operation, simulation and path planning for robot more complicated movement.This article is divided into four chapters altogether:The first chapter, first summarizes the mechanical arm motion control and path planning problem research status and research methods, summarizes the variety of trajectory planning algorithm and the method of optimization, and expounds the research background and main content of mechanical arm.The second chapter, the paper studied the space motion of mechanical arm, the numerical method, monte carlo method are deduced with the method of sampling, the workspace for mechanical arm is, at the same time the simulation in MATLAB, intuitive display mechanical arm work scope, providing theoretical basis for the next chapter of trajectory planning. At the same time through d-h method of positive and inverse kinematic analysis of the mechanical arm, analyze the difference and contact.The third chapter, mainly aims at the general problem of trajectory planning is analyzed, using cartesian space trajectory planning method for trajectory planning, mechanical arm at the same time, MATLAB is used to analyse the spatial straight line and arc trajectory planning, through the simulation verify the correctness and feasibility of the algorithm.The fourth chapter, summarizes the full text, analysis of the control algorithm is applied to the mechanical arm in this paper, through the MATLAB results can be concluded that the correctness of algorithm, can provide effective path of mechanical arm movement, and improved the other used in space manipulator path planning problem.[key words] motion analysis,work space,trajectory planning,algorithm research目录摘要......................................................................................................................... - 1 - ABSTRACT .............................................................................................................. - 2 - 第一章绪论............................................................................................................. - 5 - 第一节研究背景及意义.................................................................................. - 5 - 第二节国内外发展现状.................................................................................. - 6 -一、国内现状............................................................................................. - 6 -二、国外现状............................................................................................. - 6 - 第二章机械臂的运动分析..................................................................................... - 8 - 第一节机械臂的正运动学分析...................................................................... - 8 - 第二节机械臂的逆运动学求解.................................................................... - 10 - 第三章五轴机械臂轨迹规划与仿真................................................................... - 11 - 第一节轨迹规划一般问题............................................................................ - 11 - 第二节关节空间的轨迹规划........................................................................ - 12 -一、三次多项式插值法........................................................................... - 12 -二、五次多项式插值............................................................................... - 15 -第三节笛卡尔空间的轨迹规划.................................................................... - 17 -一、空间直线轨迹规划........................................................................... - 18 -二、空间圆弧的轨迹规划....................................................................... - 21 -三、一般空间轨迹规划........................................................................... - 25 - 第四章总结与展望............................................................................................... - 30 - 参考文献................................................................................................................. - 31 -第一章绪论第一节研究背景及意义随着宇宙空间的开发,70 年代美国提出了在宇宙空间利用机器人系统的概念,并且在航天飞机上实施。
第四章,轨迹规划

第4章机器人轨迹规划本章在操作臂运动学和动力学的基础上,讨论在关节空间和笛卡尔空间中机器人运动的轨迹规划和轨迹生成方法。
所谓轨迹,是指操作臂在运动过程中的位移、速度和加速度。
而轨迹规划是根据作业任务的要求,计算出预期的运动轨迹。
首先对机器人的任务,运动路径和轨迹进行描述,轨迹规划器可使编程手续简化,只要求用户输入有关路径和轨迹的若干约束和简单描述,而复杂的细节问题则由规划器解决。
例如,用户只需给出手部的目标位姿,让规划器确定到达该目标的路径点、持续时间、运动速度等轨迹参数。
并且,在计算机内部描述所要求的轨迹,即选择习惯规定及合理的软件数据结构。
最后,对内部描述的轨迹、实时计算机器人运动的位移、速度和加速度,生成运动轨迹。
4.1 机器人轨迹规划概述一、机器人轨迹的概念机器人轨迹泛指工业机器人在运动过程中的运动轨迹,即运动点的位移、速度和加速度。
机器人在作业空间要完成给定的任务,其手部运动必须按一定的轨迹(trajectory)进行。
轨迹的生成一般是先给定轨迹上的若干个点,将其经运动学反解映射到关节空间,对关节空间中的相应点建立运动方程,然后按这些运动方程对关节进行插值,从而实现作业空间的运动要求,这一过程通常称为轨迹规划。
工业机器人轨迹规划属于机器人低层规划,基本上不涉及人工智能的问题,本章仅讨论在关节空间或笛卡尔空间中工业机器人运动的轨迹规划和轨迹生成方法。
机器人运动轨迹的描述一般是对其手部位姿的描述,此位姿值可与关节变量相互转换。
控制轨迹也就是按时间控制手部或工具中心走过的空间路径。
二、轨迹规划的一般性问题通常将操作臂的运动看作是工具坐标系{T}相对于工件坐标系{S}的一系列运动。
这种描述方法既适用于各种操作臂,也适用于同一操作臂上装夹的各种工具。
对于移动工作台(例如传送带),这种方法同样适用。
这时,工作坐标{ S }位姿随时间而变化。
例如,图4.1所示将销插入工件孔中的作业可以借助工具坐标系的一系图4.1 机器人将销插入工件孔中的作业描述列位姿P i(i=1,2,…,n)来描述。
《工业机器人》教学课件 第四章 工业机器人的运动轨迹规划

假设机器人的初始位姿是已知的,通过求解逆运动学方程可
以求得机器人期望的手部位姿对应的形位角。若考虑其中某一 关节的运动开始时刻ti的角度为θi, 希望该关节在时刻tf运动到新 的角度θf 。轨迹规划的一种方法是使用多项式函数以使得初始 和末端的边界条件与已知条件相匹配,这些已知条件为θi和θf及机
器人在运动开始和结束时的速度,这些速度通常为0或其他已知
2 过路径点的三次多项式插值
将速度约束条件变为:
(0) 0 (t f )
a0 0
f
(7. (4-4)7)
重新求得三项式的系数:
a1 0 3 2 1 a 2 2 ( f 0 ) 0 f ( 7 .9 ) tf tf tf (4-5) 2 1 a3 3 ( f 0 ) ( 0 f ) tf tf
第4章 工业机器人的运动轨迹规划
4.1 路运动过程中的位移、
速度和加速度。 路径是机器人位姿的一定序列,而不考虑机器 人位姿参数随时间变化的因素。如图4-1所示,如果有关机器人 从A点运动到B点, 再到C点, 那么这中间位姿序列就构成了一条 路径。而轨迹则与何时到达路径中的每个部分有关, 强调的是
令t=2th,由式9,10得
2 tb ttb ( f 0 ) 0
(7.15 (4-11) )
t:所要求的运动持续时间
4 用抛物线过渡的线性插值
任意给定 f, 0和 t ,选择相应的 和 t b ,得到 路径曲线。通常的做法是先选择加速度 的值,然 后按上式算出相应的 t b
4 用抛物线过渡的线性插值
将线性函数与两段抛物线函数平滑地衔接在一 起形成一段轨迹。
轨迹规划

弧法,圆弧前一点为 第一点,两个MOVC 分别为中间点和目标
圆弧插补方式移动至目标 位置P,P点是提前示教好的位置。
点。
P=<位置点> 说明:P的取值范围为1至1019, 其中1至 999用于标定位置点,1000 至 1019 用于码垛运动,自动获取码垛位置点。例1中如 果没有此参数,表示目标位置使用运动过程中 标定的位置点,例2中如果有P点参数,表示位 置点是在位置型变量内标定好的点。
(2)如图9-2,点击{程序 }-{程序管理}。
创建程序
(3)如图9-3,在{目标程 序}栏输入“4.9”,点击 {新建}。
图
图9.1
图9.2
图9.3
操作要点
建立工具坐 标系及示教
如图9-4,参考 4.6“工具坐标系 标定”建立工具 坐标系“TCS-3”。
如图9-5,参考 4.7“工件坐标系 的标定”建立工 件坐标系 “PCS1-5”。
使用举例
参数说明
V=<运行速度百分比> 说明:运行速度百分比 ,取值为1 至 100,默认值为 25。运动指令的 实际速度=设置中MOVJ 最大速度*V 运动指令 设置运行速度百分比*SPEED 指令速度设置百 分比。
圆弧插补方
式移动至目 标位置。 采用三点圆
MOVL V= 25 BL=0 VBL=0 MOVC V=25 BL=0 VBL=0 MOVC P=1 V= 25 BL=0 VBL=0
圆周程序 编写
(2)如图9-17,移 动机器人夹具末端 至圆周上P4点, 点击【插入】【确认】。
BL=<过渡段长度> 说明:过渡段长度,单位毫 米 ,此长度不能超出运行总长度一 半,如果 BL=0 则表示,不使用过渡段。
自主移动机器人教学课件第4章 导航规划 2 避障规划和轨迹规划

机器人的速度控制运动模型
假设没有噪声,控制时间间隔为 t
(, , )
时间间隔内机器人速度和角速度保
持不变,则机器人绕着半径为r的
(′, ′, ′)
圆周运动
r
v
机器人的速度控制运动模型
(, , )
(′, ′, ′)
æ x ' ö æ x - wv sin(q ) + wv sin(q + wDt)
2
根据条件 , 1 和对终止速度1 的要求
= = 3
1 = 1 = 3 + 4 1 − + 5 1 −
ሶ 1 = 1 = 4 + 25 1 −
如果要求轨迹对称
即 =
0 + 1
0 + 1
, = =
ç
÷ ç
ç y ' ÷ = ç y + wv cos(q ) - wv cos(q + wDt)
ç q ' ÷ çç
q + wDt
è
ø è
ö
÷
÷
÷
÷
ø
不同的速度指令 (v,w)会得到不同的运动半径,同样的时
间间隔到达不同的终止位置。有些位置是安全的,有些
会与障碍物发生碰撞
可以让机器人停止不与障碍物相碰的可行速度集合
边界约束
中间位置
匀速起点位置 (给定)
匀速起点位置处与前面轨迹的路径连续性
匀速起点位置处与前面轨迹的速度连续性
匀速起点位置处与前面轨迹的加速度连续性
减速位置 (给定)
减速位置处与前面轨迹的路径连续性
第4章 工业机器人运动轨迹规划

培养严谨认真、规范操作的意识。
培养合作学习、团结协作的精神。
任务1 轨迹规划问题与性能指标
【任务描述】 在本次任务中需要了解清楚轨迹规划的重要性,轨迹规划的基本概念和方式。路径 和轨迹规划与受到控制的机器人从一个位置移动到另一个位置的方法有关。路径与轨迹 规划既要用到机器人的运动学相关知识,也要用到机器人的动力学。本任务主要讨论机 器人的轨迹规划问题和性能指标。
任务2 常用机器人路径控制方式
【知识储备】 三、常用轨迹运动控制指令 2. MoveJ -通过关节移动移动机器人 当运动不必是直线的时候,MoveJ用来快速将机器人从一个点运动到另一个点,如 图4-6示意。机器人和外部轴沿着一个非直线的路径移动到目标点,所有轴同时到达目标
点。该指令只能用在主任务T_ROB1中,或者在多运动系统中的运动任务中。
任务3 机器人运动轨迹规划基本方法
【知识储备】 一、轨迹规划基本方法分类 在工业机器人末端执行工具的轨迹路径控制方法中,最常用的轨迹规划方法有两种: 第—种方法要求用户对于选定的轨迹结点(插值点)上的位姿、速度和加速度给出一组 显式约束(例如连续性和光滑程度等),轨迹规划器从一类函数(例如n次多项式)中选取参
主要内容
1 2 3 4
轨迹规划问题与性能指标
常用机器人路径控制方式
机器人运动轨迹规划基本方法
机器人轨迹规划实例
2017/1/13
【学习目标】 1. 知识目标 了解机器人轨迹规划的基本概念。 熟悉机器人轨迹规划的性能指标。 掌握机器人的路径控制方式。 掌握机器人运动轨迹规划的基本方法。 2. 技能目标 能够进行点位运动轨迹示教及程序编写与调试。 能够进行连续路径轨迹示教及程序的编写与调试。 能够进行复杂轨迹的程序编写与调试。 3. 情感目标
工业机器人技术课程总结

工业机器人技术课程总结任课:班级:学号:姓名:之前在工厂实习见识和操作过很多工业机器人,有焊接机器人,涂装机器人,总装机器人等,但是学习了盖老师教授的工业机器人课程,才真正算是进入了工业机器人的理论世界学习机器人的相关知识。
以下是课程总结。
一、第一章主要是对机器人的概述,从机器人的功能和应用、机器人的机构以及机器人的规格全面呈现学习机器人的框架。
研制机器人的最初目的是为了帮助人们摆脱繁重劳动或简单的重复劳动,以及替代人到有辐射等危险环境中进行作业,因此机器人最早在汽车制造业和核工业领域得以应用。
随着机器人技术的不断发展,工业领域的焊接、喷漆、搬运、装配、铸造等场合,己经开始大量使用机器人。
另外在军事、海洋探测、航天、医疗、农业、林业甚到服务娱乐行业,也都开始使用机器人。
本书主要介绍工业机器人,对譬如军用机器人等涉及不多。
机器人的机构方面,主要介绍了操作臂的工作空间形式、手腕、手爪、和闭链结构操作臂。
工作空间形式常见的有直角坐标式机器人、圆柱坐标式机器人、球(极)坐标式机器人、SCARA机器人以及关节式机器人。
手腕的形式也可分为二自由度球形手腕、三轴垂直相交的手腕以及连续转动手腕。
同时手爪也可分为夹持式手爪、多关节多指手爪、顺应手爪。
机器人的其他规格主要介绍驱动方式、自动插补放大、坐标轴数、工作空间、承载能力、速度和循环时间、定位基准和重复性以及机器人的运行环境。
第一章的内容主要是对机器人各个方面有个简单的介绍使机器人更形象化和具体化。
工业机器人定义为一种拟人手臂、手腕和手功能的机电一体化装置,能将对象或工具按照空间位置姿态的要求移动,从而完成某一生产的作业要求。
工业机械应用:主要代替人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调重复劳动。
它带来的好处:减少劳动力费用提高生产率改进产品质量增加制造过程柔性减少材料浪费控制和加快库存的周转消除了危险和恶劣的劳动岗位。
机器人的直角坐标型:结构简单;定位精度高;空间利用率低;操作范围小;实际应用较少。
轨迹规划

轨迹规划分为在任务空间和关节空间两种。
根据并联机器人完成工作任务所经过的空间轨迹,编制相应的轨迹规划软件,通过计算机来事先离线计算出各驱动关节在运动中的轨迹,亦即完成轨迹规划的任务。
Paul[16]提出一种机器人手臂沿空间直线段运动的关节轨迹规划方法,Kim和shin[18]又提出一种时间最短轨迹规划方法,这种方法也是基于关节空间的。
运动轨迹是指在运动过程中的位移、速度和加速度。
轨迹规划,是根据作业任务的要求,计算出预期的运动轨迹,然后,在机器人初始位置和目标位置之间用多项式函数来“内插"或者“逼近”给定的路径,并且求出一系列“控制设定点’’,并将其提供给控制单元处理。
根据上述方法求出各轴的移动位移最后,即可规划运动曲线。
在各轴位移求出的情况下,根据所规划速度曲线的形状,可求出各个时间点对应的速度值来确定速度曲线,从而完成运动规划常规的PID控制对于大多数点位控制应用是相当有效的,而对于轨迹跟踪控制问题则效果不理想。
由于并联机器人的绝大多数应用是要求轨迹控制的,因此很少使用常规的PID控制。
并联机器人轨迹规划首先要根据系统运动要求由并联机器人机构的位置逆解方程求解出机器人的始末位姿;然后运用三次多项式插值的方法,分别对并联们器人的三条支路轨迹规划。
Matlab仿真。
并联机器人控制系统模型的建立机器人控制系统的结构如图。
在输入期望轨迹以后,机器人控制系统首先通过轨迹规划,把期望的运动轨迹转换为驱动关节的广义位置坐标。
在机器人控制系统的三个相对独立的回路中分别形成闭环控制回路,通过检测编码器的反馈信号,并与实际的给定位置相比较,根据两者间的误差不断产生控制作用,使机器人关节的实际位置运动到给定值。
系统中轨迹规划和控制在上位机由软件实现,控制输出由运动控制卡和驱动器完成,最终由电机执行。
(哈尔滨工程大学. 6-PRRS并联机器人运动控制方法的研究,2006)建立了6-PRRS并联机器人的运动学模型,并对位置逆解的选取进行了简化,方便了计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CP
(1) 在空间插补点间进 行关节定时插补。 (2) 用关节的低阶多项 式拟合空间直线使各轴 协调运动。 (3) 关节最大加速度限 制
(1) 直线、圆弧、 曲线等距插补。 (2)给定起停线速 度、线加速度; 关节速度、加速 度限制
4.2.2 机器人轨迹控制过程(示教-再现过程): (属于直角空间插补过程) (1)对于有规律的轨迹,仅示教几个特征点,如 直线需要示教两点,圆弧需要示教三点; (2)计算机利用插补算法获得中间点的坐标; (3)计算机求出 (1, …, n), (4)半闭环控制系统实现预期轨迹。
2 2
(3) ts时间内角位移量:=tsv/R, (4) 总插补步数(取整数):N = / + 1
X i 1 R cos(i ) R cosi cos R sini sin X i cos Yi sin
Yi 1 R sin(i ) R sini cos R cosi sin Yi cos X i sin
L
Xe X0
2
Ye Y0 Z e Z 0
2
2
ts间隔内行程:d = vts; 插补总步数N:L/d+1,取整; 各坐标轴增量
各插补点坐标值
X X e X 0 / N Y Ye Y0 / N Z Z e Z 0 / N
TR T ( X OR , YOR , ZOR ) R( Z , ) R( X , ) cos sin 0 0 sin cos cos cos sin 0 sin cos cos sin cos 0 X OR YOR ZOR 1
4.3.3 定时插补与定距插补
一、定时插补 ts与精度有关: ts的上限值:受刚度限制,ts一般不超过25 ms ts的下限值:受计算量限制(计算机要在ts时间 里完成一次插补运算和一次逆向运动学计算)。约 需几毫秒。 二、定距插补 两插补点的距离Pi Pi+1恒为一个足够小的值, 以保证轨迹精度,ts就要变化。
X i 1 X i i X Yi 1 Yi iY Z i 1 Z i i Z
4.3.2 圆弧插补
一、平面圆弧插补(圆弧在坐标平面内) 已知(示教给出)不在一条直线上的三点P1、 P2、P3及对应姿态。 求各轨迹中间点(插补点)的位置和姿态。 设v为沿圆弧运动速度;ts为插补时时间隔。
第4章 机器人轨迹规划
4.1 机器人轨迹规划概述
4.1.1 机器人轨迹的概念 轨迹:点的轨迹、位移、速度和加速度。 轨迹规划:(1)或对直角空间插值:生成手部 轨迹,再将手部运动轨迹换算成关节空间运动规 律(控制依据);(2)或对关节空间进行插值, 生成关节空间运动规律(控制依据)。
4.4 机器人手部路径的轨迹规划 4.4.2 作业的描述
2 3 4
5
四、用抛物线过渡的线性插值
式中:Xi=R cosi;Yi=Rsin i。
X i 1 X i cos Yi sin Yi 1 Yi cos X i sin i 1 i
二、空间圆弧插补 空间圆弧插补可分三步来处理: (1) 把三维问题转化成二维,找出圆弧所在平面。 (2) 利用二维平面插补算法求出插补点坐标(Xi+1, Yi+1)。 (3) 把该点的坐标值转变为基础坐标系下的值。
(1) 计算P1、P2、P3决定的圆弧半径R。 (2)计算总的圆心角=1+2:
2 1 arccos ( X 2 X1 )2 Y2 Y1 2R 2 / 2 R 2
2
arccos ( X
2 X ) Y3 Y2 3 2
2
2R / 2R
4.3.4 关节空间插补 给定:机器人在起始点和终止点手臂的位形。 可以给出:首末两点的力、速度和加速度的要 求; 插值依据:关节位移、速度、加速度连续性; 关节变量的容许范围等。
一、三次多项式插值
Hale Waihona Puke tf f 0 0
tf 0
P6 MOVE 移开
4.1.2 轨迹规划的一般性问题 (1)描述成工具坐标系{T}相对于工件坐标系 {S}的一系列运动。 (2)轨迹的点:包含位置和姿态; (3)插值的原则:保证运动平稳。即位移、 速度函数必须连续,有时甚至加速度也要求连续。 (4)关节空间插值:将所有关节变量表示为 时间的函数,用这些关节函数及其一阶、二阶导 数描述机器人预期的运动; (5)直角坐标空间插值:将手部位姿、速度 和加速度表示为时间的函数,再算出所有关节位 置、速度和加速度函数值。
插补的依据是(1)关节最大速度和加速度;(2)
速度连续,各轴协调。
连续轨迹控制(CP控制):有路径约束,要对路径进
行设计。
路径控制与插补方式分类
不插补 关节插补(平滑) 空间插补
(1) 各轴独立 (1) 各轴协调运动定时 快速到达。 插补。 PTP (2) 关节最大 (2) 各关节最大加速度 加速度限制 限制
三、高阶多项式插值 若对于运动轨迹的要求更为严格,约束条件增多, 三次多项式就不能满足需要,须用更高阶的多项式对运 动轨迹的路径段进行插值。
例如:起始点和终止点都规定了关节的位置、速度
和加速度,则要用一个五次多项式进行插值。
t a0 a1t a2t a3t a4t a5t
0 0
t a0 a1t a2t 2 a3t 3
二、过路径点的三次多项式插值
tf f
0 0
0 0 tf f
2 3
t a0 a1t a2t a3t
4.1.4 轨迹规划涉及的主要问题 轨迹规划一般过程: (1) 作业描述:(用示教方法)给出轨迹上的若 干个结点。
(2) 插值:在结点之间进行插补,得到直角空间
的X(t)或关节空间的位移q(t);
(3) 以X(t)或q(t) 为依据设计控制规律。
(4) 考虑路径上是否存在障碍。
4.2 插补方式分类与轨迹控制 4.2.1 插补方式分类 点位控制(PTP控制):只要求起终点位姿,没有路 径约束。
4.4 机器人手部路径的轨迹规划 4.4.2 作业的描述
结点 运动 目标
P0 INIT 原始
P1 MOVE 接近螺栓
P2 MOVE 到达
P2 GRASP 抓住
4.4 机器人手部路径的轨迹规划 4.4.2 作业的描述
P3 MOVE 提升
P4 MOVE 接近托架
P5 MOVE 插入孔中
P5 RELEASE 松夹
4.3 机器人轨迹插值计算
给出结点(位置姿态);进行运动学反解;关节 变量的插值计算。 4.3.1 直线插补 直线插补和圆弧插补是机器人系统中的基本插补 算法。对于其他轨迹,可以采用直线或圆弧逼近,以 实现这些轨迹。
已知(示教给出)直线始末两点的坐标值P0(X0,Y0, Z0)、Pe(Xe,Ye,Ze)及姿态,要求走空间直线: 求各轨迹中间点(插补点)的位置和姿态。 设v为要求的沿直线运动的速度;ts为插补时间间隔。 直线长度: