常用纺织纤维性能

合集下载

纺织材料——精选推荐

纺织材料——精选推荐

纺织材料⼆、常见纺织纤维的纺织性能:①⽺⽑:吸湿、弹性、服⽤性能均好,不耐⾍蛀、适酸性和⾦属结合染料。

②蚕丝:吸湿、透⽓、光泽和服⽤性能好,适⽤酸性及直接染料。

③棉花:透⽓、吸湿、服⽤性能好、耐⾍蛀、适直接还原偶氮、碱性媒介、硫化、活性染料。

④黏胶纤维:吸湿性、透⽓性好、颜⾊鲜艳、原料来源⼴、成本低,性质接近天然纤维,适⽤染料同棉花。

⑤涤纶:织物、挺、爽、保形性好、耐磨、尺⼨稳定、易洗快⼲,适⽤分散染料,重氮分散染料、可溶性还原染料。

⑥锦纶:耐磨性特别好、透⽓性差、适⽤酸性染料,散染料。

⑦晴纶:蓬松性好、有⽪⽑感、适⽤分散染料,阳离⼦染料。

三、⽤于表⽰纱线细度的指标主要有:英制⽀数、公制⽀数、特数、旦数①定长制:A. 特克斯:1000⽶长度的纱在公定回潮率时的重量称为特数。

是定长制单位,克重越⼤纱线越粗,常⽤来表⽰⽑纱。

B. 旦尼尔:9000⽶长的丝在公定回潮率时的重量称为旦数。

是定长制单位,克重越⼤纱线或纤维越粗,常⽤来表⽰化纤长丝、真丝等。

②定重制:A. 公⽀数(公⽀):1克纱(丝)所具有的长度⽶数。

是定重制,因此⽀数越⼤纱线越细。

棉纺织⽑纺织⾏业都有使⽤。

B. 英⽀数(英⽀):1磅纱线所具有的840码长度的个数。

是定重制,因此⽀数越⼤纱线越细。

英制⽀数不是我国当今法定的纱线细度指标,但在企业中仍然被⼴泛的使⽤,尤其是棉型纺织⾏业。

纱线细度指标计算公式与换算关系:换算公式公制⽀数(N)与旦尼尔(D)的换算公式=9000/N(2)、英制⽀数(S)与旦尼尔(D)的换算公式=5315/S(3)、分特克斯(dtex)与特克斯(tex)的换算公式:1tex=10dtex(4)、特克斯(tex)与旦尼尔(D)的换算公式:tex=D/9(5)、特克斯(tex)与英制⽀数(S)的换算公式:tex=K/S K值:纯棉纱K=583.1 纯化纤K=590.5 涤棉纱K=587.6 棉粘纱(75:25)K=584.8 维棉纱(50:50)K=587.0(6)、特克斯(tex)与公制数(N)的换算公式:tex=1000/N(7)、分特克斯(dtex)与旦尼尔(D)的换算公式:dtex=10D/9四、⼀些常⽤的纱线与粗细的表⽰⽅法。

13种纤维的用途

13种纤维的用途

13种纤维的用途纤维是一种由天然或人工材料组成的细长可纺成纱线的物质。

纤维广泛应用于纺织、建筑、农业、医疗和其他许多领域。

下面我们来讨论13种常见纤维的用途:1.棉纤维:棉纤维透气、吸湿性好,主要用于纺织品制造。

其柔软、舒适的特性使其成为常见的服装和床上用品的首选。

2.维纶纤维:维纶纤维具有优异的拉伸强度和耐磨性,常用于制造高性能运动服和户外用品,如登山服、游泳衣和运动衫。

3.涤纶纤维:涤纶纤维耐热、耐腐蚀,具有良好的抗皱性和耐久性。

广泛用于制造衣物、床上用品和工业用纱线。

4.羊毛:羊毛纤维温暖、柔软,可用于制造羊毛衫、外套和地毯等。

由于其优异的绝缘性能,羊毛也常用于制作冬季保暖衣物。

5.丝绸:丝绸纤维具有光泽和柔软的特性,广泛用于制造高质量的服装、床上用品和家居装饰品。

6.尼龙纤维:尼龙纤维具有良好的强度和耐磨性,常用于制造背包、行李箱、绳索和运动鞋等产品。

7.亚麻纤维:亚麻纤维具有优异的吸湿性和透气性,常用于制作夏季服装、床上用品和家居装饰品。

8.聚丙烯纤维:聚丙烯纤维具有轻巧、柔软和高强度的特性,广泛用于制造地毯、家具和纺织品。

9.腈纶纤维:腈纶纤维具有抗拉伸性和耐强酸、强碱的特性,常用于制造防护军服、消防服和工业用纺织品。

10.蚕丝:蚕丝是由蚕茧中提取的纤维,具有光泽和柔软的特性,被广泛用于制作高档服装、领带和丝绸面料。

11.羊绒:羊绒是从山羊身上提取的纤维,保暖性能极佳,用于制作高品质的外套、围巾和手套。

12.尼泊尔草纤维:尼泊尔草纤维具有轻巧和耐用的特性,常用于制造手工编织品、家具和地板覆盖物。

13.茅草纤维:茅草纤维常用于制造帽子、草席和编织材料,因其天然、环保的特性而备受青睐。

总结:纤维的用途广泛,不仅包括纺织品的制造,还应用于建筑、农业、医疗和其他许多领域。

每种纤维都有其独特的特性和适用范围,因此在各个领域中扮演着不可或缺的角色。

纺织纤维化学性归纳总结

纺织纤维化学性归纳总结

纺织纤维化学性归纳总结纺织纤维是构成纺织品的基本材料,而纤维的化学性质对纺织品的性能和用途起到至关重要的作用。

本文将对常见的纺织纤维的化学性质进行归纳总结。

一、天然纤维1. 棉纤维:棉纤维是最常见的天然纤维之一,其化学性质十分稳定。

棉纤维吸湿性能强,能吸收30%以上的水分,且能迅速释放湿气。

此外,棉纤维对酸、碱性物质和氧化剂具有较好的耐受性。

2. 麻纤维:麻纤维是一种强劲而有韧性的纤维,具有良好的耐碱性和耐高温性。

麻纤维的化学性质稳定,但容易受到光照的影响而变黄。

3. 丝绸:丝绸是一种由蚕茧中取得的纤维,其主要成分是蛋白质纤维素。

丝绸具有较好的耐草酸和碱性物质的性能,但对于酸性物质较为敏感。

二、人造纤维1. 粘胶纤维:粘胶纤维是通过纤维素经化学处理后制成的。

其具有较好的染色性、吸湿性和透气性。

然而,粘胶纤维对酸性物质和氧化剂的耐受性较差。

2. 聚酯纤维:聚酯纤维具有优良的耐酸碱性、耐溶剂性和耐高温性。

聚酯纤维还具有良好的防皱性和耐摩擦性。

3. 聚醚纤维:聚醚纤维是一种强度高、耐酸碱性能好的纤维。

此外,聚醚纤维还具有耐摩擦和耐褪色的特点。

4. 腈纶纤维:腈纶纤维具有较好的强度和耐磨性,同时还有良好的耐酸碱性能,并且不易受到虫害侵蚀。

然而,腈纶纤维对紫外线的稳定性较差。

三、合成纤维1. 聚酰胺纤维:聚酰胺纤维是一种具有良好的染色性和抗撕裂性能的纤维。

其耐酸碱性能较好。

2. 聚氨酯纤维:聚氨酯纤维具有较好的抗刺激性、保温性和弹性。

聚氨酯纤维对于大部分酸性物质和溶剂具有很好的耐受性。

3. 聚丙烯纤维:聚丙烯纤维具有很好的耐酸碱性能和热稳定性,但对于氧化剂的耐受性较差。

4. 聚氨基甲酸酯纤维:聚氨基甲酸酯纤维是一种强度高、弹性好的纤维。

它不耐酸碱性,但耐醇、醚、酮等有机溶剂。

综上所述,纺织纤维的化学性质对纺织品的性能和用途至关重要。

了解不同纤维的化学性质,有助于我们在纺织品的选购、使用和维护中做出准确的判断和决策。

纺织纤维的分类与性能

纺织纤维的分类与性能

纺织纤维的分类与性能引言纺织纤维是纺织品制造的基础材料,其性能直接影响着纺织品的品质和用途。

本文将介绍纺织纤维的分类及其性能特点。

一、纤维的分类纤维根据来源和性质的不同,可以分为天然纤维和化学纤维两大类。

天然纤维是指从植物、动物和矿物中提取的纤维。

根据来源的不同,天然纤维可分为植物纤维、动物纤维和矿物纤维。

•植物纤维:如棉、麻、大麻等,主要来源于植物的茎、叶和果实。

•动物纤维:如丝绸、羊毛、马海毛等,主要来源于动物身上的毛发或分泌物。

•矿物纤维:如石棉、玻璃纤维等,主要来源于矿石或人工合成。

化学纤维是通过人工合成或化学处理获得的纤维。

根据合成方法和原料的不同,化学纤维可分为合成纤维和再生纤维。

•合成纤维:如涤纶、尼龙、腈纶等,通过化学合成方法从石油、天然气等化工原料中制得。

•再生纤维:如人造丝、人造棉、铜氨纤维等,通过以纤维素等为原料制得。

二、纤维的性能纤维的性能直接影响着纺织品的品质和用途。

下面将介绍纤维的主要性能特点。

1. 强度纤维的强度是指纤维在外力作用下抵抗拉伸破断的能力。

纤维的强度与纤维的结构、来源和制备方法等有关。

一般来说,合成纤维的强度较高,天然纤维的强度相对较低。

2. 弹性和延伸性弹性是指纤维在外力作用下恢复原状的能力,延伸性是指纤维在外力作用下能够延长的程度。

这两个性能特点直接影响着纺织品的柔软度和舒适度。

3. 耐磨性和耐热性耐磨性是指纤维在摩擦作用下不易磨损的能力,耐热性是指纤维在高温下不易变形或熔化的能力。

这两个性能特点对纺织品的耐久性和使用环境有重要影响。

4. 吸湿性和透气性吸湿性是指纤维与空气中的水分接触时吸收水分的能力,透气性是指纤维对空气的渗透性能。

纺织品的吸湿性和透气性直接影响着穿着舒适度和适用环境。

5. 阻燃性和抗静电性阻燃性是指纤维在火焰作用下不易燃烧的能力,抗静电性是指纤维对静电的散发和导电能力。

这两个性能特点对纺织品的安全性和应用范围有关。

6. 光泽和色牢度光泽是指纤维表面的光反射能力,色牢度是指纤维染色后色彩的持久性。

常用纤维的特征

常用纤维的特征

常用纤维的特征:棉纤维:细而柔软,短纤维,长短不一。

麻:粗硬,手感硬爽,淡黄色,很难区分出单根纤维。

毛:比棉纤维粗而长,长度在60-120mm。

手感丰满、富有弹性,纤维卷曲,呈乳白色。

蚕丝:长而均匀的长纤维,细度纤细,手感柔软,光泽柔和,有丝鸣感。

色呈极淡黄色。

一粒茧的丝长为:600-1200mm。

有光人造丝:白色有刺眼的光泽,手感柔软,但不及蚕丝清爽,有丝鸣感,湿强大大低于干强。

涤纶:爽而挺,强力大,弹性较好,不易变形。

涤纶的强度最好,吸水性最差涤纶织物:手感挺爽,弹性好,不易起皱,在阳光下有闪光。

锦纶:有蜡光,强力大,弹性好,较涤纶易变形。

锦纶,应该是综合了腈纶的吸水性、手感,并且强度也有所提高,但比涤纶强度低氨纶是辅助纺织原料,一般在织物里只有3-12%,氨纶是弹性纤维,只是提供弹性,氨纶织物除有弹性外,还有悬垂性好,柔软常用织物的特征:丝织物:绸面明亮,柔和,色泽鲜艳,细薄飘逸。

棉织物:具有天然棉的光泽,柔软但不光滑,坯布布面还有棉籽屑等细小杂质。

毛织物:精纺呢绒类呢面光洁平整,织纹清晰,光泽柔和,富有身骨,弹性好,手感糯滑;羊毛保暖性好,手感舒适,色彩自然粗纺则呢面丰厚,紧密柔软,弹性好,有膘光。

麻织物:硬而爽。

锦纶织物:手感比涤纶糯滑,但比涤纶易起皱。

晴纶织物:手感蓬松,伸缩性好,类似毛织物,但没有毛织物活络。

腈纶在化纤里吸水性最好,最接近羊毛,但是容易起球,并且腈纶也是最容易烧的,大部分毛线、玩具都是腈纶做的.维纶织物:类似棉织物,但不及棉织物细柔,色泽不鲜艳。

涤纶习惯称它为“的确良”,经过熔融纺丝形成POY经过拉伸、加弹等后工艺形成涤纶丝。

最突出的特点是保型性好,穿着涤纶衣服挺括不皱,显得特别精神、健美。

它洗后,不用熨烫,照常平整挺括。

涤纶的用途很广,市场上各种涤棉、涤毛、涤丝和涤粘衣料及服装,都是其产物。

锦纶,又叫尼龙,是由己内酰氨聚合而成的。

它的耐磨性在所有天然纤维和化学纤维中,可称得上冠军,锦纶短纤维主要用于同羊毛或其他毛型化纤混纺。

常用纤维的主要性能特点

常用纤维的主要性能特点

书山有路勤为径;学海无涯苦作舟
常用纤维的主要性能特点
(一)天然纤维
1、原棉:棉纤维主要有两大品种
长绒棉(又名海岛棉):纤维长而细,长度为33~64mm,线密度:
1.2~1.4dtex,纤维品质好,适纺高支纱,织造高档织物。

埃及、苏丹、
摩洛哥以及我国的新疆、广西、云南为主要产地。

细绒棉(陆地棉):纤维长度23~33mm,线密度:1.5~2dtex。

我国种植的棉花98%左右是细绒棉。

原棉结构及性能:中间有空腔,纵向有天然转曲,即是一根具有天然转
曲的细长扁平带状的中空物体。

主要化学成分为纤维。

由于分子本身有许多亲水基因,又是多孔性物质,因而有较好的吸湿性、透气性,棉织物穿着舒适、透气,有较好的服用性。

棉纤维的主要万分为纤维素,因而棉纤维具有耐碱不耐酸的特点,利用这一特性让棉纱、织物在稀碱(如
18%NaoH溶液)作用下,棉纤维发生溶胀,天然转曲伸直,使棉织物呈现现丝一样的光泽,这种处理称为“丝光”,同时棉纤维还具有较高的强度。

不足的是棉纤维的弹性差,棉织物易折皱、变形。

为提高棉织物的挺括、保形性,可以对织物进行抗皱、免烫整理,或是利用棉纤维与其它纤维混纺,改善织物的保形性。

2、麻:麻纤维的种类较多,其中质地柔软,可以作为服用纺织纤维的
主要有苎麻和亚麻两种:
结构及性能:带有中腔,纵向表面有横书条纹,无转曲,
苎麻横截面为腰园形,亚麻则呈多角形,中腔较小苎麻纤维长度是
专注下一代成长,为了孩子。

常用纺织纤维的结构和主要性能

常用纺织纤维的结构和主要性能

常用纺织纤维的结构和主要性能常用的天然纤维包括棉花、麻、蚕丝和羊毛等,而常用的化学纤维则包括涤纶、尼龙和丙纶等。

接下来,我将介绍一些常用纺织纤维的结构和主要性能。

1.棉花:棉花是纤维素纤维,主要由纤维素和微纤维素组成。

它的主要优点是柔软、透气、吸湿性好且易于染色。

然而,棉花的劣势在于容易起皱并且不耐磨损。

2.麻:麻纤维具有天然的光泽和牢度,并且结实耐磨。

它的优点包括耐高温、透气性好以及吸湿性强。

然而,麻的劣势在于易于皱缩和不易染色。

3.蚕丝:蚕丝是由蚕茧中解丝得到的纤维。

它具有良好的光泽和柔软度,并且质地轻盈。

蚕丝的优点包括吸湿性强,透气性好以及舒适性好。

然而,蚕丝的劣势在于容易破损且不耐久。

4.羊毛:羊毛是从绵羊身上剪下的纤维。

它具有很好的保暖性和弹性,并且耐磨损和吸湿性好。

羊毛的优点还包括具有良好的弹性回复性和易于染色。

然而,羊毛的劣势在于易缩水和较高的维护要求。

5.涤纶:涤纶是一种合成纤维,主要由聚酯脂合成。

它具有耐磨损、耐皱纹和易护理的优点。

此外,涤纶也有很好的弹性、强度和耐腐蚀性。

然而,涤纶的劣势在于不透气、易起静电以及对热敏感。

6.尼龙:尼龙是一种合成纤维,主要由聚酰胺合成。

它具有优秀的强度和弹性,并且具有较高的耐磨损性。

尼龙的优点还包括染色性良好、抗皱和轻盈。

然而,尼龙的劣势在于容易静电、易吸湿和不耐高温。

7.丙纶:丙纶是一种合成纤维,主要由聚丙烯合成。

它具有良好的弹性和耐磨损性,并且具有较高的阻燃性能。

丙纶的优点还包括不起皱、透气和易护理。

然而,丙纶的劣势在于易融化和容易毛玻璃化。

总的来说,不同的纺织纤维具有不同的结构和性能,在选择适合的纤维材料时,需要根据所需纺织品的特定要求来进行选择。

重要的是要权衡各种优点和劣势,以便选择最适合的纺织纤维。

纺织纤维的性质和特征

纺织纤维的性质和特征

纺织纤维的性质和特征1、纤维的吸湿性能吸湿性能纺织纤维放在空气中,会不断地和空气进行水汽的交换,即纺织纤维不断地吸收空气中的水汽,同时也不断地向空气中放出水汽。

纺织纤维在中吸收或放出水汽的性能称为纤维的吸湿性。

纺织纤维的吸湿性是纺织纤维的重要物理性能之一。

纺织纤维吸湿性的大小对纺织纤维的形态尺寸、重量、物理机械性能都有一定的影响,从而也影响其加工和使用性能。

纺织纤维吸湿能力的大小还直接影响服用织物的穿着舒适程度。

吸湿能力大的纤维易吸收人体排出的汗液,调节体温,解除湿闷感,从而使人感到舒适。

所以在商业贸易、纤维性能测试、纺织加工及纺织品的选择中都要注意纤维的吸湿性能。

在常见的纺织纤维中,羊毛、麻、粘胶纤维、蚕丝、棉花等吸湿能力较强,合成纤维的吸湿能力普遍较差,其中维纶和锦纶的吸湿能力稍好,腈纶差些,涤纶更差,丙纶和氯纶则几乎不吸湿。

目前,常将吸湿能力差的合成纤维与吸湿能力较强的天然纤维或粘胶纤维混纺,以改善织品的吸湿能力。

在纤维的吸湿性能中,除吸湿性外,纤维材料的吸水性也与服用织物的穿着舒适性密切相关。

纤维的吸水性是指纤维吸着液体水的性能。

人们在活动时所产生的水汽和汗水,主要领先材料的吸湿和吸水性能,进行吸收并向外发散,从而使人感到舒适。

一般来说,外衣主要是受雨水的浸湿,所以可选择吸水性小的纤维作外衣材料;内衣主要是受身体的不显性蒸发和出汗浸湿,因此要选择吸湿和吸水性大的纤维作内衣材料。

2、纤维的机械性能机械性能纺织纤维在各种外力的作用下,和种变形的性能称为纺织纤维的机械性能。

外力作用包括拉伸、压缩、弯曲、扭转、磨擦等各种形式。

纺织纤维的机械性能应包括纤维的强度、伸长、弹性、耐磨性、弹性模量等。

纤维的强度:纤维的强度是指纤维抵抗外力破坏的能力,它在很大程度上决定了纺织商品的耐用程度。

纤维的强度可用纤维的绝对强力来表示,它是指纤维在连续增加负荷的作用下,直至断裂时所能承受的最大负荷。

其法定讲师单位为牛顿(N)或厘牛顿(cN)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纺织品染整工艺学教案服装与纺织工程系勇金华常用纺织纤维的结构和主要性能教学目标:知识目标:1、理解并掌握棉纤维的生长、制取及形态结构特点。

2、棉纤维的制取及初加工。

3、麻纤维的生长、制取及形态结构特点。

能力目标:培养学生提出问题、解决问题的能力。

情感目标:培养学生坚持不懈的学习态度。

教学重点:棉、麻的结构特点教学难点:结构特点教学方法:讲授法教学过程:一、组织教学二、复习导入上一学期,大家已经学习了纺织材料学,已经对纺织纤维的生长、结构特点有了一个初步的了解,这学期我们进一步学习纺织品染整加工。

首先进一步学习一下各种常用的纤维材料的生长及结构特点、性能特点。

三、新授常用纤维:天然纤维:棉、麻(纤维素纤维)、丝、毛(蛋白质纤维)化学纤维:粘胶(再生纤维)涤纶、锦纶、(合成纤维)(一)棉纤维的生长、制取及形态结构特点1、棉纤维:由胚珠的表皮细胞经过伸长和加厚而形成单细胞纤维。

上端尖而封闭,下端粗而敞口,整根纤维为细长的扁平带状(ribbon like shaped),纵向有螺旋形天然扭曲(convolution),横截面呈腰圆形(kidney shaped)。

(1)长度:23~45 mm;细度:0.15~0.2tex ;扭曲数:60~120个/cm.(2)单细胞纤维的化学成分:纤维素94% wt.,蜡状物0.6%wt.,灰分1.2%wt.,果胶物0.9%,含氮物等。

(3)结构与性质:*初生胞壁(primary wall)---层厚0.1~0.2 µm,决定棉纤维表面性质。

外层由果胶物质和蜡状物组成(角皮层),内二层是纤维素网状结构,横缠竖绕。

拒水性,影响染整,前处理的去除对象。

*次生胞壁(second wall) ---层厚约4µm ,占90%wt.,共生杂质少,决定棉纤维性质。

层中很多同心日轮,同心轮按走向 S、Z、S分三层,纤维走向与轴向夹角20~30度,走向变化,内层直。

*胞腔(medulla,lumen) ---中空,占横截面1/10,含蛋白质和色素,决定棉纤维颜色。

染料和化学处理剂通道。

空腔的大小及纤维细胞壁的厚薄视棉花的品种及成熟度(maturity)而定。

2、棉纤维的制取及初加工:籽棉→轧制(轧棉—皮辊轧棉、锯齿轧棉)→(皮棉)原棉。

含糖棉(糖污棉)的处理。

(二)、麻纤维的生长、制取及形态结构特点1、麻纤维:韧皮纤维 (bast fiber,stem fiber, phloem fiber)、叶纤维(leaf fiber)、果壳纤维(nut husk fiber)的总称。

韧皮植物茎结构:青皮、韧皮部、木质部、髓腔。

♦苎麻 (ramie):中国草苎麻麻茎→剥皮(扯剥、砍剥)→麻皮→刮青→原麻→脱胶→精干麻(degummed ramie)。

(单纤维纺纱)♦亚麻(flax):亚麻麻茎(原茎)→浸渍(retting)→干茎→碎茎、打麻(breaking and scutching)→打成麻。

(工艺(束)纤维纺纱)♦黄洋麻(jute, kenaf):黄麻、洋麻麻茎→沤麻(清洗retting )→熟麻。

(束纤维纺纱)2、麻纤维形态结构特点苎麻、亚麻、黄麻等韧皮纤维:厚壁、端闭、狭腔单细胞。

长短、外形、成分各异。

纤维素含量不高(伴生物含量高)。

特点:纵向:竖纹和横节,端头多样:锤头、分支形(苎麻),细尖(亚麻)、钝角形(黄麻、大麻)。

横截面:腰圆形、椭圆形或多角形。

长径:苎麻—20~250mm(长),30-40µm(径);亚麻—17~25mm(长),12-17 µm(径);洋麻— 2~6mm (长),14~33 µm(径)黄麻—2~4mm (长), 15~18 µm(径) 。

(三)粘胶纤维形态结构特点粘胶(Rayon,viscose)纤维经典的生产方法:取之于木材等的天然纤维素→碱纤维素→老化→纤维素磺酸酯→溶于氢氧化钠→纺丝液→喷丝头→凝固浴→纤维素(纤维状)。

★特点:*人造纤维,形态与纺丝成形方法有关。

常规粘胶纤维纵向为平直的圆柱体。

*横截面:不规则的锯齿形,有皮芯(sheath-core)结构,皮层较芯层结构,结晶度、取向度高。

*纤维较纯净,在纺丝生产中已除杂。

小结:主要讲了棉、麻、粘胶的生长及结构特点。

作业:比较一下棉、麻在结构上的异同点。

板书设计:常用纺织纤维的生长及结构(一)棉纤维的生长、制取及形态结构特点(二)、麻纤维的生长、制取及形态结构特点(三)粘胶纤维形态结构特点(四)小结(五)作业课后记:上一学期,大家已经学习了纺织材料学,已经对纺织纤维的生长、结构特点有了一个初步的了解,在此基础之上,进一步讲解生长及结构特点,同学们接受起来较为容易。

无迟到、旷课的现象。

参考资料:染整概论张洵栓中国纺织出版社纤维素纤维的化学结构教学目标:知识目标:1、理解并掌握纤维素纤维的化学结构。

2、了解纤维素纤维的超分子结构。

3、了解纤维素纤维超分子结构与性能之间的关系。

能力目标:培养独立思考问题的能力。

情感目标:培养学生养成正确的学习态度。

教学重点:化学结构提点教学难点:与酸、碱的反应教学方法:讲授法教学过程:一、组织教学二、复习导入上一次课我们学习了常用纤维(棉、麻、粘胶)的生长、制取及形态结构特点,对这几种纤维有了一个更加深入的了解。

在此基础上,我们进一步学习其化学结构。

三、新授(一)纤维素纤维基本结构:来源不同,形态结构不同,但其化学分子的单元结构和链接方式都一样——由β-D-葡萄糖残基(剩基)(glucose residue)彼此以1,4苷键联结而成。

*纤维素分子化学式:(C6H10O5)n式中n:聚合度dp(degree of polymerization)不同种纤维,葡萄糖剩基单元数不同,即平均分子链长不同。

n:10000~15000(棉、麻);n:250~500(粘胶); n:500-600(富强纤维); n:450-550(Modal纤维); n:500~550(Tencel纤维)(二)纤维素化学结构特点:1) 每个环上有三个—OH,反应活性点2) 环间—O—(苷键)连接3) 链端:有一个半缩醛羟基(潜在醛基),具还原性4) 链刚性,氢键(hydrogen bond)多,强度高。

(三)纤维素纤维的化学性质由纤维素分子化学结构所决定,受超分子结构、形态结构影响。

根据纤维素的化学结构,纤维素的化学反应主要通过两方面表现出来:(1).与苷键有关的反应。

大分子截断的反应(水解剂与苷键相互作用,在一定条件下引起苷键的断裂)(2).与羟基有关的反应。

很多试剂都能与葡萄糖基环中的羟基发生反应,生成不同的纤维素衍生物。

1、与酸(acid)作用酸促使苷键水解(hydrolysis):酸做为催化剂(catalyst)酸的作用:酸使纤维素纤维织物初始手感变硬,然后强度严重下降。

酸的种类、作用时间、温度、纤维结构影响水解反应速率。

生产上应用:含氯漂白剂漂白后,稀酸处理,起进一步漂白作用;中和过剩碱;烂花、蝉翼等新颖印花处理。

用酸注意:稀酸、低温、洗净,避免带酸干燥。

2、与碱作用常温稀碱中稳定,浓碱溶胀,高温稀碱有氧气易氧化、断裂苷键,强力下降。

浓碱溶胀:各向异性、不可逆。

结晶度下降,无定形区增加——棉织物丝光、碱缩处理理论根据。

反应:酸性纤维素分子与碱拟醇钠反应C2H5OH + NaOH C2H5ONa + H2OCell-OH + NaOH Cell-ONa+ H2O + 热; or以分之间力结合Cell-OH﹡NaOH +热反应可逆,水洗除碱,恢复纤维素分子。

溶胀(swelling):绝大多数的线型高分子物都能在适当的溶剂中发生溶解,但在溶解以前,可以观察到体积显著增大的现象,这是低分子物中所没有的一种现象,通常称之为溶胀。

对于无取向的高分子物来说,这种溶胀是各向同性的,但是对于具有某种取向的线型高分子物,例如纺织纤维,则存在着各向异性。

实际上可以将高分子物在某种溶剂中的溶解看作是一种无限溶胀。

3、与氧化剂作用纤维素分子对不同氧化剂作用有不同的敏感程度。

强氧化剂完全分解纤维素。

中、低强度氧化剂在一定条件下氧化分解纤维素能力弱,可用来漂白织物。

发生氧化的情况:碱性介质条件下,空气中的O2直接氧化;漂白处理。

氧化反应:Cell-OH + [O] Cell-CHO, Cell-C=O, Cell-COOH还原型— -CHO,=C=O,潜在损伤氧化纤维素:酸型— -COOH防止发生氧化的措施:(1)碱性介质条件下加工时,隔绝与氧气的接触(采用较大浴比water bath,bath ratio;加压加工时排净空气);(2)加还原剂(reductant,reducing agent);(3)采用合理的漂白工艺参数(parameter)。

4.纤维素对还原剂稳定。

5.纤维素的酯醚化反应酯醚化反应一般以碱纤维素作为中间过程。

利用酯醚化反应,可改变纤维的性质。

(酯醚化程度用DS表示)(四)、纤维素纤维的超分子结构超分子结构:在分子结构基础上、由许多个分子集聚时所形成的分子聚集态结构。

介于纤维形态结构和分子结构之间。

描述纤维中长链分子(高分子)排列状态、排列方向、聚集松紧程度。

(五)超分子结构与性能:超分子结构对纤维的化学、物理或力学性能影响很大。

•结晶度与物理性能:结晶度高,分子间紧密、作用力大,纤维强度大;纤维断裂在于超分子结构缺陷处。

结晶度低,分子间松散,纤维强度也较低,断裂延伸度可能较大。

•取向度与物理性能:取向度高(丝光棉),纤维强度高,断裂延伸度降低,因为分子链、微晶排列轴向平行,分子间作用力大,应力集中点(缺陷)少,分子链不易断裂和滑移。

•超分子结构与化学性能:结晶度高,结构紧密,空隙小又少,化学物质不能进入结晶区,例如染料分子不易进入,只在无定形区,得色深不易(麻)。

(可极度accessibility)小结:主要讲了纤维素纤维的化学结构及超分子结构。

作业:比较一下棉、麻在性能、超分子结构上的异同。

板书设计:纤维素纤维的化学结构(一)纤维素纤维基本结构:(二)化学结构特点(三)纤维素纤维的化学性质(四)纤维素纤维的超分子结构(五)超分子结构与性能(六)小结(七)作业课后记:本次课主要讲解了纤维素纤维的化学结构及超分子结构,理论与实践联系的较为紧密,有一定的难度,希望同学们课后认真复习、巩固。

纪律良好,无迟到、旷课的现象。

参考资料:染整概论张洵栓中国纺织出版社蛋白质纤维的结构和主要性能教学目标:知识目标:1、理解并掌握蛋白质纤维的化学结构。

2、掌握蛋白质纤维分子结构与性能之间的关系。

能力目标:培养独立思考问题的能力。

情感目标:培养学生养成正确的学习态度。

教学重点:化学结构特点教学难点:与酸、碱的反应教学方法:讲授法教学过程:一、组织教学二、复习导入上一次课我们学习了常用纤维(棉、麻、粘胶)的生长、制取及形态结构特点、化学特点,继续对蛋白质纤维。

相关文档
最新文档