数控加工编程
数控加工工艺与编程

坐标轴选择
增量倍率 10 0
90
急停 任选程序段 +JOG 快进 -JOG 主轴正转 主轴停 主轴反转
20
手摇脉冲发生器
通用机床的加工
1.3数控机床的加工原理
工序卡
工艺分析
数控加 工程序
ESC A B C
D E RST
14''
F GH
I
J
彩色 显示器
PgU K L M N O
p
PgD P Q R
1000
空运行 机床锁定 Z 轴锁定 MST 锁定
坐标轴选择
增量倍率 10 0
90
急停 任选程序段 +JOG 快进 -JOG 主轴正转 主轴停 主轴反转
20
手摇脉冲发生器
零件产品 机床加工
(伺服系统) 数控装置
(穿孔纸带等) 程序设计
零件图
介质输入 手动输入 微机直接输入
插补原理与计算机数控系统
1.插补的概念:采用小段直线或圆弧拟合理想轮廓线。
逐点插补法:代数运算法、醉步法 2.插补方法 数字积分法
时间分割法
逐点插补法的四个步骤 1.偏差判别;2.坐标进给;
3.偏差计算;4.终点判别。
(1)直线插补原理偏差Fn≥0在线上)
(2)圆弧插补原理(Fn≥0在圆上)
(3)逐点比较法的象限处理 插补原理——轨迹控制原理。
直线插补: 四个象限有四 组计算公式;
逆时针圆弧插补: 四个象限有四 组计算公式;
顺时针圆弧插补: 四个象限有四 组计算公式;
1.4数控加工的主要应用对象
(1)形状复杂、加工精度高或用数学方法定义的复 杂曲线、曲面。 (2)公差带小、互换性高、要求精确复制的零件。
《数控加工工艺及编程》课程标准、授课计划+教案

《数控加工工艺及编程》课程标准、授课计划+全套教案第一章:数控加工概述1.1 课程目标让学生了解数控加工的定义、特点和应用范围。
让学生掌握数控加工的基本原理和流程。
1.2 教学内容数控加工的定义和分类数控加工系统的组成和工作原理数控加工的特点和优势数控加工的应用领域1.3 教学方法讲授法:讲解数控加工的定义、特点和应用范围。
演示法:展示数控加工系统的组成和工作原理。
1.4 教学资源教材:《数控加工工艺及编程》课件:数控加工系统组成和工作原理的图片和动画1.5 教学评估课堂讨论:让学生分享对数控加工的认识和了解。
课后作业:要求学生总结数控加工的特点和优势。
第二章:数控加工工艺2.1 课程目标让学生了解数控加工工艺的定义和作用。
让学生掌握数控加工工艺的制定方法和步骤。
2.2 教学内容数控加工工艺的定义和作用数控加工工艺的制定方法和步骤数控加工工艺文件的编制和应用2.3 教学方法讲授法:讲解数控加工工艺的定义和作用。
实践法:引导学生参与数控加工工艺的制定和应用。
2.4 教学资源教材:《数控加工工艺及编程》课件:数控加工工艺制定方法和步骤的图片和动画实践项目:让学生参与实际数控加工工艺的制定和应用2.5 教学评估课堂讨论:让学生分享对数控加工工艺的理解和应用经验。
第三章:数控编程基础3.1 课程目标让学生了解数控编程的基本概念和规则。
让学生掌握数控编程的基本指令和语法。
3.2 教学内容数控编程的基本概念和规则数控编程的基本指令和语法数控编程的常用功能指令和编程技巧3.3 教学方法讲授法:讲解数控编程的基本概念和规则。
练习法:让学生进行数控编程的基本指令练习。
3.4 教学资源教材:《数控加工工艺及编程》课件:数控编程基本指令和语法的图片和动画编程练习题:提供给学生进行编程练习的题目3.5 教学评估课堂练习:要求学生完成数控编程的基本指令练习。
课后作业:要求学生编写简单的数控编程程序。
第四章:数控编程实例4.1 课程目标让学生了解数控编程实例的重要性和作用。
数控技术加工中心编程

1.对刀具的要求
决定零件加工质量的重要因素是刀具的正确选择和使用,在 选择刀具材料时,一般尽可能选用硬质合金刀具,精密镗孔等还 可以选用性能更好、更耐磨的立方氮化硼和金刚石刀具。
2.刀具的种类
加工中心使用的刀具包括:铣刀、麻花钻、扩孔钻、锪孔钻、 铰刀、镗刀、丝锥以及螺纹铣刀等。
② 尽量采用气动、液压夹紧装置。
③ 夹具要尽量开敞,夹紧元件的位置应尽量低,给刀 具运动轨迹留有空间。
④ 夹具在机床工作台上的安装位置应确保在主轴的行程范围 内能使工件的加工内容全部完成。
第十八页,编辑于星期五:九点 十分。
⑤ 自动换刀和交换工作台时不能与夹具或工件发生干涉。
⑥ 要考虑拆除定位元件后,工件定位精度的保持问题。
(a) 中心钻
第二十页,编辑于星期五:九点 十分。
(b) 丝锥
(c) 铣刀
第二十一页,编辑于星期五:九点 十分。
(d) 锥柄T型铣刀
(e) 锥柄饺刀
第二十二页,编辑于星期五:九点 十分。
(f) 镗刀
第二十三页,编辑于星期五:九点 十分。
(g) 螺纹铣刀
3.刀柄 刀柄可分为整体式与模块式两类刀柄可分为整体式与模块 式两类。常用的刀柄有:ER弹簧夹头刀柄、强力夹头刀柄、莫 氏锥度刀柄、侧固式刀柄、面铣刀刀柄、钻夹头刀柄 、丝锥夹 头刀柄、镗刀刀柄、增速刀柄、中心冷却刀柄、转角刀柄、多 轴刀柄等。
第十七页,编辑于星期五:九点 十分。
④ 当零件的定位基准与设计基准难以重合时,通过尺 寸链的计算,严格规定定位基准与设计基准间的公差范围 ,确保加工精度。
(二) 加工中心夹具的选择和使用
① 一般夹具的选择原则是:在单件生产中尽可能采用 通用夹具;批量生产时优先考虑组合夹具,其次考虑可调 夹具,最后考虑成组夹具和专用夹具。
数控机床的加工工艺及编程步骤

外圆车刀 螺纹车刀
内孔车刀Βιβλιοθήκη 2.2.5 切削用量及刀具的选择
铣削刀具:
方肩 铣刀
整体硬质 合金铣刀
仿形 铣刀
三面刃和 螺纹铣刀
2.2.6 数值计算
1.基点、节点的含义 编程时的数值计算主要是计算零件加工轨迹的尺寸,即计算零件轮廓 基点和节点的坐标,或刀具中心轨迹基点和节点的坐标。 l 数控机床一般只有直线和圆弧插补功能,因此,对于由直线和圆弧组 成的平面轮廓,编程时主要是求各基点的坐标。 基点:就是构成零件轮廓不同几何素线元素的交点或切点。如直 线与直线的交点,直线段和圆弧段的交点、切点及圆弧与圆弧的 交点、切点等。根据基点坐标就可以编写出直线和圆弧的加工程 序。基点的计算比较简单,选定坐标原点以后,应用三角、几何 关系就可以算出各基点的坐标,因此采用手工编程即可。
2.2.5 切削用量及刀具的选择
切削用量包括主轴转速、进给速度和切削深度等。各种机床切削用量的 选择根据数控机床使用说明书、手册,并结合实践经验加以确定。 2.进给速度 进给速度根据零件的加工精度、表面粗糙度和刀具、工件的材 料选择,最大进给速度受机床刚度和进给系统的性能限制,并与脉冲 当量有关。在精度要求较高时,进给量应选小一些,一般在 20mm/min一50mm/min范围内选取。 3.切削深度 主要根据机床、刀具、夹具和工件的刚性确定。在机床刚度允许 的情况下,尽量选择较大的切削深度,以提高加工效率。有时为了改 善表面粗糙度和加工精度,要留一点余量,以便最后精加工一次。
在数控加工中,加工路线除了要保 证工件的加工精度、表面粗糙度外, 还要尽量缩短空行程时间,并能简 化程序。
例如在铣削外轮廓时,为防止刀具 在切入,切出时产生刀痕,一般采 用切线切入、切出方式以保证工件 轮廓的光滑过渡,如图2.2.2所示。
数控车削加工编程

螺纹切削时,不能使用G96指令(确保切削正确旳螺距); 螺纹切削程序应考虑始点坐标和终点坐标旳切入、切出距离;
外螺纹切削:顶径尺寸应不大于螺纹旳公称尺寸0.1-0.2mm; 切削螺纹时,一般需要屡次进刀才干完毕:p106表4-2。
①螺纹车削指令G32
X
10
A(100,100)
M20500;
N20 G40 G96 G99 S100 M03;
N25 T0101 ;
N30 G00 X20 Z2 M08 ;
N40 G01 Z-24 F0.2 ;
XN50 X33.856 Z-36;
N55 X42;
N60 Z-48;
N65 X60 Z-53.196;
Z
N70 X68
4.2 车床数控系统功能
涉及:准备功能、辅助功能及F、S、T功能。
FANUC 0i T 系列数控系统
1、G功能表 见P97表4-1.
2、M、S、T功能 a、常用M功能代码表:表3-2(P89) b、S功能:指定主轴转速(G96、G97) c、T功能:调用刀具 格式举例: T0101;/调用01号刀具,刀具补偿量存储在01号地址中
如图,运动轨迹由A B旳程序:
1)绝对坐标、直径编程:X、Z
G01 X36. Z8. F0.2;
增量坐标、直径编程:U、W
Z
G01 U24. W-20. F0.2;
2)增量坐标、半径编程:U、W
G01 U12. W-20. F0.2;
进刀和退刀
迅速走刀
切削进给 防止撞刀
刀具半径补偿G41、G42
第四章 数控车削加工编程
4.1数控车削编程概述
1、数控车削加工特点
(1)适合加工精度要求高旳零件 (2)适合加工表面粗糙度要求高旳零件
数控编程全

第三节 刀具补偿功能
31
第三节 刀具补偿功能
1.刀具补偿指令 G41——刀具半径左补偿 G42——刀具半径右补偿 G40——刀具半径补偿取消 格式: G41/G42/G40 G00/G01 D_ X(U)_ Z(W)_ (F_)
32
第三节 刀具补偿功能
2.刀尖圆弧半径对加工的影响
33
第三节 刀具补偿功能
40
第四节 车削固定循环
3.4.1 单一形状的固定循环 1.内外直径的切削循环(G90) 直线切削循环: G90 X(U)___Z(W)___F___ ;
41
第四节 车削固定循环
2.锥体切削循环: G90 X(U)___Z(W)___R___ F___ ; 必须指定锥体的 “R” 值。切削功能的用法与直线切削循环 类似 。
数控编程知识简介
➢ 数控编程定义
根据被加工零件的图纸和技术要求、工艺要求 等切削加工的必要信息,按数控系统所规定的指令 和格式编制成加工程序文件。
➢ 常用编程方法
手工编程 自动编程(图形交互式)
1
手工编程
利用一般的计算工具,通过各种数学方法,人 工进行刀具轨迹的运算,并进行指令编制。
这种方式比较简单,很容易掌握,适应性较大。 适用于中等复杂程度程序、计算量不大的零件编程, 对机床操作人员来讲必须掌握。
T0101 G00 X50. Z2.
程序主体
…… G00 X100 Z100
程序结束指令
M30
程序结束符
%
11
基础
1.2 程序指令字 1. 顺序字 N 1)作用 (1)对程序的校对和检索修改; (2)可直观地检查程序; (3)条件转向的目标。
12
数控机床编程是做什么

数控机床编程是做什么数控机床编程是现代制造业中一个至关重要的环节,它是将设计者制作的产品图纸转化为机床可识别的指令代码的过程。
通过数控机床编程,我们可以实现对机床高精度、高效率的控制操作,从而生产出高质量的零部件和产品。
数控机床编程的基本原理数控机床编程的基本原理是根据产品设计图纸,确定加工路径、刀具速度、进给速度等加工参数,将这些信息转化为机器可读懂的代码指令,以便机床能够按照预定的路径、速度进行自动加工。
在整个编程过程中,需要考虑到加工工艺、机床性能、刀具选择等因素,以保证最终加工出来的零件符合设计要求。
数控机床编程的作用数控机床编程的作用主要体现在以下几个方面:1.提高生产效率:数控机床编程可以实现自动化加工,减少人工干预,提高加工效率和精度。
2.降低生产成本:由于数控机床编程可以精准控制加工过程,避免不必要的浪费,从而降低生产成本。
3.优化加工质量:数控机床编程可以根据产品要求精确控制加工路径和参数,确保加工出来的零件质量稳定可靠。
4.提高生产灵活性:数控机床编程可以灵活调整加工程序,适应不同产品的加工需求,提高生产的灵活性和适应性。
数控机床编程的发展趋势随着工业自动化水平的不断提高,数控机床编程也在不断发展演进。
未来,随着人工智能、大数据等技术的应用,数控机床编程将更加智能化、自动化,为制造业带来更大的发展机遇。
在未来的发展中,数控机床编程将更加注重对产品设计的智能化分析,结合全球化的产品定制需求,实现快速生产、高效加工、灵活生产的目标。
同时,随着机器学习、人工智能等技术的应用,数控机床编程有望实现更高水准的自动优化、智能决策,为制造业带来更高效、更智能的生产方式。
在未来的制造业中,数控机床编程将扮演着更为重要的角色,成为实现工业自动化、智能制造的关键一环。
结语通过本文的介绍,我们了解了数控机床编程在现代制造业中的重要性和作用,以及未来的发展趋势。
数控机床编程不仅可以提高生产效率、降低生产成本,还可以优化加工质量、提高生产灵活性,为制造业的发展带来新的机遇和挑战。
数控加工工艺及编程 快速定位指令编程

快速定位1.快速定位G00G00指令是在工件坐标系中以快速移动速度移动刀具到达由绝对或增量指今指定的位置,在绝对指令中用终点坐标值编程,在增量指令中用刀具移动的距离编程。
指令格式:N_G00 X(U)_ Z(W) _;式中X、Z—绝对编程时,目标点在工件坐标系中的坐标:U、W一增量编程时,刀具移动的距离。
(1)G00一般用于加工前快速定位或加工后快速退刀。
G00指令刀具相对于工件以各轴预先设定的速度,从当前位置快速移动到程序段指令的定位目标点。
(2)G00指令中的快移速度由机床参数“快移进给速度”对各轴分别设定,所以快定移动速度不能在地址下中规定。
快移速度可由而板上的快速修调按钮修正,机床操作面松上的快速移动修调倍率由0%~100%。
(3)在执行G00指令时,由于各轴以各自的速度移动,不能保证各轴同时到达终点,因此联动直线轴的合成轨迹不一定是直线,操作者必须格外小心,以免刀具与工件发生碰撞。
常见G00运动轨迹如图1所示,从A点到B点常有以下两种方式:直线AB、折线AEB。
图1 G00定位轨迹图(4)G00为模态功能,可由G01、G02、G03等功能注销。
目标点位置坐标可以用绝对值,也可以用相对值,甚至可以混用。
如果目标点与起点有一个坐标值没有变化,此坐标值可以省略。
例如,需将刀具从起点S快速定位到目标点P,如图2所示,其编程方法如表1所示。
图2 绝对、相对、混合编程实例表1 绝对、相对、混合编程方法表在后面的编程中,目标点坐标值编程使用方法相同。
如图3(a)所示,刀尖从换刀点(刀具起点)A快进到B点,准备车外圆:其G00的程序段如图3(b)所示。
G00功能实例程序G00 X30 Z2绝对坐标编程G00 U-30 W-29.2相对坐标编程a)程序段b)走刀步骤图3 G00功能实例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXX大学《数控加工工艺与编程》课程设计说明书学院:航空制造工程学院专业:机械设计制造及其自动化课程名称:《数控加工工艺与编程》课程设计学生姓名:XXX 学号:XXXXXXXX设计题目:铣削零件的数控加工工艺与编程设计起迄日期:2XXXX指导教师:XXX上交资料要求:1、电子文档:零件的模型与工程图文档、 NC文件、设计说明书word稿等2、设计说明书纸质打印稿等(与电子档相同)【摘要】数控技术及数控机床在当今机械制造业中的重要地位和巨大效益,显示了其在国家基础工业现代化中的战略性作用,并已成为传统机械制造工业提升改造和实现自动化、柔性化、集成化生产的重要手段和标志。
数控技术及数控机床的广泛应用,给机械制造业的产业结构、产品种类和档次以及生产方式带来了革命性的变化。
数控机床是现代加工车间最重要的装备。
在数控编程中,工艺分析和工艺设计是至观重要的,在加工前都要对所加工零件进行工艺分析,拟定加工方案,选择加工设备、刀具、夹具,确定切削用量,安排加工顺序,制定走刀路线等。
在编程过程中,还要对一些工艺问题(如对刀点,换刀点,刀具补偿等)做相应处理。
因此程序编制中的工艺分析和工艺设计是一项十分重要的工作。
本文根据铣削零件的图纸及技术要求,对该零件进行了详细的数控加工工艺分析,依据分析的结果,对该零件进行了数控加工工艺设计,并编制了工艺卡片、数控加工工序卡片和刀具卡片等。
UG NX软件是由美国UGS公司推出的功能强大的CAD/CAM/CAE软件系统,其内容涵盖了产品从概念设计、工业造型设计、三维模型设计、分析计算、动态模拟与仿真、工程图输出,到生产加工成品的全过程,应用范围涉及航天、汽车、机械、造船、通用机械、数控加工、医疗器械和电子等诸多领域。
由于它具有强大二完美的功能,UG近几年几乎成为三维CAD/CAM领域的一面旗帜好和标准,它在国外大学院校里已成为学习工程类专业必修课程,也成为工程技术人员必备的技术。
关键词:工艺分析;刀具;切削用量;加工程序;加工仿真目录一、课程设计概念 (3)二、设计目的及要求 (3)三、设计具体要求 (4)四、加工工艺 (6)五、仿真加工 (7)六、工程图 (20)七、设计总结 (21)八、参考文献 (22)一、课程设计概述《数控加工工艺与编程》课程设计是机械设计制造及自动化专业的必修课设之一,它可以提高学生的动手能力,丰富学生的理论知识。
是一门理论与实践相结合的综合性专业基础课。
通过《数控加工工艺与编程》课程设计的学习,要求学生能够独立设计箱体和型腔壳体类零件,能独立完成零件的实体造型,绘制工程图,并能够合理的选择卡具和加工设备,分析加工工艺,独立完成数控编程,生成NC代码,最终完成零件的加工。
本课程设计不仅提高了学生的设计能力,绘图能力,编程能力,还可以锻炼其机床操作能力,对今后的工作和学习打下坚实的基础。
二、设计目的及要求1、设计目的通过本次课程设计,了解并掌握利用UG软件对零件进行结构设能力,计算机绘图能力及掌握计算机辅助制造过程和方法,培养自动编程的技能。
掌握数控机床进行机械加工的基本方法,巩固数控加工编程的相关知识,将理论知识与实际工作结合起来,并最终达到能够独立从事数控加工程序编制的工作能力。
2、设计要求根据本任务提供的零件图及相关技术要求,用UG软件完成零件设计,工程图绘制,零件工艺分析,加工工艺卡的编制,数控加工程序的编制,最后用FANUC 0i数控机床加工出所设计的零件。
三、设计具体要求1、绘制零件图了解该零件在部件或总成中的位置和功用,以及部件或总成对该零件提出的技术要求;找出其要求和技术关键,并在下面拟定工艺规程时予以考虑;对所加工的零件进行结构工艺分析,分析其结构特点;检查所给零件图的完整习惯和正确性,完成该零件图的实体结构设计并按照机械制图标准会自绘零件图。
2、编制零件数控加工工艺规程在对零件进行详细分析的基础上,按照数控加工工艺确定原则,确定整个零件的加工工艺规程,确定毛坯,确定加工的工艺基准;拟定零件的工艺路线,包括确定各加工表面的加工方法、正确划分加工阶段、合理安排加工工序的顺序、选择工装、刀具、量具,并对其加工工艺参数进行确定;确定对刀点和换刀点。
3、确定夹具及夹紧方案对某一道相对复杂的工序,在确定定位装夹方案的基础上,选择一个合适的夹具,完成本工序的加工。
该夹具应具有定位可靠,装卸方便、操作安全方便省力、夹紧可靠且适当等特点,适合于数控机床的加工使用。
4、确定零件设计原点与加工原点对将进行数控加工的工序,确定加工零点、换刀方式,确定其编程坐标系,并最终通过绘制数控加工编程坐标系的方式予以明确、标识对刀点和换刀点。
5、编制零件加工工艺并编制数控加工程序参照数控加工编程坐标系图,按照数控加工工艺规程,采用自动编程方式对该工序进行数控程序的编制,生成NC代码,并在数控仿真软件上进行调试。
6、编写课程设计说明书。
设计说明书需打印:正文:宋体五号,固定行距23;设计结果包括:设计任务书,设计思路,设计步骤,零件三维建模与工程图设计,零件的加工工艺过程设计,基于UG的数控加工编程设计(包括:工件坐标系与毛坯的设定,刀具的设定,加工方法的设定(粗、半精和精加工等),编程过程中的相关参数设定,生成数控加工轨迹并分析,加工模拟的仿真,后处理生成N加工代码。
四、加工工艺1、毛坯机械加工中,需要根据零件的特性和功能确定毛坯的种类。
毛坯的种类包括铸铁、锻件、型材、挤压件、冲压件以焊接组合件等,这里我们采用毛坯为50mm×50mm×17mm的45钢。
2、机床以及夹具选择数控加工机床主要的规格的尺寸与工件的轮廓尺寸相适应,小工件选择小型机床,大工件选择大型机床,同时,还要考虑零件的加工要求精度合理使用机床设备。
夹具分为虎钳,工艺板和直接装夹,要根据加工工件的加工部位以及加工深度来选择夹具。
此处我们选择数控机床为XKA715,所以用夹具为平口钳装夹。
3、刀具选择刀具是数控加工重要的工艺内容之一,它不仅直接影响着机床的加工效率,而且能保证加工质量。
与传统的加工方面相比,数控机床对刀具的要求更高,不仅要求刀具的精度,刚度,耐用度,而且要求尺寸稳定,安装调试方便因此对于零件的材料和加工需求,选择合适材料的刀十分重要。
根据零件的需要,比如槽宽、槽深、零件材料等工件尺寸选择合适尺寸的刀具也是重要的环节。
一般的平面、槽或者孔都采用立铣刀、端面铣刀以及合适大小的钻头,对于一些变斜角轮廓或者主体型面的加工,常使用球头铣刀、环形铣刀、锥形刀等等,刀具数量也根据工件工艺合适选择,以合理、数量小为原则,减少机床。
的换刀时间,增加机床加工效率。
此处零件根据工艺,需要选择Ф4mm的高速平头铣刀。
4、加工工艺分析这个零件为凸台类的零件,要求精度不是很高,通过设计图纸确定加工工艺,做到基面先行,先粗后精,先主后次,工序集中等原则。
五、仿真加工1、进入加工环境。
选择菜单开始--加工命令,选择“要创建的CAM环境设置”中“ mill contour”确认后进入加工环境。
2、创建机床坐标系及安全平面(1)进入几何视图。
选择“几何视图”,在工序导航器中双击“MCS_MILL”,进入机床坐标系的创建,(2)其中指定MCS中选择最上表面的圆心为机床坐标点,以该平面向上偏移10的平面为安全平面。
3、创建部件几何体(1)在工序导航器中双击“MCS MILL”下的“WORKPIECE”,在指定部件中选择整个实体为部件几何体(2)在指定毛坯中选择“包容块”。
4、创建刀具1(1)选择“创建刀具”命令,类型选择“mill_contour”,刀具子类型选择“mill”的第一个刀具,在刀具下拉列表中选择“NONE”选项,并命名为“D6R1”确定。
(2)确定后出现下图所示的截面,将直径改为6,底角圆半径为1,刀具号为1,其他默认,然后确定。
5、创建工序1(1)选择下拉菜单插入--工序命令,系统会出现“创建工序”(2)确定加工方法。
在“类型”中选择“mill_contour”在工序类型中选择“CAVITY_MILL”,在程序中选择“PROGRAM”刀具选择“D6R1”,几何体选择“WORKPIECE_1”,方法选择“METHOD”,其他采用默认值,确定后,如下图所示(3)指定部件选择整个零件,指定面边界是底座上平面。
(4)设置刀具路径参数,其中切削方式选择“跟随部件”;步距选择“刀具平直百分比”,在“平面直径百分比”中输入“50”,全局每刀深度输入“2”,其他默认。
(5)设置切削参数。
其中余量参数设置如下图所示,其他为默认值。
(6)设置非切削参数。
都采用默认值。
(7)设置进给率和速度。
主轴速度为1200,在进给率的切削输入250,其他默认。
(8)生成刀路轨迹并仿真。
点击操作中的第一个按钮生成刀路轨迹,之后点第三个按钮仿真加工。
如下图所示。
6、创建工序2(1)选择下拉菜单插入--工序命令,系统会出现“创建工序”(2)确定加工方法。
在“类型”中选择mill_contour”在工序类型中选择“CAVITY_MILL”,刀具选择“D6R1”,几何体选择“WORKPIECE_1”,方法选择“METHOD”,其他采用默认值,确定后,如下图所示(9)指定部件选择整个零件,指定面边界是底座上平面。
(10)设置刀具路径参数,其中切削方式选择“跟随部件”;步距选择“刀具平直百分比”,在“平面直径百分比”中输入“50”,毛坯距离输入“2”,其他默认。
(11)设置切削参数。
其中余量参数设置如下图所示,其他为默认值。
(12)设置非切削参数。
都采用默认值。
(13)设置进给率和速度。
主轴速度为2000 ,在进给率的切削输入250,其他默认。
(14)生成刀路轨迹并仿真。
点击操作中的第一个按钮生成刀路轨迹,之后点第三个按钮仿真加工。
如下图所示。
7、创建刀具2(1)选择“创建刀具”。
在“类型”中,选择“drill”,在刀具子类型中选择“DRILLING_TOOL”,名称输入“Z4”,确定。
(2)在钻刀直径中输入4,刀具号输入2,其他默认8、创建工序3(1)选择“创建工序”,在类型中选择“drill”,工序子类型中选择“DRILLING”,刀具选择“Z4”,几何体选择“WORKPIECE_1”,确定。
(2)确定后出现“钻”对话框。
指定孔,点击进去,点到点几何体,单击“选择”,然后选择四个底座圆;指定顶面,选择底座上表面;指定底面选择零件底面。
(3)设置循环控制参数。
在循环类型中选择“标准钻”,单击编辑按钮。
确定,再单击“depth-模型深度”中“模型深度”确定后,在选择“Rtrcto-无”,单击“距离”输入5,确定(4)生成刀轨并仿真。
单击操作中的第一个按钮,生成刀轨。
单击第三个按钮确定反正加工。