第四章拉普拉斯变换、连续时间系统的S域分析 基本要求 通过本章的学习

合集下载

第四章——连续时间系统的S域分析

第四章——连续时间系统的S域分析

第4章 连续时间系统的S 域分析4.1拉普拉斯变换的定义、收敛域(一) 定义拉氏正变换:()()()0stf t F s f t e dt ∞-==⎡⎤⎣⎦⎰拉氏逆变换:()()112j st j F s F s e ds j σσπ+∞--∞=⎡⎤⎣⎦⎰ (二) 常用函数的拉氏变换[1] 阶跃函数()01stste u t e dt ss∞-∞-==-=⎡⎤⎣⎦⎰ [2] 指数函数()01a s tatat ste ee e dt a sa s∞-+∞---⎡⎤==-=⎣⎦++⎰ (σ>a -) [3] n t 函数[]21t s =232t s ⎡⎤=⎣⎦1!nn n t s +⎡⎤=⎣⎦[4] 冲激函数()()01stt t e dt δδ-∞-==⎡⎤⎣⎦⎰ ()()0000st stt t t t e dt e δδ-∞---=-=⎡⎤⎣⎦⎰4.2拉普拉斯逆变换(一) 部分分式分解[1]极点为实数,无重根例 求下示函数的逆变换()()()3259712s s s F s s s +++=++ 解 用分子除以分母(长除法)可得()()()()()()322222222225971232277323232232332323221212s s s F s s s s s s s s s s s s s s s s s s s s s s s s s s s +++=++++++=++++++++++=++++++++=++-++ 故有()()()222t t f t t t e e δδ--'=++- ()0t ≥[2]包含共轭复数极点()()12cos sin tA jB A jB e A t B t s j s j αββαβαβ--⎡⎤+-+=-⎡⎤⎢⎥⎣⎦+-++⎣⎦例 求下面函数的逆变换()()()223252s F s s s s +=+++ 解()()()()()()()()2222220123252312231212221212s F s s s s s s s s s j s j s k k k s s j s j +=++++=⎡⎤+++⎣⎦+=+++-+=++++-++下面分别求系数012,,k k k()()02725s k s F s =-=+=()()21123121225s j s j k s j s =-++-+==+++ 也即12,55A B =-=,故而可以得到其逆变换的函数表达式 ()()()27122cos 2sin 2555t t f t e e t t --⎡⎤=-+⎢⎥⎣⎦()0t ≥ [3]多重极点设有()()()()()()()()()()1111121111k kkk A s A s F s B s s p D s E S K K K s p D S s p s p -==-=++⋅⋅⋅++---现记()()()11kF S s p F s =-则个系数的计算公式为:()()1111111!i i i s p d K F s i ds --==-例 求下示函数的逆变换()()321s F s s s -=+解 将()F s 写成展开式()()()131112232111K K K K F s s ss s =++++++ 容易求得:()202s K sF s ===-为求出与重根有关的个系数,令()()()3121s F s s F s s-=+=故有11123S s K s=--==12122S d s K ds s =--⎛⎫== ⎪⎝⎭213211222S d s K ds s =--⎛⎫== ⎪⎝⎭于是有()()()323222111F s s ss s =++-+++ 所求逆变换为()232222t t t f t t e te e ---=++- ()0t ≥4.3微分方程的S 域求解对于二阶连续时间LTI 系统,描述系统的微分方程为()()()()()1010,0y t a y t a y t b x t b x t t ''''++=+≥()()0,0y y --'为系统的初始状态。

第四章 连续时间信号与系统的s域分析 (1)

第四章 连续时间信号与系统的s域分析 (1)

F s

0
f t e st dt
其中,s j 称为复频率
§ 4-1 拉普拉斯变换
1.拉普拉斯变换的定义 F s 实际上就是指数加权后的因果信 t e 号 f t , 0 t ,的FT。因此,求F s 的 t e f t ,并进而得到因果 逆FT,就可得到 信号f t ,即 f t e 1 F s e d F s e ds 2 2 j

0
e
f t dt

这使得增长速度不快于指数增长函数的信号都存在LT。使 LT收敛的取值范围称为LT的收敛域。 拉普拉斯变换的缺点是:不象傅里叶变换有明确的物理意 义,它没有明确的物理意义。复频率更多的是数学意义。
§ 4-1 拉普拉斯变换
2.典型信号的拉普拉斯变换 (1)单位冲激信号
f1 t u t f2 t u t F1 s F2 s
对于有冲激响应 ht 的因果LTI系统而言, 因果激励 f t 产生的零状态响应为yt ht f t 在s域中有 Y s H s F s 其中,系统函数 H s 是系统冲激响应 ht 的LT。
n t
n!
te
t
u t
s
1
2
t e
2
t
u t
s 3
2
§ 4-2 拉普拉斯变换的性质
n t t 例4-11 求因果指数加权正弦信号 e cos0 t ut
和 t n e t sin0 t ut 的LT。
t e
§ 4-1 拉普拉斯变换
1.拉普拉斯变换的定义


尽管奇异函数的使用扩大了傅里叶变换的应用范 围,仍有不少常见信号,例如指数增长因果信号, 不存在傅里叶变换。为了进一步扩大傅里叶变换 应用范围,先把信号进行恰当的指数衰减,然后 对它进行傅里叶变换。这就产生了如下定义的拉 普拉斯变换(Laplace Transformation,简写 LT)。 因果信号f t , 0 t 的拉普拉斯变换 F s 定义为

信号与系统4.3拉氏变换的性质

信号与系统4.3拉氏变换的性质

T
T2
2
E(2 )
T
s2 ( 2 )2
E(2 )
[
s2
T
( 2
)2
sT
]e 2
T
T
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
例4-4 试求图4.4所示的正弦半波周期信号的拉氏变换。
f (t)
E

0
TT
2T
t
2
图4.4 例 4―4图
解: 在例4―3中我们已求得从t=0开始的单个正弦半波(亦即
0 24
t
图4.5 例4-5图
e2(t2)e4u(t 2) e2(t4)e8u(t 4)
于是
F (s) L[ f (t)] e4L[e2t ]e2s e8L[e2t ]e4s
e2(s2) e4(s2) s2
第4章 拉普拉斯变换、连续时间系统的S域分析
4、s域平移特性
若 f (t) F(s)
t)u(t) E sin[ T
(t )]u(t )
2
2
第4章 拉普拉斯变换、连续时间系统的S域分析
应用拉氏变换的时移特性,有
F (s) L[ f (t)] L[ fa (t)] L[ fb (t)]
L[E sin(2 t)u(t)] L{E sin[ 2 (t T )]u(t T )}
本题第一个周期的波形)的拉氏变换为
F1(s)
L[
f
(t)]
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析

郑君里《信号与系统》(第3版)(上册)配套题库-章节题库(第4章)【圣才出品】

郑君里《信号与系统》(第3版)(上册)配套题库-章节题库(第4章)【圣才出品】

A.
1 s2
e s
s
B. s 12
es
C. s 12
1 / 167
圣才电子书

1
D. s 12
1
E. s 12
十万种考研考证电子书、题库视频学习平台
【答案】D
【解析】因为
etu(t) 1 s 1
根据拉氏变换的频域微分性质
tet
u
t
1
s
1
1
=
s
1
12
3.信号

d dt
cos tU
t
s2 s2 1
又根据频域微分性质有
t
d dt
cos
tU
t
1
d ds
s2 s2
1
2s s2 1 2
4.信号 f t u t d 的拉普拉斯变换为( )。 0
A.1/s
B.1/(s2)
C.1/(s3)
D.1/(s4)
【答案】C
B.e-αtu(t-T)
C.e-αtu(t-α )
3 / 167
圣才电子书

D.e-αu(t-T)
十万种考研考证电子书、题库视频学习平台
【答案】B
【解析】u(t)的拉氏变换为 1/s,根据时移性,u(t-T)的拉氏变换为 e-sT/s,再
根据频域的时移性,e-αtu(t-T)的拉氏变换为 e-sT/s 的 s 左移α,即 e-sT/s 中的 s 加上
2s 1 2s 1
f(t)中包含Байду номын сангаас激函数 2δ(t),去掉冲激函数以后,根据初值定理
f
(0 )
lim
s
s
3 2s+1

拉普拉斯变换.

拉普拉斯变换.

二、拉普拉斯变换的优点
利用拉普拉斯变换可以将系统在时域内的 微分与积分的运算转换为乘法与除法的运算, 将微分积分方程转换为代数方程,从而使计算 量大大减少。利用拉氏变换还可以将时域中两 个信号的卷积运算转换为s域中的乘法运算。 在此基础上建立了线性时不变电路s域分析的 运算法,为线性系统的分析提供了便利。同时 还引出了系统函数的概念。
• 难点:拉普拉斯变换在求解微分方程的优点
一、拉普拉斯的产生和发展
傅里叶变换分析法在信号分析和处理等方面 (如分析谐波成分、系统的频率响应、波形失真、 抽样、滤波等)是十分有效的。但在应用这一方法 时,信号f(t)必须满足狄里赫勒条件。而实际中会 遇 到 许 多 信 号 , 例 如 阶 跃 信 号 (t) 、 斜 坡 信 号 t(t) 、单边正弦信号 sint(t) 等,它们并不满足 绝对可积条件,从而不能直接从定义而导出它们的 傅里叶变换。虽然通过求极限的方法可以求得它们 的傅里叶变换,但其变换式中常常含有冲激函数, 使分析计算较为麻烦。
十九世纪末,英国工程师亥维赛德(O.Heaviside, 1850~1925)发明了算子法,很好地解决了电力工 程计算中遇到的一些基本问题,但缺乏严密的数 学论证。后来,法国数学家拉普拉斯(P. S. Laplace,1749~1825)在著作中对这种方法给予严 密的数学定义。于是这种方法便被取名为拉普拉 斯变换,简称拉氏变换。----因为是“拉普拉斯” 这个人定义的。
三、本章内容简介
本章首先由傅氏变换引出拉氏变换,然后对拉氏正 变换、拉氏反变换及拉氏变换的性质进行讨论。
本章重点在于,以拉氏变换为工具对系统进行复频
域分析。
最后介绍系统函数以及H(s)零极点概念,并根据他
们的分布研究系统特性,分析频率响应,还要简略介绍 系统稳定性问题。

拉普拉斯变换、连续时间系统的S域分析

拉普拉斯变换、连续时间系统的S域分析
若f (t)满足以下条件时,才存在付里叶变换 1 狄氏条件:1) f (t)在有限闭区间连续或有有限个第一类间断点; 2) f (t)在有限闭区间只有有限个极值点。
2 在(-, )内满足绝对可积,即 f (t) dt
由付里叶变换存在条件 可知,绝对可积条件较强,许多 函数都不满足此条件,如单位阶跃函数、正弦余弦函数、线 性函数等。 2拉普拉斯变换
F (s) f (t)et e jtdt
f (t)e( j)tdt f (t)est dt
其中 s j
F (s) f (t)est dt称作拉普拉斯(Laplace)变换
f (t) 1
F
(s)e
st
d称s 作拉普拉斯逆变换
2j
f (t) F (s)
单边拉氏变换
a1 f1(t) a2 f2 (t) a1F1(s) a2F2 (s)
其收敛域至少是二函数收敛域的相重叠部分。
7
例1:求双曲函数的象函数
sht 1 (et et )
2
sht
1 2
(et
et
)
0
1 2
(et
et
)est
dt
1 2
s
1
1 1
2 s
1
s2 2
Res 0
et的收敛域Res ,et的收敛域Res ,
当n 2时
t2
2 s3
,依次类推
t n n(n 1)(n 2)2 1
s n1
6
4.冲击函数
(t) (t)est dt 1 0
5.正弦函数
sin kt sin ktest dt 1 e jkt e jkt est dt
0
0 2j

(完整)拉普拉斯变换公式总结,推荐文档

(完整)拉普拉斯变换公式总结,推荐文档

[
f1 (t )
f2 (t)]
1 2
j
[F1(s)
F2 (s)]
=
1 2
j
j
j F1( p)F2 (s p)dp
3. 拉普拉斯逆变换 (1) 部分分式展开法
首先应用 海维赛展开定理将 F (s) 展开成部分分式,然后将各部分分式逐项进行逆变换,
最后叠加起来即得到原函数 f (t) 。
(2)留数法
1
1s s2
1 es 1 es
2
本文例 4-3下载后请自行对内容图4-2编(c) 辑修改删除,
应用微分性质求图 4-3(a)中 f1t , f2 (t), f3t 的象函数下面说明应用微分性质应注意的
问题,图 4-3(b)f1t , f2 t, f3t是的导数f1t , f2t , f3t 的波形。
1 t estd t 2 2 t estd t
0
1
1
t 1 est 1 1 estd t 2 1 estd t 2 t estd t
s
0
s 0
0
1
1 es s
1 s2
es
1 s2
2 e2s s
2 es s
2 e2s s
1 s2
es
1 s2
1 es
2
方法二:利用线性叠加和时移性质求解 由于
F
(s) 则 [ df (t)] dt
sF (s)
f (0 )
[
d
nf dt
(t)
n
]
sn
F
(s)
n1 r0
s n r 1
f
(r
)
(0
)
式中

4拉普拉斯变换连续时间系统的S域分析讲解

4拉普拉斯变换连续时间系统的S域分析讲解

求出k1 , k2 , k3 kn ,即可将F s 展开为部分分式
2. 第二种情况:极点为共轭复数 3. 第三种情况:有重根存在 4. F(s)两种特殊情况: 含e s的非有理式 非真分式—— 化为真分式+多项式
收敛坐标 σ0
O
σ
一般求函数的单边拉氏变换可以不加注其收敛范围。
一些常用函数的(单边)拉氏变换:P181表4-1
1.阶跃函数: F ( ) F [ f (t )] u(t )e j t dt [ 1 1 sgn( t )]e j t dt π ( ) 1
f (t )e j0t F 0
f (t ) jF ( )
f (t ) eα t F(s α)
sF ( s ) f (0 )
F ( s ) f 1 (0 ) s s
d F ( s) ds

t

f d
F ( ) πF (0) ( ) j
1 j t F F ( ) f ( t ) F ω e dω 2 以傅里叶变换为基础的频域 分析方法的优点和不足: F f (t ) F ω f (t ) e j t d t • 有清楚的物理意义 • 只能处理符合狄利克雷条件的信号-绝对可积条件: s j f t d t
2)求 e α t cos ω0t的拉氏变换.
3)求f (t ) tu(t 1)的拉氏变换 .
π 4)已知f (t ) = 2 cos(t )u(t ), 求F(s)。 4
§ 4.4 拉普拉斯逆变换 拉氏逆变换的方法: (一)部分分式法 (二)利用留数定理——围线积分法
(三)数值计算方法——利用计算机 拉氏逆变换的过程:部分分式法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)留数法
留数法是将拉普拉斯逆变换的积分运算转化为求被积函数 在围线中所有极点的留数运算,即
若 为一阶级点,则在极点 处的留数
若 为k阶级点,则
4.系统函数(网络函数)H(s)
(1)定义
系统零状态响应的拉普拉斯变换与激励的拉普拉斯变换之比称为系统函数,即
冲激响应 与系统函数 构成变换对,即 系统的频率响应特性 式中, 是幅频响应特性, 是相频响应特性。
(4)最小相移函数
如果系统函数的全部极点和零点均位于s平面的左半平面或 轴,则称这种函数为最小相移函数。具有这种网络函数的系统为最小相移网络。
(5)系统函数 的求解方法
由冲激响应 求得,即 。
对系统的微分方程进行零状态条件下的拉普拉斯变换,然后由 获得。
根据s域电路模型,求得零状态响应的像函数与激励的像函数之比,即为 。
例4-4
某线性时不变系统,在非零状条件不变的情况下,三种不同的激励信号作用于系统。
为图中所示的矩形脉冲时,求此时系统的输出
阶跃响应

例4-5
电路如图4-5(a)所示
(1)求系统的冲激响应。
(2)求系统的起始状态使系统的零输
入响应等于冲激响应。
(3)求系统的起始状态,
解答
(1)求系统的冲激响应。
系统冲激响应 与系统函数 是一对拉氏变换的关系。对 求逆变换可求得 ,这种方法比在时域求解微分方程简便。
若系统函数 没有极点落于s右半平面,但在虚轴上有一阶极点,则该系统临界稳定。
内容摘要
例题
·例题1:求拉氏变换
·例题2:求拉氏变换,拉氏变换的性质
·例题3:拉氏变换的微分性质
·例题4:系统函数,求解系统的响应
·例题5:用拉氏变换法分析电路·
例4-1
求下列函数的拉氏变换
分析
拉氏变换有单边和双边拉氏变换,为了区别起见,本书以 表示 单边拉氏变换,以 表示 双边拉氏变换。若文字中未作说明,则指单边拉氏变换。单边拉氏变换只研究 的时间函数,因此,它和傅里叶变换之间有一些差异,例如在时移定理,微分定理和初值定理等方面。本例只讨论时移定理。请注意本例各函数间的差异和时移定理的正确应用。
第四章 拉普拉斯变换、连续时间系统的S域分析
基本要求
通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。
可看作是图4-2(c)所示的矩形脉冲 自身的卷积
于是,根据卷积性质

所以
例4-3
应用微分性质求图4-3(a)中的象函数下面说明应用微分性质应注意的问题,图4-3(b) 是的导数的波形。
图4-3(a)
解答
说明
(1)对于单边拉氏变换, 故二者的象函数相同,即
因而
这是应用微分性质应特别注意的问题。
由图4-3(b)知
方法一:按定义式求解
方法二:利用线性叠加和时移性质求解
由于
于是
方法三:利用微分性质求解
分析
信号的波形仅由直线组成,信号导数的象函数容易求得,或者信号经过几次微分后出现原信号,这时利用微分性质比较简单。
将 微分两次,所得波形如图4-2(b)所示。
显然
根据微分性质
由图4-2(b)可以看出
于是
方法四:利用卷积性质求解
(2)原函数微分
若 则
式中 是r阶导数 在 时刻的取值。
(3)原函数积分
若 ,则 式中
(4)延时性
若 ,则
(5)s域平移
若 ,则
(6)尺度变换
若 ,则 (a 0)
(7)初值定理
(8)终值定理
(9)卷积定理
若 , ,则有
=
3.拉普拉斯逆变换
(1)部分分式展开法
首先应用 海维赛展开定理将 展开成部分分式,然后将各部分分式逐项进行逆变换,最后叠加起来即得到原函数 。
知识要点
1.拉普拉斯变换的定义及定换
双边拉普拉斯变换:
正变换
逆变换
(2)定义域
若 时, 则 在 的全部范围内收敛,积分 存在,即 的拉普拉斯变换存在。 就是 的单边拉普拉斯变换的收敛域。 与函数 的性质有关。
2.拉普拉斯变换的性质
(1)线性性
若 , , , 为常数时,则
(2)零极点分布图
式中, 是系数; , , 为 的零点; , , , 为 的极点。在s平面上,用“ ”表示零点,“ ”表示极点。将 的全部零点和极点画在s平面上得到的图称为系统的零极点分布图。对于实系统函数而言,其零极点要么位于实轴上,要么关于实轴成镜像对称分布。
(3)全通函数
如果一个系统函数的极点位于左半平面,零点位于右半平面,而且零点与极点对于 轴互为镜像,那么这种系统函数称为全通函数,此系统则为全通系统或全通网络。全通网络函数的幅频特性是常数。
(3)求系统的起始状态
从而求得系统的起始状态
利用s域模型图4-5(b)可直写出图4-5(a)电路的系统函数
冲激响应
(2)求系统的起始状态
为求得系统的零输入响应,应写出系统的微分方程或给出带有初值的s域模型。下面我们用s域模型求解。图4-5(a)电路的s域模型如图4-5(b)。
由图4-5(b)可以写出
上式中第二项只和系统起始状态有关,因此该项是零输入响应的拉氏变换。依题意的要求,该项应和 相等,从而得
5.系统的稳定性
若系统对任意的有界输入,其零状态响应也是有界的,则此系统为稳定系统。
(1)稳定系统的时域判决条件 (充要条件)
若系统是因果的,则 式可改写为
(2)对于因果系统,其稳定性的s域判决条件
若系统函数 的全部极点落于s左半平面,则该系统稳定;
若系统函数 有极点落于s右半平面,或在虚轴上具有二阶以上的极点,则该系统不稳定;
解答
例4-2
求三角脉冲函数 如图4-2(a)所示的象函数
分析
和傅里叶变换类似,求拉氏变换的时,往往要借助基本信号的拉氏变换和拉氏变换的性质,这比按拉氏变换的定义式积分简单,为比较起见,本例用多种方法求解。
解答
方法一:按定义式求解
方法二:利用线性叠加和时移性质求解
方法三:利用微分性质求解
方法四:利用卷积性质求解
故系统的起始状态
说明
通过本例可以看出,改变系统的起始状态可以使系统的完全响应满足某些特定要求。本质上,系统的零输入响应完全由系统的起始状态决定,对一个稳定系统而言,零输入响应是暂态响应中的一部分,因此,改变系统的起始状态只能改变系统的暂态响应,使暂态响应满足某些特定要求,例如,本例要求暂态响应为零。
相关文档
最新文档