八年级数学下册-正方形练习精选
八年级数学下册 1823正方形同步练习2 新版新人教版

正方形学习要求 1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;.掌握正方形的性质及判定方法.2课堂学习检测一、填空题的平行四边形叫做正方形,因此正方形既是______.正方形的定义:有一组邻边______并且有一个角是1 .______,又是一个特殊的有一个角是直角的______一个特殊的有一组邻边相等的;______2.正方形的性质:正方形具有四边形、平行四边形、矩形、菱形的一切性质,正方形的四个角都角线平分,每条对______,并且互相______四条边都______且__________________;正方形的两条对角线条对称轴.对角.它有____________ 定:3.正方形的判的平行四边形是正方形;(1)_____ _____________________________ 的矩形是正方形;(2)___________________ ____________的菱形是正方形;(3)____________________________________ 的四边形是正方形..对角线________________________________4ABCDACEFa则正方形若正方形的对角线,的边是正方形5.若正方形的边长为,,则其对角线长为______ABCDACEF ______与正方形.的面积之比等于BCAFCFACAECDABCDBCECE,若,连结的度数为6.延长正方形,交的______边至点于,使=,那么∠ACE.的面积等于______=4cm,则△AB 52cm EFFGACABCDEBCEFEGBD,那么,如果,,垂足分别为.在正方形7⊥中,为、上一点,⊥EG的长为______.+二、选择题ABCDADCEDEPQPQ,则,折痕为,使=.如图,将一边长为812的正方形纸片的顶点5折叠至边上的点的长为( )(A)12 (B)13(D)15(C)142ABCD的边长为4cm,则图中阴影部分的面积为( )cm.9.如图,正方形1(A)6 (B)8(D)不能确定 (C)16综合、运用、诊断一、解答题ABCDEMNABBCADCEMN,、10.已知:如图,正方形=中,点、、、边上,分别在MCEANM的度数. 35∠°,求∠=EABCDACAEABEFACBCFBFEC.⊥,交11.已知:如图,是正方形=对角线上一点,且于=,.求证:ABCDCEFCGEFADH,30按顺时针方向旋转°后,得到正方形于,交312.如图,边长为的正方形绕点DH的长.求2探究、思考拓展、QDPACBABCDPABA的正方形中,点交在.上从于点向运动,连结.如图,在边长为144ABQABADQP≌△(1)试证明:无论点;运动到上何处时,都有△1ABCDABADQP上运动到什么位置时,△;的面积是正方形面积的(2)当点在6PCABBCP运动到什么位置时,,再继续在上运动到点中,当点,在整个运动过程若点(3)从点运动到点ADQ△恰为等腰三角形.3FBCDDFNM°.提示:过于点作,交∥.10.55AF.11.提示:连结3BPCHDH, 13.提示:连结=...提示:连结12ABQADQ≌△;14.(1)证明:△FEQFxyAQQE,轴于点(2)以轴于点为原点建立如图所示的直角坐标系,过点⊥作.⊥4118QEADQES∴===×ABCD正方形363244)(,QQAC在正方形对角线点的坐标为上∵点∴3344)(,Q ABPyxDyx中点时,,即=0时,运动到=两点的函数关系式为:2=-2,当+,∴过点,(04)4331ABCDADQ面积的的面积是正方形;△6ADDQAQDAADQQDQA或(3)若△=是等腰三角形,则有==或ADQQAQDPBABCD①当点此时△运动到与点=重合时,由四边形是正方形知是等腰三角形;ADQCQDADQPC与点也重合,此时,△=②当点是等腰三角形;与点重合时,点AQADxPBCCP=时,有③如图,设点=在边上运动到CPQADBCADQ∵∥∴∠.=∠AQDAQDCQPADQ又∵∠=∠,∠=∠,4CPQCQP.=∠∴∠xCQCP∴==.24ADACAQ,4=∵.==24AQACxCQ==.--=4∴42ADQCP 是等腰三角形.时,△4即当=-520XX—019学年度第一学期生物教研组工作计划指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。
人教版八年级下册数学18章正方形综合问题大题专练(原卷版)

专题18.12正方形综合问题大题专练姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷试题共30题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2020春•青山区校级期中)如图,正方形ABCD中,点E为边BC的上一动点,作AF⊥DE交DE、DC 分别于P、F点,连PC(1)若点E为BC的中点,求证:F点为DC的中点;(2)若点E为BC的中点,PE=6,PC=4√2,求PF的长.2.(2020•三门县一模)如图,点E,F分别在正方形ABCD的边DA,AB上,且BE⊥CF于点G.(1)求证:△ABE≌△BCF;(2)若四边形AECF的面积为12.①正方形ABCD的面积是;②当FG=2时,求EG的长.3.(2018•安丘市模拟)如图1,在正方形ABCD中,点E在AD的延长线上,P是对角线BD上的一点,且点P位于AE的垂直平分线上,PE交CD于点F.猜测PC和PE有什么大小及位置关系,并给出证明.4.如图,在△AFE中,∠F AE=90°,AB是EF边上的高,以AB为一边在AB的右侧作正方形ABCD,CD交AE于点M.(1)求证:△ABF≌△ADM;(2)若AF=13,DM=5,求CM的长;(3)连接DF交AB于点G,连接GM,若∠DFB=∠F AB,求证:四边形AGMD是矩形.5.(2019•宽城区一模)问题探究:如图①,在正方形ABCD中,点E在边AD上,点F在边CD上,且AE=DF.线段BE与AF相交于点G,GH是△BFG的中线.(1)求证:△ABE≌△DAF.(2)判断线段BF与GH之间的数量关系,并说明理由.问题拓展:如图②,在矩形ABCD中,AB=4,AD=6.点E在边AD上,点F在边CD上,且AE=2,DF=3,线段BE与AF相交于点G.若GH是△BFG的中线,则线段GH的长为.6.如图,在正方形ABCD中,点P在对角线AC上(不与点A、C重合),PM⊥AB于M,PN⊥BC于N,连接PD.(1)求证:四边形PMBN是矩形.(2)猜想PD、PM、PN之间的数量关系,并说明理由.7.(2019•黑龙江)如图,BD是正方形ABCD的对角线,线段BC在其所在的直线上平移,将平移得到的线段记为PQ,连接P A,过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)如图①所示,求证:AP=√2OA;(2)如图②所示,PQ在BC的延长线上,如图③所示,PQ在BC的反向延长线上,猜想线段AP、OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.8.(2019春•沙河市期末)如图,矩形ABCD和正方形ECGF.其中E、H分别为AD、BC中点,连结AF、HG、AH.(1)求证:AF=HG;(2)求证:∠F AE=∠GHC;9.(2020春•岳麓区校级期末)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)若PB=PQ,点F是BP的中点,连结EF、AF,①求证:四边形AFEP是平行四边形;②求PE的长.10.(2020春•江都区期中)如图,在正方形ABCD内有一点P满足AP=AB,PB=PC.连接AC、PD.(1)求证:△APB≌△DPC;(2)求∠P AC的度数.11.(2020春•富县期末)如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.12.(2020春•大观区校级期末)如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB =13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证:BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.13.(2020•海安市一模)如图,正方形ABCD的边长为a,点E为边BC的中点,点F在边CD上,连接AE,EF.(1)若CF=2DF,连接AF.求∠EAF的度数;(2)当∠AEF=∠DAE时,求△CEF的面积(用含a的式子表示).14.如图,在正方形ABCD中,BD为一条对角线,点P为CD边上一点,A连接AP,并将△ADP平移使AD与BC边重合,P点落在DC的延长线上的一点G处,过G点作GH⊥BD于点H,连接HP和HC (1)在图中依题意补全图形;(2)求证:PH=CH.15.(2020•浙江自主招生)已知如图,正方形ABCD和等腰直角△BEF,BE=EF,∠BEF=90°,取DF 中点G,连结EG、CG,探究EG、CG的数量关系和位置关系,并证明.16.(2013•黄冈模拟)如图,正方形ABCD中,O是对角线AC、BD的交点,过点O作OE⊥OF,分别交AB、BC于E、F.(1)求证:△OEF是等腰直角三角形.(2)若AE=4,CF=3,求EF的长.17.(2016春•洪山区期中)如图,已知正方形ABCD和等边△DCE,点F为CE的中点,AE与DF相交于点G,AG=2√3.(1)直接写出GE=;(2)求出DG的长;(3)如图,若将题中“等边△DCE”改为“DC=DE的等腰△DCE”,其他条件不变,求出BG+DG的值.18.(2020春•兴化市期中)如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DF A的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.19.(2020春•常州期末)如图,正方形ABCD的对角线AC、BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.(1)判断四边形AECF的形状,并证明你的猜想;(2)若AB=3√2,BE=3,求四边形AECF的周长.20.(2020春•江阴市期中)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B 点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.设点N的坐标为(m,n).(1)若建立平面直角坐标系,满足原点在线段BD上,点B(﹣1,0),A(0,1).且BM=t(0<t≤2),则点D的坐标为,点C的坐标为;请直接写出点N纵坐标n的取值范围是;(2)若正方形的边长为2,求EC的长,以及AM+BM+CM的最小值.(提示:连结MN:√4+2√3=√3+1,√4−2√3=√3−1)21.(2019春•滨海县期中)如图1,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=∠CEF =45°.(1)若直线EF与AB、AD的延长线分别交于点M、N,求证:EF2=ME2+NF2;(2)如图2,将正方形改为矩形,若其余条件不变,请写出线段EF、BE、DF之间的数量关系,并说明理由.22.(2019秋•邳州市期中)如图,在正方形ABCD中,E、F分别是BC、CD边上的点,∠EAF=45°.(1)如图(1),试判断EF,BE,DF间的数量关系,并说明理由;(2)如图(2),若AH⊥EF于点H,试判断线段AH与AB的数量关系,并说明理由.23.(2019春•无锡期中)如图,边长为8的正方形ABCD的对角线AC,BD交于点O,M是AB边上一动点,ME⊥AO,MF⊥BO.(1)求证:四边形OEMF为矩形;(2)连接EF,求EF的最小值.24.(2020秋•海珠区校级期中)(1)如图①,点E、F分别在正方形ABCD的边AB、BC上,∠EDF=45°,连接EF,求证:EF=AE+FC.(2)如图②,点E,F在正方形ABCD的对角线AC上,∠EDF=45°,猜想EF、AE、FC的数量关系,并说明理由.25.(2020秋•永年区期中)(1)如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,求证:EF=BE+FD;(2)如图2,四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足什么关系时,仍有EF=BE+FD,说明理由.26.(2020春•南岗区校级期中)如图,四边形ABCD是正方形,点E,H分别在BC,AB上,点G在BA 的延长线上,且CE=AG,DE⊥CH于F.(1)求证:四边形GHCD为平行四边形.(2)在不添加任何辅助线的情况下,请直接写出图中所有与∠ECF互余的角.27.(2020春•梁溪区期中)如图,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且∠P AE=∠E,PE交CD于点F.(1)求证:PC=PE;(2)求∠CPE的度数.28.(2020春•下陆区校级期中)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE <BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为8,E为OM的中点,求MN的长.29.(2020春•涧西区校级期中)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,经通过平移得到的线段记为PQ,连接P A、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形?(2)请判断OA、OP之间的数量关系和位置关系,并加以证明.30.(2019春•保山期中)四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(1)求证:AM=AD+MC.(2)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,试判断AM=AD+MC是否成立?若成立,请给出证明,若不成立,请说明理由;。
人教版八年级数学 下册 第十八章 18.2.3 正方形 课时练(含答案)

第十八章平行四边形18.2.3 正方形一、选择题1、正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等2、四边形ABCD的对角线AC = BD,且AC⊥BD,分别过A、B、C、D作对角线的平行线,则所构成的四边形是().A. 平行四边形B. 矩形C. 菱形D. 正方形3、下列命题中是假命题的是()A.一组对边平行且相等的四边形是平行四边形B.一组对边相等且有一个角是直角的四边形是矩形C.一组邻边相等的平行四边形是菱形D.一组邻边相等的矩形是正方形4、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是( )A.3:4B.5:8C.9:16D.1:25、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF∠AB,垂足为F,则EF的长为()A.1B.C. D.二、填空题6、如图,ABCD是正方形,E是CF上一点,若DBEF是菱形,则∠EBC=________.第6题图第7题图7、如图,已知正方形ABCD的边长为10,点P是对角线BD上的一个动点,M、N分别是BC、CD边上的中点,则PM+PN的最小值是___________.8、如图,边长为a的正方形ABCD和边长为b的正方形BEFG排放在一起,O1和O2分别是两个正方形的中心,则阴影部分的面积为,线段O1O2的长为.9、正方形边长为a,若以此正方形的对角线为一边作正方形,则所作正方形的对角线长为.10、如图,在Rt△ABC中,△C=90°,DE垂直平分AC,DF△BC,当△ABC满足条件AC=BC时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)三、解答题11、如图,E是正方形ABCD外一点,AE=AD,∠ADE=75°,求∠AEB的度数。
12、如右图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F.(1)求证:DE=DF.(2)只添加一个条件,使四边形EDFA是正方形,•请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明)13、已知:如图,△ABC中,△ABC=90°,BD是△ABC的平分线,DE△AB于点E,DF△BC于点F.求证:四边形DEBF是正方形.14、如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.15、如右图,要把边长为1的正方形ABCD 的四个角(阴影部分)剪掉,得一四边形A 1B 1C 1D 1,试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的59,请说明理由.16、如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(8,8),将正方形ABCO绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连CH 、CG .(1)求证:∠CBG∠∠CDG ;(2)求∠HCG 的度数;判断线段HG 、OH 、BG 的数量关系,并说明理由; (3)连结BD 、DA 、AE 、EB 得到四边形AEBD ,在旋转过程中,四边形AEBD 能否为矩形?如果能,请求出点H 的坐标;如果不能,请说明理由.参考答案:一、1、C 2、D 3、B 4、B 5、C 二、6、7、10、 8、1ab 49、2a10、考点: 正方形的判定. 专题: 计算题;开放型.分析:由已知可得四边形的四个角都为直角,因此再有四边相等即是正方形添加条件.此题可从四边形DECF 是正方形推出.解答:解:设AC=BC ,即△ABC 为等腰直角三角形,△△C=90°,DE 垂直平分AC ,DF △BC , △△C=△CED=△EDF=△DFC=90°, DF=AC=CE ,DE=BC=CF ,11A1A 图3-21△DF=CE=DE=CF,△四边形DECF是正方形,故答案为:AC=BC.点评:此题考查的知识点是正方形的判定,解题的关键是可从四边形DECF是正方形推出△ABC满足的条件.三、11、∵△ADE中,AE=AD,∠ADE=75°,∴∠AED=75°(等边对等角)∴∠EAD=180°-75°×2=30°又∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴△ABE中,AB=AE,∠BAE=120°∴∠AEB=°°°12、(1)提示:证△DEB≌△DFC,(2)∠A=900167,四边形AFDE是平行四边形等(方法很多)13、考点:正方形的判定.专题:证明题.分析:由DE△AB,DF△BC,△ABC=90°,先证明四边形DEBF是矩形,再由BD是△ABC 的平分线,DE△AB于点E,DF△BC于点F得出DE=DF判定四边形DEBF是正方形.解答:解:△DE△AB,DF△BC,△△DEB=△DFB=90°,又△△ABC=90°,△四边形BEDF为矩形,△BD是△ABC的平分线,且DE△AB,DF△BC,△DE=DF,△矩形BEDF为正方形.点评:本题考查正方形的判定、角平分线的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.14、(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.15、提示:AA1 = BB1 = CC1 = DD1 =13(或=23).16、(1)∠正方形ABCO绕点C旋转得到正方形CDEF,∠CD=CB,∠CDG=∠CBG=90°.在Rt∠CDG和Rt∠CBG中,,∠∠CDG∠∠CBG(HL)1 (180 2120-)30=(2)解:∠∠CDG∠∠CBG,∠∠DCG=∠BCG,DG=BG.在Rt∠CHO和Rt∠CHD中,∠ ,∠∠CHO∠∠CHD(HL),∠∠OCH=∠DCH,OH=DH,∠∠HCG=∠HCD+∠GCD= ∠OCD+ ∠DCB= ∠OCB=45°,∠HG=HD+DG=HO+BG(3)解:四边形AEBD可为矩形.如图,连接BD、DA、AE、EB,四边形AEBD若为矩形,则需先为平行四边形,即要对角线互相平分,合适的点只有G为AB 中点的时候.∠DG=BG,∠DG=AG=EG=BG,即平行四边形AEBD对角线相等,则其为矩形,∠当G点为AB中点时,四边形AEBD为矩形.∠四边形DAEB为矩形,∠AG=EG=BG=DG.∠AB=6,∠AG=BG=3.设H点的坐标为(x,0),则HO=x∠OH=DH,BG=DG,∠HD=x,DG=3.在Rt∠HGA中,∠HG=x+3,GA=3,HA=6﹣x,∠(x+3)2=32+(6﹣x)2,解得x=2.∠H点的坐标为(2,0).。
浙教版八年级数学下册《5.3正方形(2)》同步练习(含答案)

5.3正方形(2)A练就好基础基础达标1.正方形具有而菱形不一定具有的特征是(D)A.对边互相平行B.对角线互相垂直平分C.是中心对称图形D.有4条对称轴2.如图所示,在正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有(C) A.4个B.6个C.8个D.10个第2题图第3题图3.如图所示,在菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为(C)A.14B.15C.16D.174.如图所示,在正方形ABCD中,E为CD边上一点,F为BC延长线上一点,CE=CF.若∠BEC=80°,则∠EFD的度数为(C)A.20°B.25°C.35°4题图第5题图5.如图所示,正方形ABCD的对角线相交于点O,E是BC上任意一点,EG⊥BD于点G,EF⊥AC于点F.若AC=10,则EG+EF的值为(C)A.10 B.8 C.5 D.46.如图所示,正方形ABCD=FC=1 cm,那么EF的长是__10_cm__.6题图第7题图7.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为(2,3).8.如图所示,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF.(2)若∠ABE=55°,求∠EGC的大小.解:(1)证明:∵四边形ABCD 是正方形, ∴∠ABC =90°,AB =BC . ∵BE ⊥BF ,∴∠FBE =90°.∵∠ABE +∠EBC =90°,∠CBF +∠EBC =90°, ∴∠ABE =∠CBF .在△AEB 和△CFB 中,∵AB =BC ,∠ABE =∠CBF ,BE =BF , ∴△AEB ≌△CFB (SAS ),∴AE =CF .(2)∠EGC =∠EBG +∠BEF =35°+45°=80°.9.如图所示,在正方形ABCD 中,G 为BC 边上一点,BE ⊥AG 于点E ,DF ⊥AG 于点F ,连结DE .(1)求证:△ABE ≌△DAF .(2)若AF =1,四边形ABED 的面积为解:(1)证明:∵四边形ABCD 是正方形, ∴AB =AD .∵DF ⊥AG ,BE ⊥AG ,∴∠BAE +∠DAF =90°,∠DAF +∠ADF =90°, ∴∠BAE =∠ADF .在△ABE 和△DAF 中, ∵⎩⎪⎨⎪⎧∠BAE =∠ADF ,∠AEB =∠DF A ,AB =AD ,∴△ABE ≌△DAF (AAS ).(2)设EF =x ,则AE =DF =x +1,由题意得2×12×(x +1)×1+12×x ×(x +1)=6,解得x =2或-5(舍去),∴EF =2.B 更上一层楼 能力提升10.·嘉兴将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( A )A B C D11.如图所示,E 为边长为2的正方形ABCD 的对角线上一点,BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值为( D )A.22B.12C.32D.2 12.·青岛已知正方形ABCD 的边长为5,点E ,F 分别在AD ,DC 上,AE =DF =2,BE 与AF 相交于点G ,H 为BF 的中点,连接GH ,则GH 的长为__1234__.13.如图,在正方形ABCD 中,点E 在对角线AC 上,点F 在边BC 上,连结BE ,DF ,DF 交对角线AC 于点G ,且DE =DG . 求证:(1)AE =CG ; (2)BE ∥DF .证明:(1)∵DE =DG , ∴∠DEG =∠DGE , ∴∠AED =∠CGD .∵四边形ABCD 是正方形,∴AD =CD =BC ,∠DAC =∠BCE =∠DCA =45°. 在△ADE 和△CDG 中, ∵⎩⎪⎨⎪⎧∠AED =∠CGD ,∠DAC =∠DCA ,AD =CD ,∴△ADE ≌△CDG (AAS ), ∴AE =CG ;(2)在△BCE 和△DCE 中, ∵⎩⎪⎨⎪⎧BC =DC ,∠BCE =∠DCE ,CE =CE ,∴△BCE ≌△DCE (SAS ),∴∠BEC =∠DEG ,又∵∠DGE =∠DEG , ∴∠BEC =∠DGE , ∴BE ∥DF .C 开拓新思路 拓展创新14.如图,在正方形ABCD 中,P 是对角线BD 上的一点,过点P 作PE ⊥BC 于点E, PF ⊥CD 于点F .(1)猜想线段P A ,PE ,PF 之间的数量关系,并给出证明; (2)猜想线段P A ,EF 之间的位置关系,并给出证明. 解:(1)P A 2=PE 2+PF 2 证明:连结AC ,PC ,∵四边形ABCD 是正方形,∴BD 垂直平分AC ,∠BCD =90°, ∴AP =CP .∵PE ⊥BC ,PF ⊥CD , ∴∠PEC =∠PFC =90°, ∴四边形PECF 是矩形, ∴PC =EF ,∠EPF =90°, ∴AP =EF .∵EF 2=PE 2+PF 2, ∴P A 2=PE 2+PF 2. (2)AP ⊥EF .证明:过点P 作PN ⊥AB ,垂足为点N ,延长AP ,交EF 于点M , ∵四边形ABCD 是正方形,∴∠ABP =∠CBD =45°, ∴△DFP 为等腰直角三角形, ∴DF =PF ,又AN =DF , ∴AN =FP .又∵NP ⊥AB ,PE ⊥BC ,∴四边形BNPE 是正方形,∴NP =EP . ∵AP =PC ,四边形PECF 为矩形, ∴EF =PC ,∴AP =EF . 在△ANP 与△FPE 中, ∵⎩⎪⎨⎪⎧AN =FP ,NP =EP ,AP =EF ,∴△ANP ≌△FPE (SSS ), ∴∠NAP =∠PFE .∵在△APN 与△FPM 中,∠APN =∠FPM ,∠NAP =∠PFM , ∴∠PMF =∠ANP =90°,∴AP ⊥EF .15.如图所示,在△ABC 中,∠ACB =90°,AC =6,BC =8,以斜边AB 为边向外作正方形ABDE ,求CE 的长.第15题图第15题答图解:过点E作EF⊥CA于点F,易证△ABC≌△EAF,∴EF=AC=6,AF=BC=8,∴CF=14.∴CE=62+142=258.。
2020届人教版八年级数学下册 18.2.3 正方形(2)同步练习(含解析)

18.2.3正方形(2)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线互相垂直的矩形是正方形;(4)对角线相等的菱形是正方形.2.判定一个四边形是正方形,一般有两种思路:一种是先证四边形是菱形,再证明它有一个角是直角或对角线相等;另一种是先证明四边形是矩形,再证它有一组邻边相等或对角线互相垂直.基础知识和能力拓展训练一.选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形2.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个3.已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC=BDAB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC4.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④5.如图,在矩形ABCD中,AD=2AB,E、F分别是AD、BC的中点,连接AF与BE、CE与DF 分别交于点M、N两点,则四边形EMFN是()A.正方形B.菱形 C.矩形 D.无法确定6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④8.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30° B.45° C.60° D.90°9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.810.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40二.填空题11.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD= 时,四边形MENF是正方形.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,能证明四边形BECF为正方形的是.①BC=AC;②CF⊥BF;③BD=DF;④AC=BF.15.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个(填代号).16.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为.17.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,AE=CF,则多边形ABCFDE的面积是.三.解答题18.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC 于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)20.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)21.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.22.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F 在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?答案与试题解析一.选择题1.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.解:A、正确,一组邻边相等的平行四边形是菱形;B、正确,对角线互相垂直的平行四边形是菱形;C、正确,有一个角为90°的平行四边形是矩形;D、不正确,对角线相等的平行四边形是矩形而不是正方形;故选D.2.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个【分析】根据中心对称的概念以及平行四边形、正方形、菱形的判定定理进行判断即可.解:(1)因为正奇边形不是中心对称图形,故等边三角形不是中心对称图形,此选项错误;(2)一组对边平行,另一组对边相等的四边形不一定是平行四边形,因为等腰梯形也符合此条件,此选项错误;(3)两条对角线互相垂直的矩形是正方形,此选项正确;(4)两条对角线互相垂直平分的四边形是菱形,此选项错误.故选:A.3.已知在四边形ABCD中,AC与BD相交于点O,那么下列条件中能判定这个四边形是正方形的是()A.AC=BDAB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.解:A、不能,只能判定为矩形;B、不能,只能判定为平行四边形;C、能;D、不能,只能判定为菱形.故选:C.4.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④【分析】利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.解:A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选:B.5.如图,在矩形ABCD中,AD=2AB,E、F分别是AD、BC的中点,连接AF与BE、CE与DF 分别交于点M、N两点,则四边形EMFN是()A.正方形B.菱形 C.矩形 D.无法确定【分析】利用矩形的性质与判定方法得出四边形EMFN是矩形,进而利用等腰直角三角形的性质得出AM=ME,BM=MF=AM,则ME=MF,进而求出即可.解:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∠EAB=∠ABF=∠BCD=∠CDA=90°,又∵E,F分别为AD,BC中点,AD=2AB,∴AE∥BF,ED∥CF,AE=BF=DE=CF=AB=DC,∴∠ABE=∠AEB=∠DEC=∠DCE=∠DFC=45°,∴∠BEN=90°,又∵DE BF,AE FC,∴四边形EMFN是矩形,∴AM⊥BE,BM⊥AF,∴AM=ME,BM=MF=AM,∴ME=MF,∴四边形EMFN是正方形.故选:A.6.如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四边形ACDF是平行四边形B.当点E为BC中点时,四边形ACDF是矩形C.当点B与点E重合时,四边形ACDF是菱形D.四边形ACDF不可能是正方形【分析】根据平行四边形、矩形、菱形、正方形的判定方法一一判断即可.解:A、正确.∵∠ACB=∠EFD=30°,∴AC∥DF,∵AC=DF,∴四边形AFDC是平行四边形.故正确.B、错误.当E是BC中点时,无法证明∠ACD=90°,故错误.C、正确.B、E重合时,易证FA=FD,∵四边形AFDC是平行四边形,∴四边形AFDC是菱形,D、正确.当四边相等时,∠AFD=60°,∠FAC=120°,∴四边形AFDC不可能是正方形.故选B.7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④【分析】根据正方形的判定定理即可得到结论.解:与左边图形拼成一个正方形,正确的选择为③,故选C.8.如图,在△ABC中,O是AC上一动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,若点O运动到AC的中点,且∠ACB=()时,则四边形AECF是正方形.A.30° B.45° C.60° D.90°【分析】由题意可得四边形AECF为一矩形,要使四边形AECF是正方形,只需添加一条件,使其邻边相等即可.解:过点E,F作EH⊥BD,FG⊥BD,∵CE,CF为∠ACB,∠ACD的角平分线,∴∠ECF=90°.∵MN∥BC,∴∠FEC=∠ECH,∵∠ECH=∠ECO,∴∠FEC=∠ECO,∴OE=OC.同理OC=OF,∴OE=OF,∵点O运动到AC的中点,∴OA=OC,∴四边形AECF为一矩形,若∠ACB=90°,则CE=CF,∴四边形AECF为正方形.故选:D.9.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.8【分析】如图,过点D作BC的垂线,交BC的延长线于F,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°,AD=DC,利用AAS可以判断△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,DE=4.解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∴∠A+∠BCD=180°,∵∠FCD+∠BCD=180°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选C.10.如图,正方形ABCD的边长为8,在各边上顺次截取AE=BF=CG=DH=5,则四边形EFGH的面积是()A.30 B.34 C.36 D.40【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出四边形EFGH是正方形,由边长为8,AE=BF=CG=DH=5,可得AH=3,由勾股定理得EH,得正方形EFGH的面积.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG.在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形,∵AB=BC=CD=DA=8,AE=BF=CG=DH=5,∴EH=FE=GF=GH==,∴四边形EFGH的面积是:×=34,故选B.二.填空题11.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是①③④.【分析】由矩形、菱形、正方形的判定方法对各个选项进行判断即可.解:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AB⊥AD,∴四边形ABCD是正方形,①正确;∵四边形ABCD是平行四边形,AB=BD,AB⊥BD,∴平行四边形ABCD不可能是正方形,②错误;∵四边形ABCD是平行四边形,OB=OC,∴AC=BD,∴四边形ABCD是矩形,又OB⊥OC,即对角线互相垂直,∴平行四边形ABCD是正方形,③正确;∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,又∵AC=BD,∴四边形ABCD是矩形,∴平行四边形ABCD是正方形,④正确;故答案为:①③④.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD= 1:2 时,四边形MENF是正方形.【分析】首先得出四边形MENF是平行四边形,再求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.14.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,能证明四边形BECF为正方形的是①②③.①BC=AC;②CF⊥BF;③BD=DF;④AC=BF.【分析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC 进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当①BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项①正确;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项②正确;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项③正确;当AC=BF时,无法得出菱形BECF是正方形,故选项④错误.故答案为:①②③.15.四边形ABCD的对角线AC、BD相交于点O,AD∥BC,AD=BC,为使四边形ABCD为正方形,还需要满足下列条件中:①AC=BD;②AB=AD;③AB=CD;④AC⊥BD中的哪两个①②或①④(填代号).【分析】因为AD∥BC,AD=BC,所以四边形ABCD为平行四边形,添加①则可根据对角线相等的平行四边形是矩形,证明四边形是矩形,故可根据一组邻边相等的矩形是正方形来添加条件.解:∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,若AB=AD,则四边形ABCD为正方形;若AC⊥BD,则四边形ABCD是正方形.故填:①②或①④.16.已知如图,△ABC为等腰三角形,D为CB延长线上一点,连AD且∠DAC=45°,BD=1,CB=4,则AC长为2.【分析】作辅助线,构建正方形AHGF,则AF=GH=GF,设GC=x,则FG=AF=HG=x+2,DG=x﹣1,在Rt△DGC中,利用勾股定理列方程可求得x的值,最后利用勾股定理计算AC的长即可.解:过A作AE⊥DC于E,将△AEC沿AC翻折得△AFC,将△ADE沿AD翻折得△ADH,延长FC、HD交于G,则∠EAC=∠CAF,∠EAD=∠HAD,∠H=∠F=90°,∴∠EAC+∠EAD=∠CAF+∠HAD,∵∠DAC=45°,即∠EAC+∠EAD=45°,∴∠HAF=90°,∴四边形AHGF是矩形,∵AH=AE,AE=AF,∴AH=AF,∴四边形AHGF是正方形,∴AF=GH=GF,∵AB=AC,AE⊥BC,∴BE=EC=2,由折叠得:FC=EC=2,HD=DE=3,设GC=x,则FG=AF=HG=x+2,∴DG=x﹣1,在Rt△DGC中,DC2=DG2+GC2,52=(x﹣1)2+x2,解得:x1=4,x2=﹣3(舍),∴AF=x+2=4+2=6,Rt△ACF中,AC==2.故答案为:2.17.如图所示,多边形ABCFDE中,AB=8,BC=12,ED+DF=13,AE=CF,则多边形ABCFDE的面积是57.75 .【分析】运用拼图的方法,构造一个正方形,用大正方形的面积﹣小正方形的面积,即可得出所求多边形的面积.解:运用拼图的方法,构造一个正方形,如图所示:大正方形的边长为12+8=20,小正方形的边长ED+DF=13,∴多边形ABCFDE的面积=(大正方形的面积﹣小正方形面积)=(202﹣132)=57.75.故答案为:57.75.三.解答题18.已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.【分析】先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.证明:∵BF∥CE,CF∥BE∴四边形BECF是平行四边形,又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB∴∠EBA=∠ECB=45°∴∠BEC=90°,BE=CE∴四边形BECF是正方形.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE⊥BC 于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由(提示:可作DG⊥AB于点G)【分析】过D作DG垂直AB于点G,由三个角为直角的四边形为矩形得到四边形CEDF为矩形,由AD为角平分线,利用角平分线定理得到DG=DF,同理得到DE=DG,等量代换得到DE=DF,利用邻边相等的矩形为正方形即可得证.证明:如图,过D作DG⊥AB,交AB于点G,∵∠C=∠DEC=∠DFC=90°,∴四边形CEDF为矩形,∵AD平分∠CAB,DF⊥AC,DG⊥AB,∴DF=DG;∵BD平分∠ABC,DG⊥AB,DE⊥BC,∴DE=DG,∴DE=DF,∴四边形CEDF为正方形.20.如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是正方形;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)【分析】(1)根据正方形性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,求出AH=DG=CF=BE=5,证△AEH≌△DHG≌△CGF≌△BFE,推出EH=EF=FG=HG,∠AHE=∠DGH,证出∠EHG=90°,即可得出答案.(2)在Rt△AEH中,由勾股定理求出EH=,根据正方形面积公式求出即可.(3)四边形EFGH的周长是×4,求出即可.解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.6.21.如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB 于点E,且CF=AE;(1)试判断四边形BECF是什么四边形?并说明理由.(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.【分析】(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,又因为CF=AE,BE=EC=BF=FC,根据四边相等的四边形是菱形,所以四边形BECF是菱形;(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.解:(1)四边形BECF是菱形.∵EF垂直平分BC,∴BF=FC,BE=EC,∴∠3=∠1,∵∠ACB=90°,∴∠3+∠4=90°,∠1+∠2=90°,∴∠2=∠4,∴EC=AE,∴BE=AE,∵CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵∠A=45°,∠ACB=90°,∴∠1=45°,∴∠EBF=2∠A=90°,∴菱形BECF是正方形.22.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F 在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?【分析】(1)已知AF=EC,只需证明AF∥EC即可.DE垂直平分BC,易知DE是△ABC的中位线,则FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可证得AF∥EC;(2)要使得平行四边形ACEF为菱形,则AC=CE,又∵CE=AB,∴使得AB=2AC即可,根据AB、AC即可求得∠B的值;(3)通过已知在△ABC中,∠ACB=90°,推出∠ACE<90°,不能为直角,进行说明.解:(1)四边形ACEF是平行四边形;∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC.∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF.∴∠F=∠5=∠1=∠2.∴∠FAE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF为菱形;理由:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形;(3)四边形ACEF不可能是正方形,∵∠ACB=90°,∴∠ACE<∠ACB,即∠ACE<90°,不能为直角,所以四边形ACEF不可能是正方形.。
人教版八年级数学下《正方形》拔高练习

人教版八年级数学下《正方形》拔高练习《正方形》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有()A.1个B.2个C.3个D.4个2.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=,则线段BN的长为()A.B.C.2D.13.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM 的长为()A.2B.2C.4﹣D.8﹣44.(5分)如图,有两个正方形A,B,现将B放置在A的内部得到图甲.将A,B并列放置,以正方形A与正方形B的边长之和为新的边长构造正方形得到图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.13B.14C.15D.165.(5分)已知?ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时?ABCD为矩形B.当AB=AD时?ABCD为正方形C.当∠ABC=90°时?ABCD为菱形D.当AC⊥BD时?ABCD为正方形二、填空题(本大题共5小题,共25.0分)6.(5分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为.7.(5分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为.8.(5分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为.9.(5分)如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)10.(5分)一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为°.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长,交BC边的延长线于E点,对角线BD交AG于F 点.已知FG=2,求线段AE的长度.12.(10分)如图,在正方形ABCD中,E为边BC上一点,F 是AE的中点,过点F垂直于AE的直线与边CD的交点为M,与AD 的延长线的交点为N.若AB=12,BE=5,求DN的长.13.(10分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,请判断AE和BF的关系,并说明理由.14.(10分)如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠F AE,求证:AF=AD+CF.15.(10分)如图1,P为正方形ABCD内一点,且P A:PB:PC=1:2:3,求∠APB的度数.小明同学的想法是:不妨设P A=x,PB=2x,PC=3x,设法把P A、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答图2中∠APB=度.请你参考小明同学的方法,解答下列问题.如图3,P是等边△ABC内一点,P A:PB:PC=3:4:5,那么∠APB=度.请写出推理过程.《正方形》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有()A.1个B.2个C.3个D.4个【分析】连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD 的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴BE=CF,在△BCE与△CDF中,∴△BCE≌△CDF,(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF,故①正确;在Rt△CGD中,H是CD边的中点,∴HG=CD=AD,故④正确;连接AH,同理可得:AH⊥DF,∵HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD,故②正确;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG.故③正确.故选:D.【点评】此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.2.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=,则线段BN的长为()A.B.C.2D.1【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH 为等腰直角三角形,再求出AH,MH,MB,然后证明∠BNM=∠BMN,BN =BM=1.【解答】解:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∵AM=,∴AH=MH=1,∵CM平分∠ACB,∠ACB=45°,∠MBC=90°∴∠ACM=∠BCM=22.5°,BM=MH=1,∵∠BAC=45°,∴∠BMC=45°+22.5°=67.5°,∵∠BNM=∠ONC=90°﹣22.5°=67.5°,∴∠BNM=∠BMN,∴BN=BM=1,故选:D.【点评】本题考查了正方形的性质,角平分线的性质,根据角平分线的性质作辅助线是解决问题的关键.3.(5分)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的平分线分别交AB、BD于点M、N,若AD=4,则线段AM 的长为()A.2B.2C.4﹣D.8﹣4【分析】过点M作MF⊥AC于点F,根据角平分线的性质可知FM=BM,再由四边形ABCD为正方形,可得出∠F AM=45°,在直角三角形中用∠F AM的正弦值即可求出FM与AM的关系,最后由AM+BM=4列方程求解即可..【解答】解:过点M作M F⊥AC于点F,如图所示.∵MC平分∠ACB,四边形ABCD为正方形,∴∠CAB=45°,FM=BM.在Rt△AFM中,∠AFM=90°,∠F AM=45°,AM=2,∴BM=FM=AM?sin∠F AM=AM.又∵AM+BM=4,∴AM+AM=4,解得:AM=8﹣4.故选:D.【点评】本题考查了正方形的性质以及角平分线的性质,解题的关键是求出FM 的长度与AM的关系.本题属于基础题,难度不大,解决该题型题目时,根据角平分的性质及正方形的特点找出边角关系,再利用解直角三角形的方法即可得以解决.4.(5分)如图,有两个正方形A,B,现将B放置在A的内部得到图甲.将A,B并列放置,以正方形A与正方形B的边长之和为新的边长构造正方形得到图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()A.13B.14C.15D.16【分析】设正方形A的边长为a,正方形B的边长为b,由图形得出关系式求解即可.【解答】解:设正方形A的边长为a,正方形B的边长为b,由图甲得a2﹣b2﹣2(a﹣b)b=1即a2+b2﹣2ab=1,由图乙得(a+b)2﹣a2﹣b2=12,2ab=12,所以a2+b2=13,故选:A.【点评】本题主要考查了正方形的性质,完全平方公式的几何背景,解题的关键是根据图形得出数量关系.5.(5分)已知?ABCD,其对角线的交点为O,则下面说法正确的是()A.当OA=OB时?ABCD为矩形B.当AB=AD时?ABCD为正方形C.当∠ABC=90°时?ABCD为菱形D.当AC⊥BD时?ABCD为正方形【分析】直接利用矩形、菱形的判定方法分析得出答案.【解答】解:A、当OA=OB时,可得到?ABCD为矩形,故此选项正确;B、当AB=AD时?ABCD为菱形,故此选项错误;C、当∠ABC=90°时?ABCD为矩形,故此选项错误;D、当AC⊥BD时?ABCD为菱形,故此选项.故选:A.【点评】此题主要考查了矩形、菱形的判定,正确掌握相关判定方法是解题关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=3,OC=6,则另一直角边BC的长为9.【分析】过O作OF⊥BC,过A作AM⊥OF,根据正方形的性质得出∠A OB=90°,OA=OB,求出∠BOF=∠OAM,根据AAS证△AOM≌△BOF,推出AM=OF,OM=FB,求出四边形ACFM为矩形,推出AM=CF,AC=MF=3,得出等腰三角形三角形OCF,根据勾股定理求出CF=OF=6,求出BF,即可求出答案.【解答】解:过O作OF⊥BC于F,过A作AM⊥OF于M,∵∠ACB=90°,∴∠AMO=∠OFB=90°,∠ACB=∠CFM=∠AMF=90°,∴四边形ACFM是矩形,∴AM=CF,AC=MF=3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=6,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.【点评】本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,有一定的难度.7.(5分)如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为16.【分析】运用正方形边长相等,再根据同角的余角相等可得∠BAC =∠DCE,然后证明△ACB≌△DCE,再结合全等三角形的性质和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2=7+9=16,即S b=16,则b的面积为16,故答案为16【点评】本题主要考查对全等三角形和勾股定理的综合运用,关键是证明△ACB ≌△DCE.8.(5分)已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别27和54,则正方形③的边长为9.【分析】根据正方形的性质就可以得出∠EAB=∠EBD=∠BCD=90°,BE=BD,∠AEB=∠CBD,就可以得出△ABE≌△CDB,得出AE=BC,AB=CD,由勾股定理就可以得出BE的值,进而得出结论.【解答】解:∵四边形①、②、③都是正方形,∴∠EAB=∠EBD=∠BCD=90°,BE=BD,∴∠AEB+∠ABE=90°,∠ABE+∠DBC=90°,∴∠AEB=∠CBD.在△ABE和△CDB中,,∴△ABE≌△CDB(AAS),∴AE=BC,AB=CD.∵正方形①、②的面积分别27cm2和54cm2,∴AE2=27,CD2=54.∴AB2=27.在Rt△ABE中,由勾股定理,得BE2=AE2+AB2=27+54=81,∴BE=9.故答案为:9.【点评】本题考查的是勾股定理,正方形的性质的运用,正方形的面积公式的运用,三角形全等的判定及性质的运用,解答时证明△ABE≌△CDB是关键.9.(5分)如图,有两个正方形夹在AB与CD 中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为70度(正方形的每个内角为90°)【分析】如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.利用四边形内角和36°,求出∠HMF,再根据∠KME=∠MKG+∠MEH,求出∠MKG即可解决问题;【解答】解:如图,延长KH交EF的延长线于M,作MG⊥AB 于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,故答案为70.【点评】本题利用正方形的四个角都是直角,直角的邻补角也是直角,四边形的内角和定理和两直线平行,内错角相等的性质,延长正方形的边构造四边形是解题的关键.10.(5分)一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为150°.【分析】设围成的小三角形为△ABC,分别用∠1、∠2、∠3表示出△ABC的三个内角,再利用三角形的内角和等于180°列式整理即可得解.【解答】解:如图,∠BAC=180°﹣60°﹣∠2=120°﹣∠2,∠ABC=180°﹣90°﹣∠1=90°﹣∠1,∠ACB=180°﹣60°﹣∠3=120°﹣∠3,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2+∠3=150°.故答案为:150.【点评】本题考查了正方形的性质、等边三角形的性质、三角形的内角和定理,用∠1、∠2、∠3表示出△ABC的三个内角是解题的关键,也是本题的难点.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长,交BC边的延长线于E点,对角线BD交AG于F 点.已知FG=2,求线段AE的长度.【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出=2,结合FG=2可求出AF、AG的长度,由AB∥CD,可得,即可得AE=2AG=12.【解答】解:∵G为CD边中点,∴CG=DG=CD∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=6.∵AB∥DC∴∴AE=2GE=2(AE﹣AG)∴AE=2AG=12【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键12.(10分)如图,在正方形ABCD中,E为边BC上一点,F 是AE的中点,过点F垂直于AE的直线与边CD的交点为M,与AD 的延长线的交点为N.若AB=12,BE=5,求DN的长.【分析】根据正方形的性质得到AB=AD,∠B=90°,AD∥BC,根据平行线的性质得到∠AEB=∠F AN,根据新的数据线的性质和勾股定理得到AN=16.9,根据线段的和差即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AEB=∠F AN,∵FN⊥AE,∴∠AFN=90°,∴∠B=∠AFN,∴△ABE∽△NF A,∴,在Rt△ABE中.AE===13,∵F是AE的中点,∴AF=AE=6.5,∴=,∴AN=16.9,∵AB=AD=12,∴DN=AN﹣AD=4.9.【点评】本题考查了正方形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.13.(10分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,请判断AE和BF的关系,并说明理由.【分析】根据正方形的性质得到AD=CD=AB=BC,∠ADE=∠BAF=90°,证明△BAF≌△ADE,根据全等三角形的性质证明.【解答】解:AE=BF,AE⊥BF,理由如下:∵四边形ABCD是正方形,∴AD=CD=AB=BC,∠ADE=∠BAF=90°,∵CE=DF,∴AF=DE,在△BAF和△ADE中,,∴△BAF≌△ADE(SAS),∴AE=BF,∠ABF=∠DAE,∵∠DAE+∠BAE=90°,∴∠ABF+∠BAE=90°,即AE⊥BF.【点评】本题考查的是正方形的性质,全等三角形的判定和性质,掌握正方形的四条边相等,四个角都是90°是解题的关键.14.(10分)如图,已知E是正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠F AE,求证:AF=AD+CF.【分析】过E点作EG⊥AF,垂足为G,根据题干条件首先证明Rt△AEG≌Rt △AED,即可得AG=AD,同理证明出CF=GF,于是结论可以证明AF=AD+CF.【解答】解:过E点作EG⊥AF,垂足为G,∵∠DAE=∠EAF,∠B=∠AGE=90°,即AE为角平分线,ED⊥AD,EG⊥AG,∴DE=EG,在Rt△AEG和Rt△AED中,,∴Rt△AEG≌Rt△AED(HL),∴AG=AD,∵E是CD的中点∴DE=EC=EG同理可知CF=GF,∴AF=AG+FG=AD+CF.【点评】本题主要考查正方形的性质和全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握正方形的性质,此题难度不大.15.(10分)如图1,P为正方形ABCD内一点,且P A:PB:PC=1:2:3,求∠APB的度数.小明同学的想法是:不妨设P A=x,PB=2x,PC=3x,设法把P A、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连结PE,问题得以解决.请你回答图2中∠APB=135度.请你参考小明同学的方法,解答下列问题.如图3,P是等边△ABC内一点,P A:PB:PC=3:4:5,那么∠APB=150度.请写出推理过程.。
华师大版数学八年级下册_《正方形》提高训练

《正方形》提高训练一、选择题(本大题共5小题,共25.0分)1.(5分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形2.(5分)如图,正方形ABCD中,点E、F、G分别为边AB、BC、AD上的中点,连接AF、DE交于点M,连接GM、CG,CG与DE交于点N,则结论①GM⊥CM;②CD=DM;③四边形AGCF是平行四边形;④∠CMD=∠AGM中正确的有()个.A.1B.2C.3D.43.(5分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°4.(5分)正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.45.(5分)正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8B.C.D.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.7.(5分)如图,已知正方形ABCD的边长为8,点O是AD上一个定点,AO=5,点P从点A出发,以每秒1个单位长的速度,按照A→B→C→D的方向,在正方形的边上运动,设运动的时间为t(秒),当t的值为时,△AOP是等腰三角形.8.(5分)如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA 的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.9.(5分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.10.(5分)如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在Rt△ABC中,∠ACB=90°,AC的垂直平分线EF交AC于点D,交AB于点F,且CE=BF.(1)求证:四边形AECF是菱形;(2)填空:当∠BAC的度数为时,四边形AECF是正方形.12.(10分)已知:如图,在平行四边形ABCD中,BC=AC,E,F分别是AB,CD的中点,连接CE并延长交DA的延长线于M,连接AF并延长交BC的延长线于N.(1)求证:△ABN≌△CDM;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.13.(10分)已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.14.(10分)已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形15.(10分)如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D =90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?《正方形》提高训练参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形【分析】利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.∴EF=EH,EF⊥EH,∵BD=2EF,AC=2EH,∴AC=BD,AC⊥BD,即四边形ABCD满足对角线相等且垂直,选项D满足题意.故选:D.【点评】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.2.(5分)如图,正方形ABCD中,点E、F、G分别为边AB、BC、AD上的中点,连接AF、DE交于点M,连接GM、CG,CG与DE交于点N,则结论①GM⊥CM;②CD=DM;③四边形AGCF是平行四边形;④∠CMD=∠AGM中正确的有()个.A.1B.2C.3D.4【分析】要证以上问题,需证CN是DN是垂直平分线,即证N点是DM中点,利用中位线定理即可,利用反证法证明④不成立即可.【解答】解:∵AG∥FC且AG=FC,∴四边形AGCF为平行四边形,故③正确;∴∠GAF=∠FCG=∠DGC,∠AMN=∠GND在△ADE和△BAF中,∵,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠ADE+∠AEM=90°∴∠EAM+∠AEM=90°∴∠AME=90°∴∠GND=90°∴∠DE⊥AF,DE⊥CG.∵G点为AD中点,∴GN为△ADM的中位线,即CG为DM的垂直平分线,∴GM=GD,CD=CM,故②错误;在△GDC和△GMC中,∵,∴△GDC≌△GMC(SSS),∴∠CDG=∠CMG=90°,∠MGC=∠DGC,∴GM⊥CM,故①正确;∵∠CDG=∠CMG=90°,∴G、D、C、M四点共圆,∴∠AGM=∠DCM,∵CD=CM,∴∠CMD=∠CDM,在Rt△AMD中,∠AMD=90°,∴DM<AD,∴DM<CD,∴∠DMC≠∠DCM,∴∠CMD≠∠AGM,故④错误.故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用及平行四边形的性质的运用.在解答中灵活运用正方形的中点问题解决问题,灵活运用了几何图形知识解决问题.3.(5分)如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的大小是()A.67.5°B.22.5°C.30°D.45°【分析】由四边形ABCD是正方形,即可求得∠BAC=∠ACB=45°,又由AE=AC,根据等边对等角与三角形内角和等于180°,即可求得∠ACE的度数,又由∠BCE=∠ACE ﹣∠ACB,即可求得答案.【解答】解:∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵AE=AC,∴∠ACE=∠E==67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故选:B.【点评】此题考查了正方形的性质与等腰三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用,注意特殊图形的性质.4.(5分)正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.4【分析】由题意可证△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定义可求∠AED=75°,由AE=AF,EC=FC可证AC垂直平分EF,则可判断各命题是否正确.【解答】解:∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°∵△AEF是等边三角形∴AE=AF=EF,∠EAF=∠AEF=60°∵AD=AB,AF=AE∴△ABF≌△ADE∴BF=DE∴BC﹣BF=CD﹣DE∴CE=CF故①正确∵CE=CF,∠C=90°∴EF=CE,∠CEF=45°∴AF=CE,∵∠AED=180°﹣∠CEF﹣∠AEF∴∠AED=75°故②③正确∵AE=AF,CE=CF∴AC垂直平分EF故④正确故选:D.【点评】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,线段垂直平分线的判定,熟练运用这些性质和判定解决问题是本题的关键.5.(5分)正方形ABCD和正方形BPQR的面积分别为16、25,它们重叠的情形如图所示,其中R点在AD上,CD与QR相交于S点,则四边形RBCS的面积为()A.8B.C.D.【分析】根据正方形的边长,根据勾股定理求出AR,求出△ABR∽△DRS,求出DS,根据面积公式求出即可.【解答】解:∵正方形ABCD的面积为16,正方形BPQR面积为25,∴正方形ABCD的边长为4,正方形BPQR的边长为5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四边形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴∴∴DS=∴∴阴影部分的面积S=S正方形ABCD﹣S△ABR﹣S△RDS=4×4﹣﹣=故选:D.【点评】本题考查了正方形的性质,相似三角形的性质和判定,能求出△ABR和△RDS 的面积是解此题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为4.【分析】由正方形的性质可得AO=CO=BO=DO=2,AC⊥BD,由BE=DF,可得OE =OF,可证四边形AECF是菱形,由勾股定理可求CE=,即可求四边形AECF的周长.【解答】解:设AC与BD交于点O,∵四边形ABCD是正方形,∴AO=CO=BO=DO=2,AC⊥BD,∵BE=DF=1,∴OE=OF=3,且OA=OC,∴四边形AECF是平行四边形,又∵AC⊥BD∴四边形AECF是菱形∴AE=CE=CF=AF,在Rt△COE中,CE===∴四边形AECF的周长为4故答案为:4【点评】本题考查了正方形的性质,菱形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.7.(5分)如图,已知正方形ABCD的边长为8,点O是AD上一个定点,AO=5,点P从点A出发,以每秒1个单位长的速度,按照A→B→C→D的方向,在正方形的边上运动,设运动的时间为t(秒),当t的值为5或10.5或20时,△AOP是等腰三角形.【分析】由正方形的性质可得AB=BC=CD=AD=8,∠D=90°,OD=3,分AP=AO,AP=PO,AO=OP三种情况讨论,由等腰三角形的性质可求t的值.【解答】解:∵四边形ABCD是正方形∴AB=BC=CD=AD=8,∠D=90°∵AO=5,∴OD=3若AP=AO=5,即t=若AP=OP,即点P在AO的垂直平分线上,∴点P在BC上,且BP=2.5∴t=若AO=OP=5,即点P在CD上,∴PD==4∴t=故答案为:5或10.5或20【点评】本题考查了正方形的性质,等腰三角形的性质,利用分类讨论思想解决问题是本题的关键.8.(5分)如图,正方形ABCD的边长是4,点E是BC的中点,连接DE,DF⊥DE交BA的延长线于点F.连接EF、AC,DE、EF分别与C交于点P、Q,则PQ=.【分析】过点E作EM∥AB,交AC于点M,由题意可证ME∥AB∥CD,△ADF≌△CDE,可得AF=CE=ME,根据平行线分线段成比例可得,,,即可求PQ的长.【解答】解:如图,过点E作EM∥AB,交AC于点M,∵四边形ABCD是正方形∴AD=CD=BC=4,∠ADC=∠DAB=∠DCE=90°,∠ACE=45°,AB∥CD,∴∠CDE+∠ADE=90°,AC=4∵DF⊥DE,∴∠FDA+∠ADE=90°∴∠CDE=∠FDA,且∠DAF=∠DCE=90°,AD=CD,∴△ADF≌△CDE(AAS)∴AF=CE,∵点E是BC中点,∴CE=BE=BC=AF,∵ME∥CD∴∠DCE=∠MEB=90°,且∠ACB=45°∴∠CME=∠ACB=45°,∴ME=CE=BC,∵ME∥AB,AB∥CD,∴ME∥AB∥CD,∴,,,∴MQ=AQ,AM=CM=2,CP=2MP,∴MQ=,MP=∴PQ=MQ+MP=【点评】本题考查了正方形的性质,全等三角形的判定和性质,平行线分线段成比例等性质,灵活运用相关的性质定理、综合运用知识是解题的关键.9.(5分)《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何?”其大意是:如图,Rt△ABC 的两条直角边的长分别为5和12,则它的内接正方形CDEF的边长为.【分析】根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论.【解答】解:∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=5﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴,x=,故答案为:.【点评】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.10.(5分)如图,在正方形ABCD中,AB=2,点E为AB的中点,AF⊥DE于点O,则AO=.【分析】首先利用勾股定理求出DE,再利用三角形的面积公式求出OA即可.【解答】解:∵四边形ABCD是正方形,∴AD=BC=2,∠DAE=90°,∵AE=EB=1,∴DE==,∵AO⊥DE,∴×DE×AO=×AE×AD,∴AO=.故答案为.【点评】本题考查正方形的性质,勾股定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,在Rt△ABC中,∠ACB=90°,AC的垂直平分线EF交AC于点D,交AB于点F,且CE=BF.(1)求证:四边形AECF是菱形;(2)填空:当∠BAC的度数为45°时,四边形AECF是正方形.【分析】(1)由线段垂直平分线的性质可得CE=AE,CF=AF,AC⊥EF,CD=AD,由平行线分线段成比例可得AF=BF,可得CE=AF=CF=AE,则可得结论;(2)由菱形的性质可得∠BAC=∠FCA=45°,可得∠AFC=90°,可得四边形AECF 是正方形.【解答】证明:(1)∵EF垂直平分AC,∴CE=AE,CF=AF,AC⊥EF,CD=AD,∵∠ACB=90°,AC⊥EF∴BC∥EF,∴∴AF=BF,又∵CE=BF,∴CE=AF=CF=AE∴四边形AECF是菱形(2)当∠BAC=45°时,四边形AECF是正方形.理由如下:∵AF=CF∴∠BAC=∠FCA=45°,∴∠AFC=90°,且四边形AECF是菱形∴四边形AECF是正方形.故答案为:45°【点评】本题考查了正方形的判定,菱形的判定和性质,线段垂直平分线的性质等知识,灵活运用这些性质进行推理是本题的关键.12.(10分)已知:如图,在平行四边形ABCD中,BC=AC,E,F分别是AB,CD的中点,连接CE并延长交DA的延长线于M,连接AF并延长交BC的延长线于N.(1)求证:△ABN≌△CDM;(2)当平行四边形ABCD的边或角满足什么关系时,四边形AECF是正方形?请说明理由.【分析】(1)根据平行四边形得到AB=CD,AB∥CD,∠B=∠D,根据线段中点的定义得到AE=AB,CF=CD,推出四边形AECF是平行四边形,得到四边形AECF是矩形,根据全等三角形的判定定理得到结论;(2)根据直角三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∠B=∠D,∵E,F分别是AB,CD的中点,∴AE=AB,CF=CD,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC=CB,∴CE⊥AB,∴∠AEC=90°,∴四边形AECF是矩形,∴∠BAN=∠DCM=90°,在△ABN与△CDM中,,∴△ABN≌△CDM(ASA);(2)解:当∠B=45°时,四边形AECF是正方形,理由:∵BC=AC,∴∠B=∠BAC=45°,∵E是AB的中点,∴CE⊥AB,∴AE=EC,∴矩形AECF是正方形.【点评】本题考查了正方形的判定,全等三角形的判定和性质,等腰三角形的性质,平行四边形的判定和性质,熟练掌握平行四边形的判定和性质是解题的关键.13.(10分)已知:如图,在平行四边形ABCD中,M、N分别是AD和BC的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=CD,求证四边形AMCN是矩形;(3)若∠ACD=90°,求证四边形AMCN是菱形;(4)若AC=CD,∠ACD=90°,求证四边形AMCN是正方形.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)根据矩形的判定定理即可得到结论;(3)根据菱形的判定定理即可得到结论;(4)根据正方形的判定定理即可得到结论.【解答】证明:(1)由已知得AD∥BC,AD=BC,∵M、N分别是AD和BC的中点,∴AM=AD,CN=BC,AM=CN,∵AM∥CN,AM=CN,∴四边形AMCN是平行四边形;(2)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是矩形;(3)∵∠ACD=90°,M是AD的中点,∴AM=CM,∵由(1)知,四边形AMCN是平行四边形,∴四边形AMCN是菱形;(4)∵AC=CD,M是AD的中点,∴∠AMC=90°,∵由(1)知四边形AMCN是平行四边形,∴四边形AMCN是矩形,∵∠ACD=90°,M是AD的中点,∴AM=CM,∴四边形AMCN是菱形,∴四边形AMCN是正方形【点评】本题考查了平行四边形、矩形、菱形、正方形的判定,熟练掌握判定定理是解题的关键.14.(10分)已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形【分析】由正方形的性质可得AO=CO,BO=DO,AC⊥BD,可得EO=FO,由对角线互相平分的四边形是平行四边形可得四边形AECF是平行四边形,即可证四边形AECF 是菱形.【解答】证明:如图,连接AC交BD于点O,∵四边形ABCD是正方形,∴AO=CO,BO=DO,AC⊥BD,∵BE=DF∴DO﹣DF=BO﹣BE∴FO=EO,且AO=CO∴四边形AECF是平行四边形,又∵AC⊥BD∴四边形AECF是菱形【点评】本题考查了正方形的性质,菱形的判定,熟练运用正方形的性质解决问题是本题的关键.15.(10分)如图,在正方形ABCD中,AB=BC=CD=AD=10cm,∠A=∠B=∠C=∠D =90°,点E在边AB上,且AE=4cm,如果点P在线段BC上以2cm/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.(1)若点Q与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,则当t为何值时,△BPE与△CQP全等?此时点Q的运动速度为多少?【分析】(1)由题意可得BP=CQ,BE=CP,由“SAS”可证△BPE≌△CQP;(2)由全等三角形的性质可得BP=CP=5,BE=CQ=6,即可求点Q的速度.【解答】解:(1)全等.理由:由题意:BP=CQ=2t当t=2时,BP=CQ=4∵AB=BC=10,AE=4∴BE=CP=10﹣4=6∵BP=CQ,∠B=∠C=90°,BE=CP∴△BPE≌△CQP(SAS)(2)∵P、Q运动速度不相等∴BP≠CQ∵∠B=∠C=90°∴当BP=CP,CQ=BE时,△BPE≌△CQP∴BP=CP=BC=5,CQ=BE=6∴当t=5÷2=(秒)时,△BPE≌△CQP此时点Q的运动速度为6÷=(cm/s)【点评】本题考查了正方形的性质,全等三角形的判定和性质,熟练运用全等三角形的性质解决问题是本题的关键.。
人教版八年级数学下册正方形知识点及同步练习、含答案

学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方形基础导练
1.正方形具有而菱形不一定具有的性质是()
A.对角线互相平分 B.对角线相等
C.内角和为360º D.对角线平分内角
2.正方形具备而矩形不一定具备的性质是()
A.四个角都是直角 B.四条边相等
C.对角线相等 D.对角线互相平分
3.下列说法错误的是()
A.正方形的四条边相等 B.正方形的四个角相等
C.平行四边形对角线互相垂直 D.正方形的对角线相等
4.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC
5.判断下列命题是否正确.
(1)对角线互相垂直且相等的平行四边形是正方形.()
(2)对角线互相垂直的矩形是正方形.()
(3)对角线相等的菱形是正方形.()
(4)对角线互相垂直平分且相等的四边形是正方形.()
6.如图,已知四边形ABCD中,E、F、G、H分别为AB、BC、CD、DA的中点.
a.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是矩形.
b.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是菱形.
c.原四边形ABCD的对角线AC、BD满足________时,四边形EFGH是正方形.
能力提升
7.如图,正方形ABCD 的边长为4,点P 在DC 边上,且DP =1,点Q 是 AC 上一动点,则DQ +PQ 的最小值为____________.
8.如图,正方形ABCD 中,E 为BC 上一点,AF 平分∠DAE ,求证:BE +DF =AE .
A
B
C
D E
F
9.如图,BF 平行于正方形ADCD 的对角线AC ,点E 在BF 上,且AE =AC ,CF ∥AE ,求∠BCF .
A
C
D E
F
参考答案1.B 2.B 3.C 4.C 5.√ √ √ √
6.a.AC⊥BD b.AC=BD c.AC⊥BD且AC=BD
7.5
8.解:延长CD到H,使得DH=BE,
由BE+FD=FH,AE=AH,只要证明AH=FH即可.
由△ABE≌△ADH,(SAS)
∴AE=AH(1)
由∠BAF=∠HAF,
又AB∥CD,∴∠ABF=∠AFH,
得:∠HAF=∠AFH,
∴HF=AH=AE,
即AE=BE+DF正确.
9.解:作AO⊥FB的延长线,BQ⊥AC
∵BF∥AC,
∴AO∥BQ 且∠QAB=∠QBA=45°
∴AO=BQ=AQ=AC/2
∵AE=AC
∴AO=AE/2
∴∠AEO=30°
∵BF∥AC
∴∠CAE∠AEO=30°
∵BF∥AC ,CF∥AE
∴∠CFE∠CAE=30°
∵BF∥A C
∴∠CBF∠BCA=45°
∠BCF=180°-∠CBF-∠CFE=180-45-30=105°。