发电机和变压器容量单位为什么不同
pe值算法=公式定理

在照明配电箱中pe是怎么算出来的1、照明回路:民规规定,一个照明回路的灯具数量最多25个,现在国家倡导节能减排,白炽灯已经限用,在日常生活中应用最广泛的是荧光灯,常用荧光灯的单灯功率大了为37W。
那Pe=37x25=925W。
而Pe=ui=925=220i,那么电流i=4.2A,满足规范要求。
显然,一个照明回路的负荷不到1KW。
在我们日常的设计中,在符合规范的前提下,一个照明回路不论灯多少,按1KW计。
2、插座回路:民规规定,一个普通插座回路插座个数不得超过10个,一个普通插座的容量按大众家用电器来衡量为300W,那么一个普通插座回路的最大功率为3KW。
电气设计中,一个普通插座回路就是3KW。
3、专用插座:民规规定,住宅插座回路额定电流不超过25A,用P=UI=220x25=5.5KW。
但是肯定要留冗余,所以在电气设计中,专用插座(指空调插座、电磁炉插座、热水器插座、卫生间插座)是要各自接在单独回路上的。
每个回路电气数量少了,还是按一个回路3KW计算负荷,如果有具体电气功率,以实际功率为准。
4、总负荷:计算总负荷按需要系数法计算,照明回路数X1KW+插座回路数X3KW,就是总功率P,注意三相平衡。
照明配电箱需要系数取1,功率因数选0.9.用需要系数法计算出配电箱的计算负荷和计算电流,选取适合的断路器、开关和导线。
纯手工码字,望采纳!追问前辈您好,我问了别人,说配电箱的Pe根据户型和面积确定,是这样么,这样的话,那么断路器和导线是根据经验选取的么,还是另外计算回路上的负荷,我拿到的图纸如果按照每个插座回路3Kw照明1Kw计算会比图纸上配电箱标的大一些,备用回路需要计算么回答备用回路需要估算的,必免以后加接电气设备时换电气元件。
在电气设计中,如果只是针对住宅的话,目前都是按经验来的。
每户的户箱都是按6KW来计算负荷容量的。
如果按面积估算负荷容量的话,建议住宅的话按38VA/m2,商业的话按127VA/m2.这是最常用的,经过实践真理检验过的数据。
发电机与变压器参数与状态规定

发变组规X 和运行规定一、发电机组成发电机本体主要是由一个不动的定子(包括机座、端盖、定子铁芯、端部结构和隔振装置等)和一个可以转动的转子(包括转子铁芯、绕组等主要部件)构成的,定子上置有三相交流绕组;转子上置有励磁绕组,当通入直流电流后,能能产生磁场。
定子有时也称为电枢,转子有时也称为磁极。
定子铁芯和绕组:转子铁芯和绕组:二、发电机工作原理同步发电机与其它电机一样,是由定子和转子两部分所组成。
它的定子是将三相交流绕组嵌置于由冲好槽的硅钢片叠压而成的铁芯里,它的转子通常由磁极铁芯与励磁绕组构成。
定子、转子之间有气隙。
定子上有AX、BY、CZ三相绕组,相绕组由多匝串联的绕组元件(见图3-1-1(b))连接而成,每相绕组的匝数相等,在空间上彼此相差120电角度。
转子磁极上装有励磁绕组,由直流励磁电流产生磁场,其磁通由转子N极出来,经过气隙、定子铁芯、气隙,进入转子s极而构成回路,如图3-1-1中虚线所示。
如果用原动机拖动同步电机的转子,以每分钟n的速度旋转,同时在转子上的励磁绕组4中经过滑环通入一定的直流电励磁,那么转子磁极就产生磁场,这磁场随转子一起以n(r/min)的速度旋转,它对定子有了相对运动,就在定子绕组中感应出交流电势,在定子绕组的引出端可以得到交流电势。
如果定子是三相绕组,那么就可以得到三相交流电势,该电势的大小用下式表示:E=4.44fNφK1式中:N———每相定子绕组串联匝数;f———电势的频率(HZ)φ———每极基波磁通(Wb);K1———基波绕组系数。
三、同步发电机的额定参数(1)额定电压:指发电机在正常运行时定子三相绕组的额定线电压值。
(2)额定电流:指发电机在额定运行时流过定子绕组的额定线电流。
(3)额定功率:指发电机在正常运行时输出的电功率,用公式表示:P=UIcosφ(4)额定容量:发电机长期安全运行的最大输出功率。
(5)额定转速n:指转子正常运行时的转速。
发电机在一定极数与频率下运行时,转子的转速即为同步转速,即为:n=60f/p(r/min)(6)有功功率:P=UIcosφ单位:千瓦KW(7)无功功率:Q=UIsinφ单位:千乏Kvar(8)视在功率:S=UI单位:千伏安KVA(9)功率因数:有功功率P跟视在功率S的比值,即cos φ=P/S,功率因数低导致发电设备容量不能完全充分利用且增加输电线路上的损耗,功率因数提高后,发电设备就可以少发无功负荷多发有功负荷,同时还可以减少发电设备上的损耗,节约电能。
发电厂电气部分基础知识

精心整理1、掌握电力系统与电力网的概念。
?电力系统是由发电厂、变电所、输配电线路和用电设备有机连接起来的整体。
?电力系统=发电厂+电力网+电力用户。
?电力网是指在电力系统中,由升压和降压变电所通过输、配电线路连接起来的部分。
2、掌握额定电压的概念及电力网的电压等级。
?额定电压:电气设备的额定电压是能使发电机、变压器和用电设备在正常运行时获得最佳技术效果的电压。
?我国电力网额定电压等级如下:0.22、0.38、3、6、10、35、110、220、330、500、750、1000kV;特2)锅3)由?隔离开关作用:①设备检修时,隔离开关用来隔离有电和无电部分,形成明显的开端点,以保证工作人员和设备的安全。
②一般与断路器配合使用,进行倒闸操作,以改变电力系统的运行方式。
无灭弧装置,不能开断电流,故不可做操作电器!?高、低压熔断器作用:流过短路电流或较长时间过电流时熔断,来保护电器设备。
注意事项:6kV熔断器只能用于6kV,不能用于3kV。
10kV熔断器只能用于10kV,不能用于6kV。
?低压断路器(自动空气断路器、自动空气开关)作用:①对低压配电电路实行通断操作。
②当电路内出现故障时,能在自身开关所带保护元件作用下自动断开主回路。
?接地开关作用:检修设备时起隔离电源的作用。
3、限制故障电流和防御过电压的保护电器。
?电抗器作用:限制电力系统中短路电流。
文字符号与图形符号:?避雷器作用:防御电力系统过电压。
图形符号为:4、载流导体。
?载流导体作用:连接各种电气设备(使发电、输电、用电成为一个可灵活调度的系统)。
?分类:电缆(自身包括有绝缘的导体)、裸导体(无绝缘的导体)。
5、接地装置。
?作用:是电力系统正常运行的需要,也是安全用电的有效措施。
它是埋入地中的金属导体或与电气设备相连的金属线。
?分类:工作接地、保护接地、防雷保护接地。
2、什么是二次设备?掌握其类型有哪些。
?二次设备:对一次设备的工作进行监察、测量、控制和保护的设备称二次设备。
发电机和变压器容量单位为什么不同

发电机和变压器容量单位为什么不同?为什么一个是KW,一个是KVA?发电机和变压器的单位都可以是KW或KVA,KW和KVA表示的意义一样,都指“功率”。
而电力变压器常用KVA作容量的单位,原因是在负载没有确定的情况下,是不能得到有功功率(符号P,单位KW)和无功功率(符号Q,单位KVAR)的大小的,只有使用KVA为单位,表示视在功率,符号S。
S^2=P^2+Q^可以理解负载为纯阻抗时,变压器的有功功率。
参:KW:有功功率(P)单位KVA:视在功率(S)单位VAR:无功功率QS=(P平方+Q平方)的开方P=S*cos(φ)φ是功率因数S=UI=I^2│Z│,(Z为复数阻抗)有功功率(单位KW)与视在功率(单位KVA)差一个cos(φ)这里有几个概念性问题,我来试试。
1、在你的配电系统中,系统的功率因素,在理想的情况下,主要决定于负载特性。
在没有任何补偿的情况下,如果负载是纯电阻,那么系统的功率因素就是1。
如果是纯电感,那么功率因素就为0。
与变压器本身的特性无关。
2、但在实际情况中,负载往往具有电阻、电感、电容的混合特性。
所以存在大于0,小于1的功率因素值。
3、变压器的容量,被称为视在功率,在这里就是630kVA,他包括所有的有功和无功功率的输出。
如果你是0.98的功率因素,那么630kVA的变压器容量,可以有630*0.98=617.4kW的有功输出。
如果功率因素是0.8,那么只能有630*0.8=504kW的有功功率输出,剩下的就是无功功率。
也就是说,由于系统(负载)的功率因素低,造成变压器输出的有功功率下降。
造成能源的浪费。
4、一般电动机的功率因素在0.8左右。
所以,为了提高变压器的有功出力,需要进行电容补偿,来提高系统的功率因素。
5、你已经补偿到0.98了,也就是,你的系统功率因素已经达到0.98了,够高了。
无功补偿0.98指的就是无功补偿之后功率因数达到0.98。
变压器没有无功补偿时功率因数由负荷决定。
变压器基础知识介绍

主导产品基础知识篇第一章变压器基础知识介绍一、油浸式电力变压器基础知识(一)、什么是变压器变压器是根据电磁感应原理制造出来的能够输送电能、改变电压、但不改变频率的一种静止的电器。
(二)、变压器的分类根据使用对象分类:1、电力变压器:将一个电力系统的交流电压和电流值变位另一个电力系统的不同电压和电流值借以输送电能的变压器。
2、配电变压器:指容量较小、由较高电压降到最后一级配电电压,直接做配电用的电力变压器。
3、变流变压器:在直流输电系统中向变流器供电的电力变压器,也属于工业用变压器。
4、试验变压器:供各种电气设备和绝缘材料做电气绝缘性能试验用的变压器,也属于工业用变压器。
5、用于不同工业的专业变压器,如:电炉变压器、整流变压器、牵引变压器、启动变压器、矿用变压器、防爆变压器、船用变压器6、电力变压器根据使用要求不同或本身结构上的差异,又可分为:(1)油浸式变压器:铁心和绕组都浸入油中的变压器。
(2)液体浸渍式变压器:采用非矿物油、人工合成的绝缘液体作为冷却介质的变压器。
(3)气体绝缘变压器:采用人工合成的某种气体做为冷却和绝缘介质的变压器。
(4)干式变压器:用铁心和绕组都不浸入绝缘液体中的变压器。
7、按结构和使用要求分:(1)密封式变压器:变压器内部介质和外部大气相隔绝,避免互相交换,属一种非呼吸式变压器。
(2)双绕组变压器:只包括高、低压两绕组的变压器。
(3)多绕组变压器:每相上有两个以上绕组,分别连接到电压等级不同的线路上的变压器。
常见的为三绕组变压器,即有高、中、低三个绕组。
(4)有载调压变压器:装有有载调压分接开关,能在负载下进行调压的变压器。
(5)无励磁调压变压器:装有无励磁分接开关且只能在无励磁情况下进行调压的变压器。
(6)串联变压器:也叫增压变压器,是具有一个改变线路电压的串联绕组和一个励磁绕组的变压器。
(7)联络变压器:变电站或电厂用以联结两个电压不同的输电系统,并可按电力潮流的变化,每侧都可以做为一次或二次侧使用的变压器,包括自耦变压器和多绕组变压器。
第四章-第三节-主变的选择

二、主变压器型式选择原则
• 1.相数选择 • 2.绕组数选择 • 3.绕组连接方式 • 4.调压方式的选择 • 5.变压器的冷却方式
第十二页,编辑于星期三:十五点 五十四分。
选择主变压器型式时,应考虑以下问题
1.相数的确定
在 33 0 kV及以下电力系统中,一般都应选用三相变压器。 单相变压器组相对来讲投资大、占地多、运行损耗也较大
两台机容量之和来确定。
➢ 2.具有发电机电压母线接线的主变压器容量的确定原则 连接在发电机电压母线与系统之间的主变压器的容量,应考
虑以下因素:
• 1)当发电机全部投入运行时,在满足发电机电压供电的日最 小负荷,并扣除厂用负荷后,主变压器应能将发电机电压母线上
的剩余有功和无功容量送入系统;
第七页,编辑于星期三:十五点 五十四分。
第三节:发电厂和变电所主变压器的选择
主变压器:在发电厂和变电所中,用来向电力系统或用户输
送功率的变压器;
联络变压器:用于两种电压等级之间交换功率的变压器
;
厂(所)用变压器或称自用变压器:只供本厂(所)用
电的变压器。
第一页,编辑于星期三:十五点 五十四分。
第二页,编辑于星期三:十五点 五十四分。
所以,一般在发电机回路及厂用分支回路均采用分相封 闭母线,而封闭母线回路中一般不装置断路器和隔离开关。
第十六页,编辑于星期三:十五点 五十四分。
况且,三绕组变压器由于制造上的原因,中压侧不留分接头, 只作死抽头,不利于高、中压侧的调压和负荷分配。
为此,一般以采用双绕组变压器加联络变压器更为合理。 其联络变压器宜选用三绕组变压器,低压绕组可作为厂用备用
• (3)强迫油循环水冷却单纯的加强表面冷却可以降低油 温,但当油温降到一定程度时,油的粘度增加,以致使油 的流速降低,对大容量变压器已达不到预期冷却效果,故 采用潜油泵强迫油循环,让水对油管道进行冷却,把变压 器中热量带走。在水源充足的条件下,采用这种冷却方式 极为有利,散热效率高,节省材料,减小变压器本体尺寸 。但要一套水冷却系统和有关附件,且对冷却器的密封性 能要求较高。即使只有极微量的水渗入油中,也会严重地 影响油的绝缘性能,故油压应高于水压(1~1.5)x105Pa ,以免水渗入油中。
浅谈主变压器与发电机过负荷能力的比较

浅谈主变压器与发电机过负荷能力的比较摘要:近年来,变压器和发电机事故时有发生,而且有增长的趋势。
从变压器和发电机事故情况分析来看,过负荷是电力变压器和发电机事故的重要原因,对电网造成很大危害,严重影响电网安全运行。
本文首先分析了主变压器与发电机过负荷的表现,然后进行了主变压器与发电机过负荷的能力比较,最后详细阐述了主变压器与发电机过负荷保护措施。
关键词:主变压器;发电机;过负荷;散热;整定一、主变压器与发电机过负荷的表现(一)主变压器过负荷变压器具有过负荷能力,是指在保证变压器正常寿命(一般为20年)损耗的前提下,可以带比额定值大的负荷运行一段时间。
所以,变压器过负荷运行是以不损害变压器正常使用寿命为前提条件。
1、变压器负荷电流增大(1)输入变压器的负荷增大,即输入负荷增大,会使电压升高,有功功率变大,损坏变压器原边绕组。
(2)用户负荷增大,即输出负荷增大,电压降低,随之无功功率增大,从而导致电压进一步降低,形成恶性循环,引起电压崩溃。
这里主要指用户负荷增大,即负载阻抗变小,导致变压器输出电流增大,超过最大额定电流。
2、变压器过负荷跳闸明显增多过负荷跳闸主要表现为馈线的阻抗保护跳闸和主变压器的过负荷跳闸。
主变压器的过负荷保护定值按照主变压器额定电流的1.5 倍整定,提前60 s 报警,90 s 后动作于断路器跳闸。
馈线阻抗保护的电抗 X 根据最大短路电流整定,电阻 R 根据馈线最大设计负荷电流整定。
(二)发电机过负荷发电机正常运行时,实际上是在以某一个功角为原点并以一定幅度进行低频振荡运行,此种称为稳定工况下的同步运行。
当发电机出现故障时,由于机端电压U/短路阻抗Xd 下降,电磁功率快速降低,而原动机功率调节速率较慢,短时间内原动机和发电机功率不平衡,此时这种转速差就表现出来,发电机即出现不同步运行。
二、主变压器与发电机过负荷能力比较(一)主变压器过负荷能力1、变压器的正常过负荷能力220kV 变电站有三台变压器,总容量共计303MVA。
电气基础理论知识

1。
涡流是怎样产生的?有何利弊?答:置于变化磁场中的导电物体内部将产生感应电流,以反抗磁通的变化,这种电流以磁通的轴线为中心呈涡旋形态,故称涡流。
在电机中和变压器中,由于涡流存在,将使铁芯产生热损耗,同时,使磁场减弱,造成电气设备效率降低,容量不能充分利用,所以,多数交流电气设备的铁芯,都是用0.35或0。
5毫米厚的硅钢片迭成,涡流在硅钢片间不能穿过,从而减少涡流的损耗。
.涡流的热效应也有有利一面,如可以利用它制成感应炉冶炼金属,可制成磁电式、感应式电工仪表,还有电度表中的阻尼器,也是利用磁场对涡流的力效应制成的。
2. 什么是趋表效应?趋表效应可否利用?答:当直流电流通过导线时,电流在导线截面分布是均匀的,导线通过交流电流时,电流在导线截面的分布是不均匀的,中心处电流密度小,而靠近表面电流密度大,这种交流电流通过导线时趋于表面的现象叫趋表效应,也叫集肤效应.考虑到交流电的趋表效应,为了有效地节约有色金属和便于散热,发电厂的大电流母线常用空心的槽形或菱形截面母线。
高压输配电线路中,利用钢芯铝线代替铝绞线,这样既节约了铝导线,又增加了导线的机械强度。
趋表效应可以利用,如对金属进行表面淬火,对待处理的金属放在空心导线绕成的线圈中,线圈中通过高频电流,金属中就产生趋于表面的涡流,使金属表面温度急剧升高,达到表面淬火的目的.3. 什么是正弦交流电?为什么普遍采用正弦交流电?答:正弦交流电是指电路中的电流、电压及电势的大小都随着时间按正弦函数规律变化,这种大小和方向都随时间做周期性变化的电流称交变电流,简称交流。
交流电可以通过变压器变换电压,在远距离输电时,通过升高电压可以减少线路损耗.而当使用时又可以通过降压变压器把高压变为低压,这既有利安全,又能降低对设备的绝缘要求。
此外,交流电动机与直流电动机比较,则具有构造简单,造价低廉,维护简便等优点。
在有些地方需要使用直流电,交流电又可通过整流设备将交流电变换为直流电,所以交流电目前获得了广泛地应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机和变压器容量单位为什么不同?为什么一个是KW,一个是KVA?发电机和变压器的单位都可以是KW或KVA,KW和KVA表示的意义一样,都指“功率”。
而电力变压器常用KVA作容量的单位,原因是在负载没有确定的情况下,是不能得到有功功率(符号P,单位KW)和无功功率(符号Q,单位KVAR)的大小的,只有使用KVA为单位,表示视在功率,符号S。
S^2=P^2+Q^可以理解负载为纯阻抗时,变压器的有功功率。
参:KW:有功功率(P)单位KVA:视在功率(S)单位VAR:无功功率QS=(P平方+Q平方)的开方P=S*cos(φ)φ是功率因数S=UI=I^2│Z│,(Z为复数阻抗)有功功率(单位KW)与视在功率(单位KVA)差一个cos(φ)这里有几个概念性问题,我来试试。
1、在你的配电系统中,系统的功率因素,在理想的情况下,主要决定于负载特性。
在没有任何补偿的情况下,如果负载是纯电阻,那么系统的功率因素就是1。
如果是纯电感,那么功率因素就为0。
与变压器本身的特性无关。
2、但在实际情况中,负载往往具有电阻、电感、电容的混合特性。
所以存在大于0,小于1的功率因素值。
3、变压器的容量,被称为视在功率,在这里就是630kVA,他包括所有的有功和无功功率的输出。
如果你是0.98的功率因素,那么630kVA的变压器容量,可以有630*0.98=617.4kW的有功输出。
如果功率因素是0.8,那么只能有630*0.8=504kW的有功功率输出,剩下的就是无功功率。
也就是说,由于系统(负载)的功率因素低,造成变压器输出的有功功率下降。
造成能源的浪费。
4、一般电动机的功率因素在0.8左右。
所以,为了提高变压器的有功出力,需要进行电容补偿,来提高系统的功率因素。
5、你已经补偿到0.98了,也就是,你的系统功率因素已经达到0.98了,够高了。
在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。
功率因数是电力系统的一个重要的技术数据。
功率因数是衡量电气设备效率高低的一个系数。
功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。
所以,供电部门对用电单位的功率因数有一定的标准要求。
(1) 最基本分析:拿设备作举例。
例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。
然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。
很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。
(我们日常用户的电能表计量的是有功功率,而没有计量无功功率,因此没有说使用70个单位而却要付100个单位的费用的说法,使用了70个单位的有功功率,你付的就是70个单位的消耗)在这个例子中,功率因数是0.7 (如果大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。
功率因数是马达效能的计量标准。
(2) 基本分析:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。
功率因数是有用功与总功率间的比率。
功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。
(3) 高级分析:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。
两种波形峰值的分隔可用功率因数表示。
功率因数越低,两个波形峰值则分隔越大。
电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。
因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。
由于减少了无功功率在电网中的流动,因此可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这就是无功补偿的效益。
无功补偿的主要目的就是提升补偿系统的功率因数。
因为供电局发出来的电是以KVA或者MVA来计算的,但是收费却是以KW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般而言就是以KVAR为单位的无功功率。
大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯……,几乎所有的无效功都是电感性,电容性的非常少见。
也就是因为这个电感性的存在,造成了系统里的一个KVAR 值,三者之间是一个三角函数的关系:KVA的平方=KW的平方+KVAR的平方简单来讲,在上面的公式中,如果今天的KVAR的值为零的话,KVA就会与KW相等,那么供电局发出来的1KVA的电就等于用户1KW的消耗,此时成本效益最高,所以功率因数是供电局非常在意的一个系数。
用户如果没有达到理想的功率因数,相对地就是在消耗供电局的资源,所以这也是为什么功率因数是一个法规的限制。
目前就国内而言功率因数规定是必须介于电感性的0.9~1之间,低于0.9时需要接受处罚。
供电局为了提高他们的成本效益要求用户提高功率因数,那提高功率因数对我们用户端有什么好处呢?①通过改善功率因数,减少了线路中总电流和供电系统中的电气元件,如变压器、电器设备、导线等的容量,因此不但减少了投资费用,而且降低了本身电能的损耗。
②藉由良好功因值的确保,从而减少供电系统中的电压损失,可以使负载电压更稳定,改善电能的质量。
③可以增加系统的裕度,挖掘出了发供电设备的潜力。
如果系统的功率因数低,那么在既有设备容量不变的情况下,装设电容器后,可以提高功率因数,增加负载的容量。
举例而言,将1000KVA变压器之功率因数从0.8提高到0.98时:补偿前:1000×0.8=800KW补偿后:1000×0.98=980KW同样一台1000KVA的变压器,功率因数改变后,它就可以多承担180KW的负载。
④减少了用户的电费支出;透过上述各元件损失的减少及功率因数提高的电费优惠。
此外,有些电力电子设备如整流器、变频器、开关电源等;可饱和设备如变压器、电动机、发电机等;电弧设备及电光源设备如电弧炉、日光灯等,这些设备均是主要的谐波源,运行时将产生大量的谐波。
谐波对发动机、变压器、电动机、电容器等所有连接于电网的电器设备都有大小不等的危害,主要表现为产生谐波附加损耗,使得设备过载过热以及谐波过电压加速设备的绝缘老化等。
并联到线路上进行无功补偿的电容器对谐波会有放大作用,使得系统电压及电流的畸变更加严重。
另外,谐波电流叠加在电容器的基波电流上,会使电容器的电流有效值增加,造成温度升高,减少电容器的使用寿命。
谐波电流使变压器的铜损耗增加,引起局部过热、振动、噪音增大、绕组附加发热等。
谐波污染也会增加电缆等输电线路的损耗。
而且谐波污染对通讯质量有影响。
当电流谐波分量较高时,可能会引起继电保护的过电压保护、过电流保护的误动作。
因此,如果系统量测出谐波含量过高时,除了电容器端需要串联适宜的调谐(detuned)电抗外,并需针对负载特性专案研讨加装谐波改善装置。
为什么说提高用户的功率因数可以改善电压质量?电力系统向用户供电的电压,是随着线路所输送的有功功率和无功功率变化而变化的。
当线路输送一定数量的有功功率是,如输送的无功功率越多,线路的电压损失越大。
即送至用户端的电压就越低。
如果110KV以下的线路,其电压损失可近似为:△U=(PR+QX)/Ue其中:△U-线路的电压损失,KVUe--线路的额定电压,KVP--线路输送的有功功率,KWQ--线路输送的无功功率,KVARR—线路电阻,欧姆X--线路电抗,欧姆由上式可见,当用户功率因数提高以后,它向电力系统吸取的无功功率就要减少,因此电压损失也要减少,从而改善了用户的电压质量。
----------------------------在直流电路里,电压乘电流就是有功功率。
但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。
有功功率与视在功率之比叫做功率因数,以COSΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。
功率的标称:以千瓦(kW)为单位的是有功功率,以千伏安(kVA)为单位的是视在功率。
变压器的额定容量均是以视在功率来做为功率标称的。
也就是说1kVA是变压器的额定容量,是以视在功率来做为功率标称的。
视在功率交流电路中总电压与总电流有效值的乘积叫做视在功率,即:S=UI。
视在功率、有功功率和无功功率构成一个直角三角形,我们称为功率三角形。
电功率分为有功功率(P)和无功功率(Q),二者的向量和就是视在功率(S),其实就是三角函数的关系:S=根号(P的二次方+Q的二次方)。
变压器的视在功率就是指变压器传递的总功率,有功功率和无功功率是根据负荷的特性改变的。
视在功率的单位是V A(付安),有功功率是W(瓦),无功功率是Var(乏)。
发电机和变压器的单位都可以是KW或KV A,KW和KV A表示的意义一样,都指“功率”。
而电力变压器常用KV A作容量的单位,原因是在负载没有确定的情况下,是不能得到有功功率(符号P,单位KW)和无功功率(符号Q,单位KV AR)的大小的,只有使用KV A为单位,表示视在功率,符号S。
S^2=P^2+Q^可以理解负载为纯阻抗时,变压器的有功功率。
1KV A=1KW,物理课中应该学过功率P=U*I吧?P的单位是W,U的单位是V,I的单位是A,所以1W=1V*1A在设备铭牌标示上,KV A用来表示实在功率,即设备的容量,KW用来表示有功功率,这是我们的习惯.参:KW:有功功率(P)单位KV A:视在功率(S)单位V AR:无功功率QS=(P平方+Q平方)的开方P=S*cos(φ)φ是功率因数S=UI=I^2│Z│,(Z为复数阻抗)有功功率(单位KW)与视在功率(单位KV A)差一个cos(φ)无功补偿0.98指的就是无功补偿之后功率因数达到0.98。
变压器没有无功补偿时功率因数由负荷决定。
电机等感性负荷多,则功率因数低。
大鹏和小鸟回答错误!功率因数=有功功率Q/视在功率SS=UIP=Scosψ=UIcosψ,cosψ 为功率因数Q=Ssinψ=UIsinψ电能的单位是KW*h,不是KW/h回答者:newtonhaozd|五级| 2010-7-12 20:38变压器的功率因数和负载的性质有关,功率因数=有功电能/2根号[有功电能的平方+无功电能的平方]{电能常用单位KW/h}。
补偿和没有补偿你在变压器的输入电流方面观察是大不一样的。
补偿后相同功率的负载,变压器的输入电流减少了。