计量经济学模型的应用
计量经济模型的应用

计量经济模型的应用1. 简介计量经济学是应用数理统计和经济理论的统计学分支,旨在使用统计方法来解释经济现象和经济政策的影响。
计量经济模型是计量经济学的重要组成部分,它是通过建立数学方程来描述经济变量之间的关系,以实现对经济现象的测量、预测和政策评估。
2. 应用领域计量经济模型在经济学研究的各个领域都有应用,包括宏观经济学、微观经济学、劳动经济学、金融经济学等。
下面将介绍几个常见的应用领域。
在宏观经济学研究中,计量经济模型被广泛应用于宏观经济变量的分析与预测。
例如,经济增长模型可以用来研究一个国家或地区的经济增长速度,以及影响经济增长的因素。
货币供应和通货膨胀模型可以用来解释货币供应量对通货膨胀率的影响。
经济周期模型可以用来分析经济周期的起伏。
这些模型可以帮助决策者制定宏观经济政策,同时也对企业和个人的决策提供参考。
2.2 微观经济学在微观经济学研究中,计量经济模型常被用于分析个体行为和市场行为。
例如,需求和供给模型可以用来分析价格和数量之间的关系,研究市场的供求关系和均衡价格。
企业生产函数模型可以用来测量企业使用不同生产要素的效率和生产率水平。
这些模型可以帮助企业制定销售和生产策略,优化资源配置。
计量经济模型在劳动经济学中的应用主要包括劳动力供给和劳动力需求分析。
劳动力供给模型可以用来研究个体的劳动供给决策,包括劳动力参与率、工作时间等。
劳动力需求模型可以用来研究企业对劳动力的需求决策,包括工资水平、雇佣数量等。
这些模型可以帮助政府制定劳动力政策,引导劳动力市场的平衡发展。
2.4 金融经济学在金融经济学研究中,计量经济模型常被用于分析金融市场中的变量之间的关系。
例如,资本资产定价模型(CAPM)可以用来研究资产价格的形成机制,以及不同风险资产的投资组合。
利率模型可以用来研究利率的变动规律,对货币政策和金融市场预测有重要意义。
这些模型可以帮助投资者制定投资策略,评估风险和收益。
3. 模型评估计量经济模型的应用不仅需要建立模型,还需要对模型进行评估。
计量经济学阈值模型

计量经济学阈值模型引言计量经济学是经济学的一个分支,通过运用数理统计方法来分析经济现象。
阈值模型是计量经济学中的一个重要概念,用来研究变量之间的非线性关系。
本文将深入探讨计量经济学阈值模型的原理、应用和局限性。
阈值模型的原理阈值模型是指在某个阈值点之前,变量之间的关系存在一种模式,而在阈值点之后,关系又发生了变化。
这种模型可以用以下公式表示:y ={β1x +ϵ,if x ≤αβ2x +ϵ,if x >α其中,y 是因变量,x 是自变量,α是阈值点,β1和β2是斜率,ϵ是误差项。
阈值模型的应用阈值模型在经济学中有广泛的应用。
以下是一些常见的应用领域:1. 经济增长阈值模型可以用来研究经济增长与各种因素之间的关系。
例如,可以通过设定某个阈值点,来探讨不同的因素对经济增长的影响是否存在非线性关系。
2. 货币政策阈值模型可以用来研究货币政策对经济的影响。
通过设定阈值点,可以分析在不同的经济状态下,货币政策的传导机制是否存在差异。
3. 金融市场阈值模型在金融市场中也有广泛的应用。
例如,可以通过设定阈值点,研究股票市场的波动与各种因素之间的关系是否存在非线性关系。
4. 环境经济学阈值模型在环境经济学中也有重要的应用。
例如,可以通过设定阈值点,研究环境污染与经济增长之间的关系是否存在非线性关系。
阈值模型的局限性阈值模型虽然在经济学中有广泛的应用,但也存在一些局限性。
以下是一些常见的局限性:1. 阈值点的确定阈值模型中,阈值点的确定是一个关键问题。
不同的阈值点可能导致完全不同的结果。
因此,如何准确地确定阈值点是一个具有挑战性的任务。
2. 模型的稳定性阈值模型的稳定性也是一个重要的问题。
在实际应用中,模型的稳定性可能受到样本选择的影响,导致结果的不准确性。
3. 参数的解释阈值模型中,参数的解释也是一个困难的问题。
由于模型的非线性性质,参数的解释可能并不直观,需要进行进一步的分析和解释。
4. 数据要求阈值模型对数据的要求也较高。
计量经济学模型及r语言应用

计量经济学模型及r语言应用
计量经济学模型是经济学研究中的重要工具。
它是利用数学、统
计学等工具对经济现象进行建模和分析,以便更好地了解经济现象的
本质。
最常用的计量经济学模型有线性回归模型。
该模型用数学公式表
达为:y = β0 + β1x1 + β2x2 + ... + βnxn + ε。
其中,y为因变量,x1、x2、...、xn为自变量,β0、β1、β2、...、βn为待估
计的系数,ε为误差项。
利用该模型,可以分析自变量对因变量的影响,并通过估计系数的方式得到不同自变量的影响大小和方向。
另外一个常用的计量经济学模型是时间序列模型。
该模型用于分
析时间序列数据,使得经济现象的变化随时间的推移得以呈现。
例如,ARIMA模型可以用于对经济时间序列数据的预测和分析。
在实际应用中,r语言是一种经常被使用的计量经济学工具。
r
语言可以实现各种计量经济学模型的估计和分析,包括线性回归、时
间序列、面板数据等。
通过使用r语言,我们可以更快速地得到准确
的估计结果,并生成各种图表和报告。
总之,计量经济学模型及r语言应用是经济学研究中不可缺少的
工具。
这些工具不仅能够帮助我们更好地理解经济现象和做出正确的
政策决策,也能够促进经济学研究的进一步发展和创新。
高级计量经济学模型与应用

高级计量经济学模型与应用导言计量经济学是一门应用数学和统计学原理来研究经济学理论的学科。
随着数据科学和计量经济学的发展,高级计量经济学模型的重要性日益凸显。
这些模型可以帮助经济学家和决策者更准确地理解经济现象,并做出有根据的政策建议。
本文将介绍几种常见的高级计量经济学模型,并探讨它们在实际中的应用。
ARMA模型ARMA模型(自回归滑动平均模型)是一种时间序列模型,用于描述时间序列的相关性和趋势。
ARMA模型结合了自回归(AR)模型和滑动平均(MA)模型的特点。
在实际应用中,ARMA模型经常被用来分析和预测金融时间序列数据,如股票价格、汇率和利率等。
通过估计ARMA模型的参数,我们可以对未来数据进行预测,从而帮助投资者做出更明智的决策。
面板数据模型面板数据模型是一种经济计量学中常用的模型,用于分析横截面数据和时间序列数据的交叉样本。
面板数据模型具有较强的灵活性,可以用来处理包含多个观察单元和时间点的复杂数据。
在实践中,面板数据模型广泛应用于诸如教育经济学、劳动经济学和区域经济学等领域的研究中。
例如,研究人员可以使用面板数据模型来评估教育政策对学生学习成果的影响,或分析劳动市场的供求关系。
VAR模型VAR模型(向量自回归模型)是一种多元时间序列模型,用于描述多个经济变量之间的动态关系。
VAR模型可以帮助我们了解不同变量之间的相互作用,并预测它们可能的未来走势。
在经济学领域,VAR模型被广泛应用于宏观经济预测、货币政策分析和金融风险管理等方面。
例如,央行可以利用VAR模型,基于过去的经济数据来预测未来的通货膨胀率,从而制定相应的货币政策。
ARCH/GARCH模型ARCH模型(自回归条件异方差模型)和GARCH模型(广义自回归条件异方差模型)是一类用来研究时间序列波动性的模型。
它们被广泛应用于金融风险管理和资产组合优化等领域。
通过建立ARCH/GARCH模型,我们可以对金融数据中的波动性进行建模和预测。
计量经济学模型应用分析

计量经济学模型应用分析计量经济学是一门以数据为基础,运用数学、统计学和经济学等相关学科分析和解释经济现象的学科。
在实践中,计量经济学主要通过建立各种经济模型来分析和预测现实经济问题。
在本文中,我们将探讨计量经济学模型的应用分析。
一、单因素模型单因素模型是一种简单的计量经济学模型,其特点是只考虑一个因素对经济变量的影响。
例如,研究公路通行费对公路使用量的影响,或者研究利率对消费者支出的影响。
在这种模型中,经济变量(因变量)被解释为一个单独的影响因素(自变量)的函数。
通常,单因素模型采用线性回归来描述变量之间的关系。
回归模型的基本形式为:Y= a + bX + ε其中,Y是因变量(例如,需求或价格),X是自变量(例如,收入或成本),a和b是常数,ε是误差项(通常性质是随机的)。
a反映了Y在X=0时的值,b反映了Y随X的变化。
单因素模型在经济学实践中应用广泛。
例如,研究收入水平对消费支出的影响,研究通货膨胀率对股票价格的影响,以及研究贸易政策对贸易流量的影响。
单因素模型提供了一个可靠的方法来评估影响因素对因变量的影响程度。
二、多重线性回归模型多重线性回归模型是一种计量经济学模型,它允许解释因变量在多个自变量(或因素)下的变化。
该模型的形式为:Y= a + b1X1 + b2X2 +......+ bnXn + ε在此模型中,Y是因变量,X1、X2、...、Xn是自变量(或因素),a、b1、b2等是回归系数,ε是观测误差。
回归系数反映了因变量与自变量之间的关系。
具体而言,回归系数越大,自变量对因变量的影响越大。
多重线性回归模型具有广泛的应用范围。
例如,它可以用于研究成本对价格的影响,对劳动力市场的影响以及对经济增长的影响。
此外,多重线性回归模型还可以用于评估因素之间的相互作用,这是单因素模型无法实现的。
三、时间序列模型时间序列模型是一种专门用于描述和预测时间序列数据的计量经济学模型。
时间序列数据是指按时间顺序收集的数据。
计量经济学简答题

(2)模型回归系数估计量的方差会很大,从而使模型参数的显著性检验失效。
(3)模型参数的估计量对删除或增添少量的观测值及删除一个不显著的解释变量都可能非常敏感。
5.计量模型的检验包括几个方面?
模型的检验主要包括经济意义检验,统计检验,计量经济学检验和模型的预测检验四个方面。
过程是:(1)利用OLS法估计结构方程中所有内生变量的简化式方程。
(2)利用估计出的简化式方程计算内生变量的估计值。
(3)用内生变量的估计值替代解释变量中的内生变量,再利用OLS法估计变量替代后的结构方程。
4.模型存在多重共线性可能产生的后果主要有哪些?
2.在计量经济模型中为什么要引入随机误差项?
(1)对模型中省略的变量用随机误差项来统统反映。
(2)用随机误差项来反映一些随机因素的影响。
(3)用随机误差项来反映统计误差。
(4)模型形式的误差。
3.试述联立方程模型的参数估计的二段最小二乘估计法的原理与估计过程。
原理是:寻找一个变量Y^来替代模型方程中解释变量中的内生变量Y,然后对替代后的结构方程用OLS法进行估计。
(2)t检验的可靠性降低
(3)增大模型的预测误差
8.什么是序列相关性,其表现形式是什么?
(1)序列相关性是对模型的随机误差项来说的,当模型的随机误差项在不同的样本点之间不相互独立的,也即模型违背了基本假定3的时候,则此就称模型存在序列相关性。
(2)序列相关性表现于一阶序列相关性和高阶序列相关性,此二种情况下的表现形式可以表示如下
6.一元线性回归模型的基础假设主要有哪些?
答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相关,满足正态分布等假设;另一类是关于解释变量的,主要有,解释变量是非随机的,如果是随机变量,则与随即干扰项不相关。
经济学中的计量经济学模型构建与应用方法
经济学中的计量经济学模型构建与应用方法经济学中的计量经济学模型是一种用统计方法和数据分析来量化经济关系的工具。
它通过对经济数据进行统计建模,以研究经济现象之间的因果关系,从而揭示经济规律,并为政策制定者提供科学依据和决策参考。
本文将介绍计量经济学模型的构建与应用方法,并探讨其在经济学研究和政策分析中的重要性。
计量经济学模型的构建包括模型的选择、变量的设定和参数估计。
首先,研究者需要根据研究问题和数据可得性选择合适的模型。
常见的模型包括线性回归模型、面板数据模型、时间序列模型等。
模型的选择应基于理论依据和经验判断,既要符合经济学原理,又要能够捕捉到经济现象的本质特征。
其次,研究者需要设定模型中的变量。
在经济学中,变量分为因变量和自变量。
因变量是研究目标,自变量是对因变量产生影响的因素。
变量的设定需要考虑变量的可量化性和数据可得性。
同时,还要避免多重共线性问题,即自变量之间存在高度相关性的情况,以确保模型结果的准确性和可解释性。
最后,研究者需要对模型进行参数估计。
参数估计是通过拟合模型与实际数据来确定模型中的未知参数。
常用的估计方法包括最小二乘法、极大似然法和仪表变量法等。
参数估计的结果可以帮助研究者量化经济关系,并对模型进行统计推断和政策预测。
计量经济学模型的应用广泛存在于经济学研究和政策分析的各个领域。
在宏观经济学领域,计量经济学模型常用于分析经济增长、通货膨胀和失业等宏观现象。
例如,利用时间序列模型可以估计出生产总值(GDP)与劳动力、资本投资之间的关系,从而分析经济增长的驱动因素并制定经济政策。
在微观经济学领域,计量经济学模型常用于分析市场结构、消费行为和生产效率等微观现象。
例如,利用面板数据模型可以估计企业生产效率与技术进步、资本投资之间的关系,为企业经营决策提供参考。
此外,计量经济学模型还可用于政策分析和评估。
政府制定政策时,常常需要通过评估其经济效果来确定政策的可行性和有效性。
计量经济学模型可以用于估计政策对经济变量的影响,并进行政策效果分析。
计量经济学GMM模型
计量经济学GMM模型GMM(Generalized Method of Moments)模型是一种常用的计量经济学研究方法,它可用于宏观和微观评估。
它可以有效地应用于估计模型参数,以及对时间序列数据和静态数据进行调查。
一、GMM模型的概述GMM模型一般用来拟合静止的观测数据,它从经济学的角度分析模型的稳定性和鲁棒性,以及估计模型参数的准确性。
它原本可以用于估计一组未知参数,例如通过给定实证拟合模型,或者提供模型和控制参数之间的最优拟合程度或优化。
二、GMM模型的方法GMM模型主要分为三个部分:模型假设、观测式和估计模型。
1)模型假设:使用GMM模型估计数据参数时,需要规定一定的模型假设,例如宏观和微观的假设,变量的变化趋势假设,以及假设误差的连续性和独立性等。
2)观测式:根据给定的模型假设,确定观测式,以估计模型中变量之间的关系,形成一套数学表达式,以及协变量和残差之间的相关关系等。
此外,还会考虑模型假设的健康性(例如时间序列的平稳性)。
3)估计模型:使用迭代方法对模型参数进行估计,通过调整参数得到模型中变量的参数估计量以及估计误差,以及观测的绝对误差估计,最后将以上结果装入优化算法,以获得最小残差平方和模型的优化参数。
三、GMM模型的应用(1)GMM模型在宏观计量经济学中可以用于计算长期均衡,估计投资、政府支出、净出口和 GDP 核算等变量,以及进行宏观估计;(2)时间序列模型,例如经济周期性模型和机会模型;(3)微观计量经济学中可用于计算企业间的差异,例如产品的可替代性,员工行为问题的解决。
四、GMM模型的优缺点(1)GMM模型的优点:GMM模型对于时间序列和静态数据都有较好的应用,而且可以用来估计模型参数,均衡拟合度以及评估模型的可行性等。
(2)GMM模型的缺点:GMM模型的计算复杂度较大,容易受到外部激励因素的干扰,估计偏差较大,而且模型假设不当也会导致研究失误。
计量经济学7经典计量经济学应用模型
四、几种主要生产函数模型旳参数估计措施 五、生产函数模型在技术进步分析中旳应用 六、建立生产函数模型中旳数据质量问题
一、几种主要概念
⒈ 生产函数 ⑴ 定义 • 描述生产过程中投入旳生产要素旳某种组协议
它可能旳最大产出量之间旳依存关系旳数学体 现式。
Y f ( A, K, L,)
• 投入旳生产要素 • 最大产出量
C-D生产函数 C-D生产函数旳改
C-D生产函数旳改
含体现型技术进步
1967年 Arrow等
两要素CES生产函数
1967年 Sato
二级CES生产函数
1968年 Sato, Hoffman VES生产函数
1968年 Aigner, Chu
边界生产函数
1971年 Revanker
VES生产函数
1973年 Christensen, Jorgenson 超越对数
• 退化为C-D生产函数。为何?
• 当a=1时,
1 bk
1
b
c
Y AK 1c ( L ( ) K) 1c
1 c
1 ( )m
b
c ( )m
Y AK 1c ( L ( ) K) 1c
1 c
为实际应用旳VES生产函数。
•为何是“变替代弹性”?
⒍ 超越对数生产函数模型 (Translog P.Fln K ln( L K)
生产函数
1980年
三级CES生产函数
⑶ 生产函数是经验旳产物 • 生产函数是在西方国家发展起来旳,作为西方经
济学理论体系旳一部分,与特定旳生产理论与环 境相联络。
• 西方国家发展旳生产函数模型能够被我们所应用 :
生产函数反应旳是生产中投入要素与产出量 之间旳技术关系;
计量经济学模型的应用
§1.3 计量经济学模型的应用经济系统中各部分之间、经济过程中各环节之间、经济活动中各因素之间,除了存在经济行为理论上的相互联系之外,还存在数量上的相互依存关系。
研究客观存在的这些数量关系,是经济研究的一项重要任务,是经济决策的一项基础性工作,是发展经济理论的一种重要手段。
计量经济学则是经济数量分析的最重要的分支学科。
计量经济学模型的应用大体可以被概括为四个方面:结构分析、经济预测、政策评价、检验与发展经济理论。
在本书后续章节中将结合具体计量经济学模型来解释每个方面的应用,这里,仅作一些概念性介绍,以期对后续课程的学习起到某些指导作用。
一、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究。
它不同于人们通常所说的,诸如产业结构、产品结构、消费结构、投资结构中的结构分析。
它研究的是当一个变量或几个变量发生变化时会对其它变量以至经济系统产生什么样的影响,从这个意义上讲,我们所进行的经济系统定量研究工作,说到底,就是结构分析。
结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。
弹性,是经济学中一个重要概念,是某一变量的相对变化引起另一变量的相对变化的度量,即是变量的变化率之比。
在经济研究中,除了需要研究经济系统中变量绝对量之间的关系,还要掌握变量的相对变化所带来的相互影响,以掌握经济活动的数量规律和有效地控制经济系统。
计量经济学模型结构式揭示了变量之间的直接因果关系,从模型出发进一步揭示变量相对变化量之间的关系是十分方便的。
乘数,也是经济学中一个重要概念,是某一变量的绝对变化引起另一变量的绝对变化的度量,即是变量的变化量之比,也称倍数。
它直接度量经济系统中变量之间的相互影响,经常被用来研究外生变量的变化对内生变量的影响,对于实现经济系统的调控有重要作用。
乘数可以从计量经济学模型的简化式很方便的求得。
关于计量经济学模型的结构式和简化式的概念,将在第四章专门介绍,简单地说,结构式的解释变量中可以出现内生变量,而简化式的解释变量中全部为外生或滞后内生变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《Econometrics》
数信学院 王琦
应具备的知识
经济学(社会主义政治经济学,宏、微 观经济学)
数理统计学(概率、概率分布,随机变 量,假设检验,回归分析)
线性代数(矩阵运算,向量,特征根)
教材和参考书
李子奈《计量经济学》高等教育出版社 Gujiarati(古扎拉蒂)《计量经济学》人民大
此时的问题是,该企业是否真的应该降价? 如果决定降价,应该降多大的幅度?
在你作出降价决策和决定降价幅度之前, 你需要哪些东西帮助你进行决策呢?
事实上,仅仅根据降价通常能够促进销售 的一般经济规律贸然决定降价,很可能是不明 智的。
如果需求的价格弹性较低,那么降价带来 的销售增加就可能很有限,降价不仅不能带来 利润增加,还可能造成更大的亏损。
也就是说,你需要知道的不只是价格会影 响销售,销售量Q与价格P有负相关关系这样的 定性结论,而是一定幅度的价格变化对销售量 影响大小的具体数量或程度 。
我们需要知道的是销售量与价格之间的函数关 系Q=f(P),而且需要知道其中每个参数的数值 (例如,f(P)是线性函数Q=f(P)=a+bP,且 其中的参数a=5000,b=-200)或者知道需求弹性 的具体数值。
萨缪尔森(P.Samuelson) :“第二次大战 后的经济学是计量经济学的时代”。
诺贝尔经济学奖与计量经济学
56位获奖者中10位直接因为对计量经济学发展的贡献 而获奖 1969 R. Frish J. Tinbergen 1973 W. Leotief 1980 L. R. Klein 1984 R. Stone 1989 T. Haavelmo 2000 J. J. Heckman D. L. McFadden 2003 R. F. EngleC. W. J. Granger
数据利用方面
截面数据、时间序列数据
面板数据
计量经济学几十年中的发展状况
应用领域方面
从宏观计量扩展到微观计量,从经济增长到就 业和收入分配
从经济管理扩展到企业经营 针对不同应用领域的专门计量经济学,如宏观
计量、微观计量和金融市场计量经济学等,都 有了很大的发展。
计量经济学几十年中的发展状况
1979年3月,成立了中国数量经济研究会(现更名为中 国数量经济学会 ) 并办有一份杂志《数量经济技术经 济研究》。
1980年中国数量经济学会首次举办计量经济学讲习班 , 自此,计量经济学的教学与科研迅速展开 。
1998年7月教育部高等学校经济学科教学指导委员会首 次将计量经济学列为我国大学经济类专业本科学生的8 门必修课之一。
技术手段方面
计量分析软件发展也很快,使得处理分析 大量经济数据的能力越来越强,并为计量经济 技术和思想的发展提供了更单方程回归分析 联立方程组模型 时间序列分析
二、计量经济学的功能和作用
经济活动的多因素性、随机波动性以及事 件发生的不可逆性一直影响着经济学的科学化 进程。
计量经济学几十年中的发展状况
分析对象方面
单方程模型
联立方程组模型
小型的市场均衡模型
大型的宏观经济模
型
多国联网的LINK计划
静态模型
动态模型
线性模型
非线性模型
计量经济学几十年中的发展状况
分析技术方面
回归分析
时间序列分析
参数模型分析
非参数分析
还发展了许多处理和分析离散变量、受限变量 等的专门技术
研究经济学无法建立实验室 经济问题中的变量却没有函数关系可言
随着计量经济学的诞生,人们借助数学、 统计学知识分析和预测经济问题。虽然这只有 几十年的时间,却超过了经济学数百年积累起 来的文字分析水平。
(一)案例1 经营决策与计量经济学
某企业生产的一种产品销售情况不理想。 在这种情况下,根据较低的价格通常引起较大 需求的基本原理,经营者考虑采取降价方式进 行促销,以夺取更大的市场份额、获取更大的 利润。
绪论的作用是使读者明确学习的意义、 目标、学习方法,对掌握本课程的精髓 很有意义。
第一节 计量经济学的内容和作用
本节解决两个问题: (1)计量经济学是什么? (2)为什么要学习计量经济学?
这两个问题很重要,我们通过例子, 在相关学科比较等进行说明
一、计量经济学产生和发展
计量经济学(也称经济计量学)是 经济学的一个分支学科,它是现代经济 学的重要组成部分 。
近20位担任过世界计量经济学会会长 30余位左右在获奖成果中应用了计量经济学
计量经济学在经济学科中的地位
从现代西方经济学的特征看 从西方经济学的发展历史看 从世界一流大学经济学课程表看 从国际经济学刊物论文看 从经济学的“世界先进水平”看
计量经济学在我国的发展状况
计量经济学在1998年教育部审定的学科分类中属 三级学科。
作为计量经济分析基本工具的最小二 乘法是19世纪诞生的,但计量经济学作 为一门学科,一般认为正式诞生于20世 纪的二三十年代。
经济学的一个分支学科
1926年挪威经济学家R.Frish提出Econometrics
1930年成立国际计量经济学会(Frish,Tinbergen 和Fisher等 )
学出版社 王明舰,王永宏等译,《经济计量分析》(W
H. Greene, Econometric Analysis, 1993.),中 国社会科学出版社,1998 谢识予《计量经济学教程》复旦大学出版社, 2004
第一章 绪 论
关于计量经济学内容、意义、方法论, 与相关学科关系,在经济学中地位等的 概述
经济学(02)应用经济学(0202)数量经济学 (020209)。
数量经济学中包括计量经济学,投入产出,数理 经济学,及运筹学的一部分内容(线性规划,优化, 决策理论和风险分析等)。
计量经济学是我国大学经济类专业本科学生的8门 必修课之一。
计量经济学在我国的发展状况
1960年,中国科学院经济研究所成立了一个经济数学 方法研究组。
1933年创刊《计量经济学》( Econometrica )
20世纪40、50年代的大发展和60年代的扩张 20世纪70年代以来非经典(现代)计量经济学的
发展
在经济学科中占据极重要的地位
克莱因(R.Klein):“计量经济学已经在 经济学科中居于最重要的地位”,“在大多 数大学和学院中,计量经济学的讲授已经成 为经济学课程表中最有权威的一部分”。