计量经济学模型
计量经济学模型建立:8步骤

一、往届的学生提交的作业存在问题归纳如下:1、缺少具有说服力的理论假说2、变量之间关系牵强,无研究价值和实际意义如:全国居民消费价格指数与商品零售价格指数;粮食出售量与蔬菜出售量;农民收入与居民收入;日照时间与粮食产量;等等。
3、自变量不是主要的影响因素,如日照时间就不是影响粮食产量的主要因素4、变量的度量指标不具体,模糊不清5、指标数据的类型不明确,是采用时间序列数据、还是截面数据。
二、提供可参考的计量经济学模型:1.生产函数:农业总产值与农业从业人员、财政用于农业资金、农业机械总动力关系工业总产值与固定资产、职工人数之间的关系2.消费函数:(1)食品消费支出与食品价格、家庭年(月)人均收入(2)不同地区城镇居民家庭人均可支配收入与人均消费支出(3)中国居民收入与消费的关系(4)农村居民消费函数:农村居民人均消费支出与农业经营纯收入、其他来源的纯收入3.需求函数:Y:居民对食品的消费量;X1:消费者消费支出总额;X2:食品价格指数三、计量经济学模型建立:8个基本步骤现实问题:经济形势对人们工作意愿的影响?第一步,建立一个理论假说假说一:受挫—工人假说。
即经济形势恶化(表现为高失业率),则工人的工作意愿下降(表现为低劳动参与率);假说二:增加—工人假说。
即经济形势恶化(高失业率),许多后备工人进入劳动市场以补贴家庭开支(尽管薪酬很低),进而导致劳动参与率上升。
第二步,收集数据变量:经济形势,劳动者的工作意愿具体的度量指标:城市失业率(%),城市劳动力参与率(%)数据一般来源:权威部门向社会发布的统计信息、公开出版物、亲自调查资料来源:总统经济报告,2008年 第三步,设定数学模型第四步,设立统计或经济计量模型 第五步, 估计经济计量模型参数第六步,检查模型的适用性:模型设定检验1.经济意义检验:2.统计学检验:3.计量经济学检验:第七步,检验源自模型的假说;1.验证估计的模型是否有经济意义;2.估计的结果是否与经济理论相符。
计量经济学--几种常用的回归模型课件

计量经济学--几种常用的回归模型
18
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。
• P166例6.4
计量经济学--几种常用的回归模型
19
对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
20
Yi 1 2 ln X i i
计量经济学--几种常用的回归模型
9
半对数模型
• 只有一个变量以对数形式出现
计量经济学--几种常用的回归模型
10
2. 半对数模型
• 线性到对数模型(因变量对数形式) • 对数到线性模型(解释变量对数形式)
计量经济学--几种常用的回归模型
11
• 线性到对数模型(因变量对数形式)
计量经济学--几种常用的回归模型
12
Yt Y0(1 r )t
ln Yi 2 ln X i i
计量经济学--几种常用的回归模型
4
2的含义?
• 其测度了Y对X的弹性,即X变动百分之一引起Y变 动的百分数。
• 例如,Y为某一商品的需求量,X为该商品的价格, 那么斜率系数为需求的价格弹性。
计量经济学--几种常用的回归模型
5
证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
计量经济学--几种常用的回归模型
8
ห้องสมุดไป่ตู้意
• 是产出对资本投入的(偏)弹性,度量
在保持劳动力投入不变的情况下资本投入 变化1%时的产出变动百分比;
• 是产出对劳动投入的(偏)弹性,度量
在保持资本投入不变的情况下劳动力投入 变化1%时的产出变动百分比;
• 给出了规模报酬信息
计量经济学模型

模型参数的估计
模型参数的估计方法,是计量经 济学的核心内容。
模型参数的估计是一个纯技术的 过程,包括对模型进行识别(对联立 方程模型而言)、估计方法的选择、 软件的应用等内容。
模型的检验
一般讲,计量经济学模型必须 通过四级检验: (1)经济意义检验 (2)统计学检验 (3)计量经济学检验 (4)预测检验
计量经济模型
计量经济模型揭示经济活动中各个 因素之间的定量关系,用随机性的数学 方程加以描述。
Q =Aeγ tKα Lβ μ 其中μ 为随机误差项。这就是计量 经济学模型的理论形式。
计量经济学的根本 任务是建立、估计、 检验和运用计量经济 学模型。
建模步骤
一、理论模型的设计 二、样本数据的收集 三、模型参数的估计 四、模型的检验 五、分析总结
17 1994 china 46690.7 26796 19260.6
18 1995 china 58510.5 33635 23877
时间序列数据的注意事项
(1)时间序列误差项间往往存在强相关 (自相关);
(2)数据频率问题。有时样本观察值过于 集中,不能反映经济变量间的结构关系, 应增大观测区间;
5
133
1999 2
6
134
1999 1
15
3
16
4
1000 7 3500 3
截面数据的注意事项
(1)人们一般认为截面数据是随机的;
(2)样本点间的同质性;
(3)截面数据容易引起误差项的异方差 问题。
时间序列数据 (Time series data)
• 时间序列数据又称纵向数据,是对同一个变量 在不同时间取值的一组观测结果,或者说是一 批按照事件先后顺序排列的统计数据。例如, 我国自改革开放的1978-2000年GNP数据。
计量经济学7经典计量经济学应用模型

四、几种主要生产函数模型旳参数估计措施 五、生产函数模型在技术进步分析中旳应用 六、建立生产函数模型中旳数据质量问题
一、几种主要概念
⒈ 生产函数 ⑴ 定义 • 描述生产过程中投入旳生产要素旳某种组协议
它可能旳最大产出量之间旳依存关系旳数学体 现式。
Y f ( A, K, L,)
• 投入旳生产要素 • 最大产出量
C-D生产函数 C-D生产函数旳改
C-D生产函数旳改
含体现型技术进步
1967年 Arrow等
两要素CES生产函数
1967年 Sato
二级CES生产函数
1968年 Sato, Hoffman VES生产函数
1968年 Aigner, Chu
边界生产函数
1971年 Revanker
VES生产函数
1973年 Christensen, Jorgenson 超越对数
• 退化为C-D生产函数。为何?
• 当a=1时,
1 bk
1
b
c
Y AK 1c ( L ( ) K) 1c
1 c
1 ( )m
b
c ( )m
Y AK 1c ( L ( ) K) 1c
1 c
为实际应用旳VES生产函数。
•为何是“变替代弹性”?
⒍ 超越对数生产函数模型 (Translog P.Fln K ln( L K)
生产函数
1980年
三级CES生产函数
⑶ 生产函数是经验旳产物 • 生产函数是在西方国家发展起来旳,作为西方经
济学理论体系旳一部分,与特定旳生产理论与环 境相联络。
• 西方国家发展旳生产函数模型能够被我们所应用 :
生产函数反应旳是生产中投入要素与产出量 之间旳技术关系;
计量经济学模型整理大全

1
E
需要
0
E
对变形后的模型做 OLS 估计即可
1
先忽略异方差做普通的 OLS,得到 ,然
后用 代替 来回归变形之后的模型
可以减小异方差
做平常的 OLS,然后在认为有异方差的情
况下,用 代替 ,进而得到一致估计量
∗
⇔
∗
∗ ∗
∗
方法:OLS 使得∑ ∗ 最小
∗
∑ ∑
∑ ∑
Var
∗
∑ ∑
∑
1
∑
∑ ∑
∑
性质
未知
E
E
1
对数法
怀特稳健
标准误
内
生
性
1
1
1
′
∑ 1
Var
∑
可线性化的模型
模型/用途
可
线
性
化
的
模
型
双对数
不变弹性模型
线性-对数
衡量增长率
设定
计量经济学理论的模型解释与预测

计量经济学理论的模型解释与预测引言计量经济学是经济学中一个重要的分支,其研究方法主要基于经济理论和数理统计学,旨在通过使用数学和统计方法来解释经济现象,并进行预测和政策分析。
计量经济学理论的模型是实现这一目标的核心工具。
本文将对计量经济学理论的模型进行解释,并探讨其在预测方面的应用。
一、计量经济学理论的模型解释1.1 常见的计量经济学模型计量经济学模型是对经济现象进行抽象和概括的数学表达式。
常见的计量经济学模型包括线性回归模型、时间序列模型、面板数据模型等。
线性回归模型是计量经济学中最基础且广泛应用的模型之一。
它假设变量之间存在线性关系,并通过估计各个变量的系数来解释经济现象。
时间序列模型是用于分析时间序列数据的模型,其中包括自回归模型、移动平均模型、ARMA模型等。
时间序列模型主要用于分析时间上的趋势和周期性。
面板数据模型是同时包含横截面和时间序列数据的模型,通常用于分析跨国或跨地区的经济现象。
面板数据模型可以同时考虑个体特征和时间特征,提高了模型的解释能力。
1.2 模型解释的基本步骤模型解释是对计量经济学模型进行参数估计和推断的过程。
基本的模型解释步骤包括模型设定、估计方法选择、参数估计和模型诊断。
模型设定是根据研究目的和数据特征选择适当的计量经济学模型,并确定模型中包含的变量和假设条件。
估计方法选择是根据模型的性质和数据的特点选择合适的估计方法,常见的估计方法包括最小二乘法、广义最小二乘法、极大似然估计等。
参数估计是利用选定的估计方法对模型的参数进行估计,通常使用计算机软件进行参数的数值计算。
模型诊断是对估计结果进行评价和检验,包括残差分析、假设检验等。
模型诊断可以用于判断模型的拟合程度和参数的显著性。
1.3 模型解释的应用领域计量经济学模型的解释应用广泛,包括实证研究、政策评估和预测分析等。
实证研究是计量经济学模型应用的基本领域,通过对模型进行解释,可以验证和检验经济理论的有效性,并提供实证证据支持。
计量经济学模型

计量经济学模型
计量经济学模型是一种用于分析定量经济行为的方法。
它通过使用数字技术来描述和预测经济问题,以帮助决策者更好地理解经济现象。
计量经济学模型的基本目标是描述经济行为的影响因素并识别其影响的大小,以便可以对政策措施作出明智的经济决策。
计量经济学模型的基本原理是要把经济变量通过数学模型的形式进行表达,这种数学模型可以用来描述经济现象,也可以用来预测未来的经济发展趋势。
例如,计量经济学模型可用来分析价格波动、收入差距、市场份额或投资回报率等经济变量之间的关系,以及各种政策措施对这些变量的影响。
计量经济学的模型

计量经济学的模型
计量经济学是一门运用数学、统计学和经济学理论来分析经济数据的学科。
它的核心是建立经济变量之间的数学模型,并利用实际数据进行估计和验证。
计量经济学模型通常由一组方程式组成,这些方程式描述了经济变量之间的关系。
其中,最常见的模型是线性回归模型,它假设因变量与自变量之间存在线性关系。
在建立计量经济学模型时,需要考虑许多因素,例如变量的选择、数据的收集和处理、模型的假设和限制等。
为了确保模型的可靠性和有效性,需要进行一系列的统计检验和诊断,例如拟合优度检验、异方差性检验、自相关检验等。
计量经济学模型可以用于预测经济变量的未来走势、评估政策的效果、检验经济理论的正确性等。
它在宏观经济、金融市场、产业经济等领域都有广泛的应用。
总之,计量经济学是一门重要的经济学分支,它通过建立数学模型来分析经济数据,为政策制定和经济决策提供了科学依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元线性回归模型
一、建立模型
社会物流总费用受多种综合因素的影响,如运输费用、仓储费用、包装费用、装卸搬运费用、流通加工费用、信息处理费用等,而其中最重要的因素就是运输费用和仓储费用,即运输费用和仓储费用与社会物流总费用之间存在单方向的因果关系;由此,我们可设以下回归模型:Yi=b0+b1*x1i+b2*x2i+ ui 现在以中国1995年至2004年物流总费用占GDP比例(%)的资料进行回归分析,并对估计模型进行检验。
1995年至2004年物流总费用占GDP比例(%)
在Eviews中新建工作簿,定义变量“商品价格”(x1)、“消费者人均月收入”(x2)及“商品需求量”(y),并输入相关数据,得出相应散点图如下:
①x1 与y 的散点图为:
②x2与y 的散点图为:
由两张散点图不能明确的看出x1、x2与y之间存在线性关系,故通过Eviews 软件计算,得出估计模型的参数结果如下:
由以上数据可知回归方程为:
Y=11.57032+0.405599*x1 +0.794365*x2 (5.07) (2.67) (7.69)
1499.02=R 8909.02=R 37.62689=F
二、模型检验
1、 经济意义检验:
①b0=11.57032,在运输费用与仓储费用接近于零时,仍存在其他物流费用;②b1=0.405599,说明运输费用与社会物流总费用之间存在正的线性关系,运输费用每增加1%,社会物流总费用增加0.405599%
③b2= 0.794365,说明仓储费用与社会物流总费用之间存在正的线性关系,仓储费用每增加1%,社会物流总费用增加0.794365% 2、计量经济学检验:
①拟合优度检验:本模型的拟合优度系数为0.914898,表明本模型具有较高的拟合优度,x1、x2对y 的解释能力较好;
②变量的显著性检验(t 检验):方程的截距项和斜率项的t 检验值分别为5.07、2.67、7.69,均大于5%显著性水平下自由度为n-2=8的临界值t0.025(8)=1.860,模型参数估计显著,拒绝原假设H0;
③方程的显著性检验(F 检验):有上图可知,F-statistic =37.62689;Prob(F-statistic)
=0.000180 ,由F 检验的原则可知,在显著性概率为0.05的条件下,回归方程显著成立,拒绝H0 ;
三、异方差性检验
在5%的显著性水平下,辅助回归的n 8.4592 R 大于自由度为5的卡方分布临界值1.145,故模型存在异方差性,现用加权最小二乘法对其进行修正:
即采用加权最小二乘法得到的回归方程为:
=11.65680+0.398039*x1+0.788178*x2
(11.92) (6.69) (13.80) 0.9999762 R 可以看出,加权最小二乘法的结果与普通最小二乘估计的结果有较大的区别。
四、序列相关性检验
由图示法检验可以看出,模型存在正序列相关,现用广义差分法对其修正:
即采用广义差分法修正后得到的回归方程为:
=12.38083+0.345864*x1+0.776354*x2-0.427697
(11.92) (6.69) (13.80) (-1.04)
五、多重共线性检验
从表中数据可以看出不存在较强的多重共线性。