机床与刀具65
机床加工中的刀具性能测试与评估

机床加工中的刀具性能测试与评估随着制造业的发展,机床加工在工业生产中扮演着重要角色。
而机床的刀具作为加工的核心工具,其性能的测试与评估对于提高加工质量和效率至关重要。
本文将探讨机床加工中刀具性能测试与评估的相关内容。
一、刀具性能测试的意义及分类刀具性能测试是为了验证刀具在实际加工中的表现,以评估其性能好坏。
刀具性能测试主要包括耐磨性、切削性、刚性等多个方面。
在实际应用中,可以通过实验室测试、现场测试及观察等方式进行。
1. 耐磨性测试耐磨性是刀具的重要性能之一。
耐磨性测试主要通过摩擦磨损实验来评估刀具在长时间工作过程中的耐磨能力。
借助方式可以进行刀具磨损状态的监测和分析,以便更好地进行刀具性能评估。
2. 切削性测试切削性是指刀具在切削过程中的工作能力和效率。
切削性测试主要通过在实际加工中对刀具的切削力、切削温度、切削负荷等参数进行测量和分析,以评估刀具在工作中是否具备较好的切削性能。
3. 刚性测试刀具的刚性对加工精度和表面质量有着重要影响。
刚性测试主要通过对刀具的振动、刚度等参数进行测量和分析,以评估刀具在加工过程中的刚性表现。
二、刀具性能评估的方法刀具性能评估是通过对刀具在实际工作中的表现进行定量分析,以便得出相应的评估结果。
目前常用的刀具性能评估方法主要包括实验测量、数据分析和模拟仿真等。
1. 实验测量方法实验测量方法是最常用的刀具性能评估方法之一。
通过在实际加工中对刀具的切削力、磨损情况、工件表面质量等参数进行测量和分析,以评估刀具的性能。
2. 数据分析方法数据分析方法是一种基于大量数据统计和分析的评估方法。
通过采集和分析刀具的使用数据,如刀具寿命、加工效率等,从而评估刀具的性能。
3. 模拟仿真方法模拟仿真方法是一种通过计算机模拟和仿真技术来评估刀具性能的方法。
通过建立刀具加工过程的仿真模型,模拟刀具的磨损、切削力等情况,以评估刀具的性能。
三、刀具性能测试与评估的意义和挑战刀具性能测试与评估对于提高加工质量和效率具有重要意义。
31数控加工对刀具的要求

3.1数控加工对刀具的要求3.1.1 数控刀具在数控加工中的地位和作用刀具技术和机床技术相结合,工件材料技术与刀具材料技术交替进展,成为切削技术不断向前发展的历史规律,对推动切削技术的发展起着决定性作用。
机床与刀具的发展是相辅相成、相互促进的。
在由机床、刀具和工件组成的切削加工工艺系统中,刀具是最活跃的因素。
刀具切削性能的好坏取决于构成刀具的材料和刀具结构。
切削加工生产率和刀具寿命的高低、加工成本的多少、加工精度和加工表面质量的优劣等,在很大程度上取决于刀具材料、刀具结构及其的合理选择。
随着作为切削加工最基本要素的刀具材料迅速发展。
各种新型刀具材料,其物理力学性能和切削加工性能都有了很大的提高,应用范围也不断扩大。
开发出了许多新型刀具材料的刀具,如聚晶金刚石刀具(PCD)、聚晶立方氮化硼刀具(PCBN)、CVD金刚石刀具、纳米复合刀具、纳米涂层刀具、晶须增韧陶瓷刀具、超细晶粒硬质合金刀具、TiC(N)基硬质合金刀具、粉末冶金高速钢刀具等。
先进的数控机床加工设备只有与高性能的数控刀具相配合,才能发挥其应有的效能,取得良好的经济效益。
数控刀具是指与这些先进高效的数控机床相配套使用的各种刀具的总称,是数控机床不可缺少的关键配套产品,数控刀具以其高效、精密、高速、耐磨、长寿命和良好的综合切削性能取代了传统的刀具。
表3-1-1为传统刀具与现代数控刀具的比较。
表3-1-1 传统刀具与现代数控刀具的比较数控刀具的重要性主要表现在以下几方面:(1) 数控刀具的性能和质量直接影响到数控机床生产效率的高低、加工质量的好坏和经济效益。
数控加工机床生产效率的高低、被加工工件质量的好坏以及生产成本,在很大程度上取决于数控刀具材料及其刀具结构的合理选择。
(2) 数控刀具不仅为先进制造业提供了高效、高性能的切削刀具,而且还由此开发出了许多新的加工工艺,成为当前先进制造技术发展的重要组成部分和显著特征之一。
(3) 数控刀具具有“三高一专”(即高效率、高精度、高可靠性和专用化)的特点,广泛应用于高速切削、精密和超精密加工、干切削、硬切削和难加工材料的加工等先进制造技术领域,可提高加工效率、加工精度和加工表面质量。
机床加工过程中的刀具管理与维护

机床加工过程中的刀具管理与维护在机床加工过程中,刀具是至关重要的工具之一。
良好的刀具管理与维护可以有效地提高机床的加工质量和效率,延长刀具的使用寿命。
本文将介绍一些刀具管理与维护的方法和技巧。
一、刀具管理刀具管理包括采购、入库、领用、使用、保养和报废等环节。
合理的刀具管理可以确保刀具的准时供应和高效利用。
1. 采购:在采购刀具时,应根据加工需求选择合适的刀具类型和规格。
同时,要选择信誉好、质量可靠的供应商,以确保刀具的品质。
2. 入库与领用:刀具入库时,应对其进行严格的检验,确保刀具符合要求。
在领用刀具时,要做好详细的记录,包括刀具型号、数量和领用人员等信息,以便于刀具的使用和追溯。
3. 使用:在使用刀具时,操作人员应该熟悉刀具的使用规范和安全操作要求。
刀具应根据加工要求选择合适的切削参数,避免过度切削或切削不足,从而降低刀具的磨损和损坏。
4. 保养:定期对刀具进行保养是提高其使用寿命的关键。
刀具保养包括清洁、润滑和修复等方面。
清洁时要使用适当的清洁剂,彻底清除刀具表面的切屑和油污。
润滑时要使用专用的润滑剂,以减少刀具与工件之间的摩擦和磨损。
修复方面,可以选择刀具磨削或更换磨损部件等方法进行。
5. 报废:当刀具严重磨损或者无法修复时,应及时进行报废处理。
报废前要对刀具进行检测和评估,以确定是否可以进行再利用或回收。
二、刀具维护刀具维护是刀具管理工作的重要组成部分。
通过合理的维护措施,可以延长刀具的使用寿命,提高加工质量和效率。
1. 定期检查:对刀具进行定期的检查,及时发现和排除潜在故障和问题。
检查内容包括刀具的磨损程度、刃口状态、夹持方式、刀柄紧固情况等。
2. 高效切削润滑:在切削过程中,刀具与工件之间的摩擦和热量会导致刀具磨损和工件表面质量下降。
因此,要选择适当的切削润滑剂,保持切削面的润滑和冷却,减少热量的积聚和刀具的磨损。
3. 及时更换磨损部件:刀具在使用过程中,由于切削力的作用,容易出现磨损或损坏。
金工实习车削加工车床介绍、刀具介绍

二 、车刀的组成
车刀的组成:车刀是由刀体和刀头两部分组 成。刀头担任切削工作,刀体用来安装夹持车刀。
车刀的刀头由三个面,两个切削刃和一个刀 尖组成:前刀面、主后刀面、副后刀面;主切削 刃、副切削刃;刀尖。
2、硬质合金:是用碳化钨、碳化钛和钴等材 料,用粉末冶金方法制成一定形状的刀片,焊接或 机械夹固在中碳钢的刀杆上使用。它具有很高的热 硬性在800℃—1000℃高温下能保持高硬度 HRC74—82。
常用硬质合金有:钨钴和钨钴钛两大类
1)、钨钴类:YG3、YG6、YG8用于半精加 工和精加工,适应于铸铁青铜等脆性材料的加工。
规 格、性 能
2、规格: 以C616—1为例: 加工最大直径为320mm。 最大加工长度750mm。 主轴转速19—1400转/分。 3、性能: 加工精度IT7—IT12 高→低 表面粗糙度Ra12.5—1.6 µm 低→高
二、C616车床的组成部分及其作用
C616车床主要由四箱、两架、一床身及光 杠、丝杠几部分组成。
车削加工是最基本、用途最广的一种刀具 切削加工方法,主要用来加工各种回转表面。
车床的种类很多,有卧式车床、立式车床、 转塔车床、仿形车床及数控车床等,其中以卧 式车床通用性最好,广泛使用。
一、车床的型号、规格、性能
1、型号:以 C6132为例 C —机床类别代号(车床类) 6 —机床组别代号(卧式车床组) 1—机床系别代号(卧式车床系) 32—机床主参数代号(表示床身上工件最大加工回转 直径 320mm 的1/10) 旧:以C616—1 为例 C—车床汉语拼音的第一个字母 6—普通车床 16—最大加工回转半径的1/10 1—第一次改进
数控机床刀具装夹与刀具位置校正方法

数控机床刀具装夹与刀具位置校正方法数控机床是一种利用计算机控制系统进行运动控制的高精度机床。
在数控机床的工作中,刀具的装夹与刀具位置校正是非常重要的环节,它们直接影响着加工工件的精度和质量。
本文将为您介绍数控机床刀具装夹与刀具位置校正的方法,以帮助您更好地理解和应用。
首先,我们来了解一下数控机床刀具的装夹方法。
常见的数控机床刀具装夹方法有机械装夹和液压装夹两种。
机械装夹是利用夹持力将刀具固定在工作台上。
它通常包括夹头、螺栓和刀具座等部件。
夹头是夹持刀具的主要部件,它具有一定的夹持力和刚性,能够保证刀具的固定和稳定。
螺栓用于调整夹头的夹持力,刀具座则用于连接夹头和刀具。
在使用机械装夹时,需要根据刀具的类型和规格选择合适的夹头和刀具座,并通过螺栓调整夹持力,保证刀具的牢固性和稳定性。
液压装夹是利用液压力将刀具固定在工作台上。
它通常包括液压缸、活塞和刀具座等部件。
液压装夹具有夹持力大、夹持刚性好的特点,能够更好地保证刀具的稳定性和精度。
在使用液压装夹时,需要保证液压系统的良好工作状态,及时检查并调整液压缸和活塞的压力,以确保刀具的正确装夹和工作状态。
除了选择合适的刀具装夹方法外,刀具的位置校正也是数控机床加工过程中不可忽视的环节。
刀具位置校正的目的是保证刀具在加工过程中的准确位置,以提高加工精度和质量。
数控机床刀具位置校正的方法主要有以下几种:1. 刀具长度补偿:利用数控系统中的刀具长度补偿功能,通过设定刀具的长度补偿值,使刀具的实际位置与程序中设定的位置相符。
刀具长度补偿的值可以根据实际加工情况进行调整,以确保加工精度的要求。
2. 刀具半径补偿:利用数控系统中的刀具半径补偿功能,通过设定刀具的半径补偿值,使刀具的实际位置与程序中设定的位置相符。
刀具半径补偿的值可以根据实际加工情况进行调整,以保证加工轮廓的精度和形状。
3. 刀具位置校正:利用数控机床的手动或自动操作功能,通过对刀具位置的调整和修正,使其达到加工要求。
数控机床的刀具补偿与补偿方法

数控机床的刀具补偿与补偿方法数控机床是一种通过计算机编程来控制刀具自动运动的高精度机床。
而在数控机床的加工过程中,刀具磨损是不可避免的。
为了确保加工的精度和质量,需要对刀具的磨损进行补偿。
本文将介绍数控机床的刀具补偿及其方法。
刀具补偿是指在数控机床的程序中,通过计算机控制的方式,根据刀具磨损的情况进行刀补操作,使得机床能够保持加工精度。
刀具补偿主要分为几种类型:半径补偿、长度补偿、倾斜补偿、刀尖位置补偿等。
首先,半径补偿是常见的刀具补偿方式之一。
在数控机床中,刀具刃尖的磨损会导致加工半径发生变化,从而影响到加工结果。
为了纠正加工误差,可以通过半径补偿进行校正。
一般来说,半径补偿是通过在程序中输入一个补偿值,将刀具的半径进行相应的增加或减少,以保持加工精度。
其次,长度补偿也是常用的一种刀具补偿方法。
在数控机床中,切削刀具的长度磨损会导致切削深度的变化。
为了保持加工的一致性和精度,可以通过长度补偿来进行校正。
长度补偿的原理是通过在程序中输入一个补偿值,使刀具的位置发生相应的变化,从而达到加工深度的控制。
倾斜补偿是指在加工过程中,刀具出现倾斜现象,导致加工精度下降。
为了解决这个问题,可以通过倾斜补偿来进行校正。
倾斜补偿的原理是通过在程序中调整坐标偏移量,使得刀具在加工过程中能够保持正确的倾斜角度,从而保持加工精度。
最后,刀尖位置补偿是一种通过调整刀具运动轨迹来控制加工精度的方法。
在数控机床的切削过程中,刀尖的位置可能会发生偏移。
通过刀尖位置补偿,可以通过调整刀具的路径来保持刀尖的正确位置,从而实现精确的加工。
综上所述,数控机床的刀具补偿方法主要包括半径补偿、长度补偿、倾斜补偿和刀尖位置补偿等。
这些方法通过在数控机床的程序中输入相应的补偿值或调整坐标偏移量,能够对刀具磨损进行有效的补偿,从而保证加工的精度和质量。
刀具补偿是数控机床加工过程中不可或缺的一部分,它使得机床能够适应刀具磨损的变化,同时提高了加工的效率与精度。
数控机床刀具的安装与调整方法

数控机床刀具的安装与调整方法在数控机床的加工过程中,刀具的安装与调整是非常重要的环节。
正确的安装和调整可以保证数控机床的正常运行,提高加工效率和产品质量。
本文将介绍数控机床刀具的安装与调整方法,以帮助您正确地操作数控机床。
首先,我们需要了解数控机床刀具的组成。
刀具系统通常由刀柄、刀片、刀夹和刀头组成。
刀柄负责刀具的刚性连接,刀片是刀具的主要工作部分,刀夹用于夹持刀片,刀头则是用于切割材料的工具。
在安装之前,务必保证刀具的质量和完整性。
当安装数控机床刀具时,首先要选择合适的刀具,刀具的选用应根据加工材料和加工方式来确定。
根据所需加工的工件,选择合适的切削速度、进给速度和刀具刃尺寸等参数。
在安装刀柄时,应先清洁刀柄孔和刀片座,确保没有任何异物。
然后将刀柄插入刀柄孔中,利用适当的工具将其固定在机床上。
刀柄的安装位置应严格按照机床的要求进行调整,以确保其与工件之间的距离和角度。
安装刀片时,应先检查刀片的完整性和质量。
将刀片放在刀片座上,确保刀片与刀柄安装牢固。
然后,根据加工要求调整刀片的位置和方向。
调整刀片的位置可以通过移动刀柄或调整夹具来完成。
通过调整刀片的方向,可以选择不同的切削方式,如顺铣、逆铣或高速切削等。
安装刀夹时,应注意刀夹的选择和安装方式。
刀夹的选择应根据刀具的尺寸和形状来确定,确保刀片能够在刀夹中保持良好的稳定性。
安装刀夹时,应将刀具放入夹具中,并利用适当的夹紧力固定刀具。
夹具的安装位置应根据机床的要求进行调整,以确保刀具的刚性连接。
在刀具安装完成后,还需要进行调整和校正。
首先,检查刀具的水平度和垂直度,并进行必要的校正。
然后,调整刀具的位置和方向,以确保其与工件之间的夹紧力和角度均匀。
最后,进行切削试验,检查刀具的切削效果和加工质量。
总之,数控机床刀具的安装和调整是确保数控机床正常运行和提高加工效率的关键环节。
正确的安装和调整可以提高切削效率和产品质量,减少刀具的损耗和机床的停机时间。
机械制造工程学 习题答案 作者 李伟 谭豫之 第3章 机床与刀具(2)

第3章 机床与刀具
特点:
① 粗切齿制成轮切式结构,分块拉削,精切齿采用 成形式结构,分层拉削。② 缩短了拉刀长度。③ 提 高了拉削生产率。④ 拉削后的表面质量较好。
36
机械制造工程学
3、拉削的工艺特点及应用
第3章 机床与刀具
① 生产率高。
② 加工精度高,表面质量好。IT8~IT7,Ra0.8~0.4 μ m。
陶瓷结合剂:(V)
性适能用:范围:
强适用度于高通,用耐砂热轮、、耐成腐形蚀磨性 好削砂,轮气。孔一率般大V,<3但5m较/s脆。, 弹性差。
56
机械制造工程学
三、砂轮的特性与选择
第3章 机床与刀具
4. 结合剂:用来粘结磨料的物质,其性能决定着砂轮 的强度、抗冲击性、耐热性以及抗腐蚀能力
陶瓷结合剂:(V) 树脂结合剂:(B)
第3章 机床与刀具
2_05 镗孔
17
机械制造工程学
2、镗孔的特点
① 镗刀的结构简单,调整方便。 单刃镗刀 多刃镗刀
第3章 机床与刀具
18
机械制造工程学
2、镗孔的特点
第3章 机床与刀具
① 镗刀的结构简单,调整方便。
单刃镗刀
多刃镗刀 ② 通用性大。
经济精度:IT8~IT7
Ra1.6~0.8 2_10 双刃浮动镗刀
陶瓷结合剂:(V) 树脂结合剂:(B) 橡胶结合剂:(R)
性适能用:范围:
强主度要最用高于金,刚导石热砂性轮好及,电但 自解锐磨性削差用砂。轮常见 。的 磨是 削青 硬铜 质 结合合金剂、。玻璃、陶瓷等。
29
机械制造工程学
1、拉刀的特点
第3章 机床与刀具
① 切削刃与被加工表面的横截面形状相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉床、刨床、插床加工分析
拉床、刨床、插床加工分析
? 拉刀的类型及其应用 按受力不同分为:拉刀和推刀
按加工工件表面不同分为:内拉刀和外拉刀
? 内拉刀是加工工件内表面的,常见的有圆孔拉刀、键 槽拉刀及花键孔拉刀; ? 外拉刀是加工工件外表面的,常见的有平面拉刀、 成形表面拉刀及外齿轮拉刀等。 按拉刀结构不同可分为:整体式与组合式拉刀。
拉床、刨床、插床加工分析
? 拉削方式
圆孔拉刀的结构及拉削过程
拉床、刨床、插床加工分析
? 拉刀类型
小径定心渐开线花键拉刀
拉床、刨床、插床加工分析
? 拉刀类型
键槽拉刀
拉床、刨床、插床加工分析
? 拉刀类型
花键拉刀
拉床、刨床、插床加工分析
? 拉刀类型
圆拉刀
拉床、刨床、插床加工分析
? 拉刀类型
异形拉刀
拉床、刨床、插床加工分析
?拉刀切削部分设计参数
1)齿升量af:前、后两刀 齿半径或高度之差。 影响拉削力、拉刀长度、 生产率和加工表面质量。
粗切齿: af=0.02~
0.20mm
精切齿: af=0.005 ~
0.015mm
拉床、刨床、插床加工分析
?拉刀切削部分设计参数
2)齿距p:相邻两刀齿之间的轴向距离。
Hale Waihona Puke 、刨削、插削加工? 插床: 用插刀
加工工件表面的机 床。实质是立式刨 床 主要用于加工:工 件的内表面,如内 孔中键槽、多边形 孔、成形内表面
插床
二、刨削、插削加工
? 插床:
插床的运动(成形运动): 主运动—滑枕带动插刀沿垂直方向(立柱的导轨3)所作的往复 直线运动。向下运动是工作行程,向上是空行程。 进给运动—工作台可作纵、横两个方向的进给运动,圆形工作 台可绕垂直轴旋转,完成圆周进给或进行分度。 床鞍6完成横向进给运动,溜板7完成纵向进给运动。
影响容屑空间、同时工作齿数及工作平稳性。 3)前角γo:根据工件材料选择。 4)后角αo:为使刀齿前刀面重磨之后,直径变小较慢,以及 延长拉刀的使用寿命,拉刀的后角应取较小值。
5)刃带宽度ba1 其作用是制造时便于控制刀齿直径、保持切削过程的稳定
性和重磨后保持直径不变。
拉床、刨床、插床加工分析
? 拉削方式
第四章 金属切削机床基本知识 拉床、刨床、插床加工分析
拉床、刨床、插床加工分析
一、拉削加工 在拉床上用拉刀加工工件的工艺过程,称为拉削加工。 ? 拉削工艺范围广:不但可以加工各种形状的通孔,还可以拉 削平面及各种组合成形面。
由于受拉刀制造工艺以及拉床动力的限制,过小或过大尺寸 的孔不适宜拉削加工(拉削孔径一般为10~100mm,孔的深径比 一般不超过5),盲孔、台阶孔和薄壁孔也不适宜拉削加工。 ? 拉削加工特点: 拉削加工质量好,生产率高。拉刀寿命长,并且拉床结构简单。 但拉刀结构复杂,制造比较麻烦,价格较高,因而多用于大量和 批量生产的精加工。
分块式拉削
分块式拉削与分层式拉削的区别在于:工件上的每层金属 是由一组尺寸基本相同的刀齿切去,每个刀齿仅切去一层金属 的一部分。
拉床、刨床、插床加工分析
? 综合式拉削:综合了上述两种拉削方式的优点,拉刀短,生 产率高,加工表面也较光洁。
综合式拉削
集中了以上两种拉削的优点,即粗切齿制成分块式结构,精切 齿则采用分层式结构,这样即缩短了拉刀长度,保持较高生产率 ,又获得较好的工件表面质量。我国生产的圆孔拉刀较多的采用 该结构。
拉床、刨床、插床加工分析
二、刨削、插削加工
刨床和插床的主运动→直线运动,属于直线运动机床 ? 刨床:用刨刀加工工件的机床
主要用于加工各种平面(水平面、垂直面、斜面)和沟槽 (T形槽、燕尾槽、V形槽)。 ? 刨床的运动(成形运动):主运动和进给运动都是直线运动。 ? 主要类型:
1.牛头刨床
2.龙门刨床
? 分层式拉削:可获得较高的表面质量,但拉刀长度较长,
生产率较低
分层式拉削图形
切削部的刀齿高度向后递增,工件上的拉削余量被一层一 层地切去,最终由最后一个切削齿切出所要求的尺寸,经校准 齿修光达到预定的尺寸精度及表面粗糙度。
拉床、刨床、插床加工分析
? 分块式拉削:拉刀长度短,生产率高,但拉刀结构复杂,制造 困难,拉削后的工件表面比较粗糙。
2.龙门刨床
适用加工:大型 或重型零件上 的各种平面、 沟槽和各种导 轨面(长而窄 的平面和沟槽) 或多件加工
二、刨削、插削加工
龙门刨床
二、刨削、插削加工
2.龙门刨床 工作台带动工件沿床身导轨作纵向往复直线运动—主运动; 横梁上两个垂直刀架,可在横梁导轨上作水平方向进给运动 —横向进给运动; 左右侧刀架,可分别沿垂直方向作进给运动,以加工侧平面 —垂直进给运动; 横梁可沿左右立柱的导轨作垂直升降,以调整刀架位置,适 应不同高度工件的加工需要—辅助运动(调整运动)。
2. 拉刀的结构
头部——与机床连接,传递运动和拉力。 颈部——头部和过渡锥连接部分。 过渡锥部——使拉刀容易进入工件孔中,起对准中心的作用。 前导部——起导向和定心作用,防止拉刀歪斜,并可检查拉削前孔径是否太小, 以免拉刀第一刀齿负荷太大而损坏。 切削部——切除全部的加工余量,由粗切齿、过渡齿和精切齿组成。 校准部——起校准和修光作用,并作为精切齿的后备齿。 后导部——保持拉刀最后几个刀齿的正确位置,防止拉刀即将离开工件时, 工件下垂而损坏已加工表面。 尾部——防止长而重的拉刀自重下垂,影响加工质量和损坏 刀齿。
整体式主要用于中、小型尺寸的高速钢拉刀;组合式主 要用于大尺寸拉刀和硬质合金拉刀。
拉床、刨床、插床加工分析
拉刀的类型
拉床、刨床、插床加工分析
YL-6120A 型拉床
拉床、刨床、插床加工分析
? 拉刀的结构
圆孔拉刀的结构 1-头部;2-颈部;3-过渡圆锥;4-前导部 5-切削部;6-校准部;7-后导部;8-尾部
二、刨削、插削加工 1.牛头刨床:用于加工小型(尺寸和重量较小)零件
二、刨削、插削加工
1. 牛头刨床: 滑枕可带动刀具沿床身的水平导轨作往复运动—主运动 工作台带动工件沿滑板导轨作间歇的横向进给运动—进给运动
刀座可绕水平轴线转动,刀架可沿刀座导轨移动,以适应不同 的加工角度和调整切削深度—辅助运动(切入运动和调整运动) 滑板可床身的垂直导轨上下移动,以工件的不同高度—辅助运 动(调整运动); 主运动的传动方式: 机械传动:常用曲柄摇杆机构; 液压传动:用于规格较大的牛头刨床。 进给运动的传动方式: 机械传动:一般采用棘轮机构; 液压传动。