聚光型太阳能电池技术及现状
2024年聚光太阳能发电市场发展现状

2024年聚光太阳能发电市场发展现状1. 引言聚光太阳能发电作为一种可再生能源的形式,在过去几十年中得到了广泛的关注和应用。
聚光太阳能发电系统通过聚焦太阳光束来提高光照强度,从而增强太阳能电池的发电效率。
本文将介绍聚光太阳能发电市场的发展现状,并对未来的发展趋势进行分析。
2. 聚光太阳能发电技术介绍聚光太阳能发电技术主要包括平板聚光技术、抛物面聚光技术和塔式聚光技术。
平板聚光技术通过镜面或透镜将太阳光聚集到太阳能电池上,从而提高光照强度。
抛物面聚光技术使用抛物面反射器将太阳光聚焦到发电单元上。
塔式聚光技术则将太阳光聚焦到一个集热器上,并通过传输流体来产生蒸汽,驱动发电机产生电力。
3. 2024年聚光太阳能发电市场发展现状3.1 市场规模和增长趋势近年来,聚光太阳能发电市场呈现出迅猛发展的态势。
据统计,全球聚光太阳能发电市场的规模从2010年的X亿美元增长到2019年的X亿美元,年均增长率为X%。
预计未来几年,随着技术的进一步成熟和成本的进一步降低,聚光太阳能发电市场的规模将继续扩大。
3.2 主要市场和发展趋势目前,聚光太阳能发电市场主要集中在美洲、欧洲和亚太地区。
美洲地区以美国为主要市场,美国的早期投资和政府鼓励政策推动了聚光太阳能发电市场的发展。
欧洲地区以德国、西班牙和意大利等国家为主要市场,这些国家在可再生能源发展方面有较好的政策支持。
亚太地区则以中国、日本和印度等国家为主要市场,这些国家拥有庞大的人口和快速发展的经济,对能源需求的增长促进了聚光太阳能发电市场的扩大。
3.3 技术发展和创新聚光太阳能发电技术在过去几十年中得到了长足的发展和创新。
新型材料和结构的应用,使得太阳能电池的发电效率不断提高。
此外,聚光太阳能发电系统的设计和组件的优化也推动了技术的进步。
例如,通过改善反射器和透镜的设计,提高了光照强度的均匀性,减少了能量损失。
4. 未来发展趋势和挑战4.1 市场潜力和机遇随着可再生能源的重要性不断增强,聚光太阳能发电市场将迎来更广阔的发展空间。
太阳能聚光发电技术研究与应用

太阳能聚光发电技术研究与应用在当今世界不断推动可再生能源发展的浪潮中,太阳能作为一种清洁、无限的能源来源,备受关注。
太阳能聚光发电技术作为太阳能利用的重要方式之一,正在逐渐成为人们研究和应用的热点领域。
本文将探讨太阳能聚光发电技术的研究进展和应用前景。
一、太阳能聚光发电技术的原理太阳能聚光发电技术是利用透镜、反射器等设备将太阳光线聚集到一个小区域,并将光能转换为热能,再通过热能驱动发电机组发电的一种技术。
该技术主要分为两种类型:点聚光和线聚光。
点聚光是指将太阳光线通过透镜等设备聚焦到一个点上,使得该点的能量密度非常高。
这种方式主要应用于太阳能热发电系统,如太阳能热发电站。
线聚光则是将太阳光线通过反射器等设备聚焦成一条直线,使得能量分布均匀且相对较高。
目前,线聚光主要应用于太阳能光热发电系统,如太阳能光热发电站。
二、太阳能聚光发电技术的研究进展随着可再生能源技术的发展,太阳能聚光发电技术也取得了巨大的进展。
在材料和器件方面,聚光透镜的材料种类越来越丰富,包括玻璃、聚合物、液晶等,能够满足不同应用场景的需求。
同时,反射器材料的选择也得到了提升,使得反射效率更高。
在系统设计方面,太阳能聚光发电技术已经实现了自动化控制。
通过搭载光电传感器和自动跟踪装置,可以实现对太阳光的自动捕获和跟踪,提高能量利用效率。
此外,系统还采用了一系列的热管理措施,如冷却装置和防尘处理,以确保设备长时间高效运行。
在性能优化方面,太阳能聚光发电技术不断改进光电转换效率。
研究人员通过改变材料性能、设计反射器形状和调整光线聚焦方式等手段,有效提高了能量转换效率。
同时,还探索了不同的热量转换方式,如热力循环、热电效应等,以进一步提高发电效率。
三、太阳能聚光发电技术的应用前景太阳能聚光发电技术具有广阔的应用前景。
首先,它可以解决能源短缺和环境污染等问题。
太阳能作为一种清洁、可再生的能源,将有助于减少对化石燃料的依赖,为人类提供可持续的能源供应。
太阳能聚光技术的现状与未来发展

太阳能聚光技术的现状与未来发展太阳能是一种无限可持续的资源,而太阳能聚光技术则是利用透镜或反射镜聚集太阳能的一种方式。
这种技术可以使太阳能的效率达到更高的水平,但目前仍存在许多挑战和限制。
本文将探讨太阳能聚光技术的现状与未来发展。
一、聚光技术的优点太阳能聚光技术能够将太阳的能量聚集起来,并集中到一个小区域内,从而提高太阳能转换的效率。
与太阳能发电的传统方式相比,通过聚光技术提升太阳能电池的效率最高可达到60%。
此外,太阳能聚光技术还具有一定的灵活性和可操作性,可以由透镜或反射器来控制光线的聚焦和偏转。
这些优点对于太阳能发电的实际应用有着重要的意义。
二、聚光技术的挑战和限制虽然太阳能聚光技术有很多优点,但它也面临许多挑战和限制。
其中一个问题就是镜头和透镜的成本高昂。
透镜需要非常高的制造精度和优质的材料,从而使得聚光太阳能发电系统的成本相对较高。
此外,太阳能聚光系统也面临着天气的影响。
由于聚光设备的位置需要非常精确的计算和放置,不利的天气条件(如大风或冰雹)可能会对太阳能聚光系统造成不可逆的损害。
三、未来的发展前景随着技术的不断发展和太阳能的普及推广,太阳能聚光技术将会得到更广泛的应用。
目前有许多太阳能聚光设备已经投入使用,包括聚光式太阳灶、聚光太阳能热水器、聚光式太阳能发电系统等。
其中,利用太阳能聚光发电是最具前景的应用之一。
太阳能聚光发电系统能够分为外径聚光、中心聚光和混合聚光系统三种类型。
外径聚光系统将太阳能聚焦在太阳能电池的外径上,而中心聚光系统将聚焦在太阳能电池的中心。
混合聚光系统则是将内径和外径聚光结合起来实现更高的效率。
四、结论太阳能聚光技术具有许多优点和前景,但也面临着许多挑战和限制。
在未来,随着技术的不断发展和太阳能应用的推广,太阳能聚光技术将会得到进一步的发展和完善,为太阳能的应用提供更广阔的发展空间。
2023年聚光电池行业市场环境分析

2023年聚光电池行业市场环境分析
聚光电池又称为太阳能聚光电池,是一种基于太阳能的高效能发电装置。
聚光电池行业发展迅速,因其高能效、绿色环保等特点得到了市场的青睐。
本文将对聚光电池行业的市场环境进行分析。
一、宏观经济环境
当前,随着全球经济的不断发展,太阳能产业正逐步成为全球可持续发展的主要方向。
加上中国政府提出“海绵城市”建设等一系列环保倡导,聚光电池作为一项新兴的清洁能源在市场中得到了诸多机会。
二、市场竞争环境
目前,聚光电池市场规模比较小,较少的厂商和企业参与竞争,市场份额分布较为均衡。
聚光电池的生产需要较高的技术水平、生产设备和技术条件,因此,技术实力和生产能力也是竞争的关键要素。
三、政策环境
政策环境是聚光电池行业发展的重要因素。
政府对于聚光电池的扶持政策包括税收优惠、补贴政策、技术标准支持等。
例如,2018年印发的《关于进一步促进可再生能
源电力发展的指导意见》,提出了大力发展光伏产业的目标,并对新建、扩建、改建等光伏电站实行分布式发电和光伏扶贫等优惠政策。
四、技术环境
聚光电池行业需要创新技术及不断推出高性能、高安全性能聚光电池产品。
目前,聚光电池产品逐渐向高寿命、高可靠性、高效能等方向发展。
一些高新技术企业正在借此机会进一步加大研发投入,提高产品的竞争力。
总结来看,聚光电池市场环境具有政策环境优势、市场竞争潜力大、技术环境创新前途广阔等特点。
而随着可再生能源的发展和政策环境的不断改变,聚光电池行业将在未来迎来更广阔的发展前景。
我国聚光型太阳能热发电技术发展现状

1 聚 光 型 太 阳 能 热 发 电技 术
太 阳能热 发 电是 通 过某种 装置 将太 阳辐 射 能转 换
方 式 。太 阳能 热发 电按 照太 阳能 电站 的结构 形 式 分 为
纯 太 阳 能 电 站 和 混 合 电 站 也 叫 整 体 化 太 阳 能 电 站 (S C ) S C I C S 。I C S是将 太 阳能集 热 系 统 和其 它 常 规 电
t d, h if u tp i t n o n e e n d v l p n fp we e e a i n t c n l g sn e to o a e t e d fi l o n s e c u t r d i e e o me to o r g n r to e h o o y u i g h a fs l r c
[ 献标 识码] A 文 [ 章 编 号] 1 0 — 3 4 2 1 ) 2—0 0 — 2 文 0 2—3 6 ( 0 1 0 — 0 8—0 [ O 编 号] 1 . 9 9 ji n 1 0 3 6 . 0 1 0 . 0 D I 0 3 6 /.s . 0 2— 3 4 2 1 . 2 0 8 s
成 热能 , 再通 过透 平 等 设 备将 热 能 转 化 为 电能 的发 电
s lr n r ya dsau u f o e e eainu igh a f oa n r yi hn a e enp ee — oa eg n ttsq oo w rg n rt sn et lr eg C iah v e rsn e p o os e n b
Z HENG in a PEI i Ja to, e J
Hu n n la n r y Teh o o yRee rh I si t , e ig 1 0 9 a e gC e n E eg c n lg s ac n t u e B i n 0 0 8 t j
聚光型太阳光电技术发展概况

聚光型太陽光電技術發展概況標題:聚光型太陽光電技術發展概況產業分類:電機產出單位:工研院IEK作者:李雯雯聚光型太陽光電技術的研究始於二十世紀七十年代石油危機時,然而因發電成本太高在過去數十年來聚光型太陽光電技術佔整體太陽光電研發的比例仍然很小,直到近期因環保意識高漲及對再生能源的重視,加上高效率聚光電池的效率一再提升及成本下降空間大,而又再度受到了關注。
一、發展近況聚光型太陽光電技術在1970年代開始發展,美國的Sandia實驗室在1970年代中期發表了第一篇對效率為12.7%、光強50倍(50 Suns)的1kWp聚光型太陽光電系統的研究。
約此同時,美國的Spectrolab公司(有與Sandia實驗室合作)也發展出效率為10.9%、光強25倍的10kWp聚光型太陽光電系統,相近於Sandia實驗室原型的系統也很快的在法國、義大利、西班牙等地發展並安裝;並於1989年首次效率突破30%。
過去由於聚光型太陽光電系統的表現與可靠度還不夠好因此難以普及;隨著技術的演進,2002年時,已出現安裝300kW的系統成本為$6/W(美國Arizona Public Services(APS))的報告,並預期未來數年成本可在下降至$3/W、至2010年可下降至$1.5/W的預測,能與現有市電競爭的潛力使得聚光型太陽光電技術受到更多的矚目。
在2004年時只有不到1MW的安裝量,但到2006年時已有18MW的新產能計畫投入;有許多廠商也開始注意到此市場的潛力,包括太陽光電產業龍頭Sharp及Isofoton也開始發展聚光型太陽光電技術。
目前投入多接面三五族太陽能電池及/或聚光型太陽光電系統之主要生產廠商如表一所示。
表一多接面三五族太陽能電池及/或聚光型太陽光電系統之主要生產廠商二、成本分析聚光型太陽光電技術的技術難度比平盤式(Flat-Plate)太陽光電技術來得低,使用的半導體材料或太陽電池較少、相關配件如透鏡等並不昂貴、容易大規模安裝且更具經濟效益。
2023年聚光太阳能发电行业市场分析现状

2023年聚光太阳能发电行业市场分析现状聚光太阳能发电是一种利用聚光系统将太阳能转化为电能的新兴行业。
随着可再生能源的发展和环境保护意识的提高,聚光太阳能发电在全球范围内得到了广泛关注。
本文将对聚光太阳能发电行业的市场分析现状进行探讨。
首先,聚光太阳能发电行业的市场潜力巨大。
太阳能是一种取之不尽、用之不竭的能源,具有广泛的应用前景。
聚光太阳能发电借助聚光系统的优势,可以大大提高太阳能的利用效率,从而降低能源消耗和环境污染。
随着全球对可再生能源的需求持续增长,聚光太阳能发电行业的市场潜力将越来越大。
其次,聚光太阳能发电技术的不断创新推动了行业的发展。
聚光系统是聚光太阳能发电的核心技术,其主要作用是将太阳能聚焦到一个小范围内,提高光能的利用效率。
近年来,随着聚光太阳能发电技术的不断创新,聚光系数和转换效率得到了大幅提高。
同时,新材料的应用和设计优化也进一步改善了聚光太阳能发电系统的性能,使得该技术在商业应用方面更具竞争力。
然而,聚光太阳能发电行业面临着一些挑战。
首先,聚光系统的成本较高,限制了其在大规模商业应用中的推广。
虽然随着技术的发展,聚光系统的成本在逐渐降低,但仍然面临着一定的挑战。
其次,聚光系统需要充分利用太阳能的聚光效果,但受到天气等因素的限制,其发电效率会受到一定影响。
此外,聚光太阳能发电的空间需求较大,需要相对较大的土地面积,这在一些地区可能存在限制。
最后,聚光太阳能发电行业的市场前景仍然广阔。
随着技术的不断创新和成本的降低,聚光太阳能发电将逐渐成为可再生能源领域的重要组成部分。
特别是在一些光热应用领域,如工业生产和制冷、供暖等方面,聚光太阳能发电的应用前景更加广阔。
同时,政府的支持和政策的扶持也将促进聚光太阳能发电行业的快速发展。
综上所述,聚光太阳能发电行业具有巨大的市场潜力和发展空间。
虽然该行业面临着一些挑战,但随着技术的不断创新和成本的降低,聚光太阳能发电将成为未来可再生能源领域的重要发展方向。
2024年聚光光伏市场分析现状

2024年聚光光伏市场分析现状一、引言随着能源危机的愈发严重,以及对环境保护意识的不断增强,可再生能源的发展逐渐成为全球的热点话题。
光伏能源作为一种可再生能源的重要组成部分,受到了广泛的关注。
聚光光伏作为光伏能源的一种创新形式,因其高发电效率和更小的占地面积而备受关注。
本文旨在分析聚光光伏市场的现状和发展趋势。
二、聚光光伏市场概述1. 聚光光伏的定义和原理聚光光伏是一种利用聚光技术将太阳能集中到太阳能电池上的光伏发电方式。
其原理是通过光学器件将太阳光线聚焦到光伏电池上,提高光电转换效率。
聚光光伏系统通常包括聚光器、跟踪设备和太阳能电池。
2. 聚光光伏市场规模和发展趋势近年来,聚光光伏市场呈现出快速增长的趋势。
根据市场调研数据显示,2019年全球聚光光伏市场规模达到XX亿美元,预计到2025年将达到XX亿美元。
聚光光伏市场的快速发展主要得益于对可再生能源的需求增加和技术的进步。
3. 聚光光伏市场的主要应用领域聚光光伏系统的高发电效率使其在许多领域中得到了广泛的应用。
目前,聚光光伏主要应用于以下领域: - 太阳能农业灌溉系统 - 太阳能供电系统 - 太阳能发电站三、聚光光伏市场的现状1. 国内聚光光伏市场的发展状况中国作为全球光伏市场的主要参与者之一,聚光光伏市场也在不断发展。
国内聚光光伏市场的发展主要受益于国家政策的支持和资源丰富。
目前,聚光光伏系统已经在一些地区实现了商业化运营,并呈现出良好的推广前景。
2. 国际聚光光伏市场的发展状况国际聚光光伏市场的发展相对较为成熟,多个国家开展了聚光光伏项目。
例如,美国、西班牙等国家的聚光光伏项目规模较大,技术水平相对较高。
同时,国际聚光光伏市场也面临着一些挑战,如高昂的成本、技术瓶颈等。
四、聚光光伏市场的发展趋势1. 技术进步推动市场发展随着聚光光伏技术的不断进步,聚光器件的成本逐渐降低,效率不断提升,这将进一步推动聚光光伏市场的发展。
2. 政策支持促进市场增长各国政府对可再生能源的支持政策将进一步促进聚光光伏市场的增长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳能光电工程学院《太阳能电池及其应用》课程设计报告书题目:聚光型太阳能电池技术及现状姓名:设计成绩:指导教师:摘要本文概述了目前全球能源现状,以及聚光型太阳能电池的市场背景,表明了太阳能发电的重要性和前景,详细介绍了聚光型太阳能电池的技术、现状以及与普通太阳能电池的区别,并对普通太阳能电池与聚光型太阳能电池发电所需发电成本进行比较。
详细介绍了塔式、槽式、碟式太阳能发电的原理及优缺点。
指出电池冷却技术的必要性和冷却技术。
同时指出聚光型太阳能电池发展面临的困难和解决措施,以及今后的发展方向。
通过改造电池制造工艺、提高转换效率、聚焦技术的应用等手段,可以有效降低光伏发电成本,也是国内外本领域研究的热点。
其中采用聚焦技术是一个有效地方法。
对常规太阳能电池进行聚光,使太阳电池工作在几倍乃至几百倍的光强条件下,一定程度上克服了太阳能量的分散性,可以提高单位面积太阳电池的输出功率,大大降低光伏发电成本,具有很好应用前景。
关键词:聚光型太阳能电池技术措施目录绪言 (2)1.聚光型太阳能原理及技术 (3)1.1聚光型太阳能电池的原理 (3)1.2聚光型太阳能电池的关键技术 (4)1.3塔式太阳能发电技术 (5)1.4槽式太阳能发电 (6)1.5碟式太阳能发电 (7)1.6电池的冷却技术 (7)2.产品的的核心优势 (10)2.1光电转换效率高 (10)2.2单位面积输出功率高 (10)3.现状与展望 (10)3.1我国聚光型太阳能电池的现状 (10)3.2展望 (11)参考文献 (12)绪言随着经济的发展,社会的进步,人们对能源提出了越来越高的要求,由于全球气候变迁、空气污染问题以及资源的日趋短缺之故,传统的燃料能源正在一天天减少,与此同时全球还有约20亿人得不到正常的能源供应。
寻找新能源成为当前人类的面临的迫切课题。
太阳能以其独有的优势成为人们关注的焦点。
由于太阳能发电具有火电、水电、核电所无法比拟的清洁性、安全性、资源的广泛性、充足性和持久性等优点,太阳能被认为是21世纪最重要的能源。
但是目前光伏发电作为社会整体能源结构的组成部分所在占比例尚不足1%,造成这种情况的主要原因是光伏发电成本高。
通过改造电池制造工艺、提高转换效率、聚焦技术的应用等手段,可以有效降低光伏发电成本,也是国内外本领域研究的热点。
其中采用聚焦技术是一个有效地方法。
对常规太阳能电池进行聚光,使太阳电池工作在几倍乃至几百倍的光强条件下,一定程度上克服了太阳能量的分散性,可以提高单位面积太阳电池的输出功率,大大降低光伏发电成本,具有很好应用前景。
1.聚光型太阳能原理及技术1.1聚光型太阳能电池的原理聚光电池是降低太阳电池利用总成本的一种措施,通过聚光器使较大面积的阳光聚在一个较小的范围内,形成“焦斑”或“焦带”,并将太阳电池置于“焦斑”或“焦带”上,以增加光强克服太阳辐射能流密度低的缺陷,从而获得更多的电能输出。
通常聚光器的倍率大于几十,其结构可采用反射式或透镜式。
聚光器的跟踪一般用光电自动跟踪,散热方式可以是气冷或水冷,有的与热水器结合,既获得电能,又得到热水。
用于聚光太阳电池的单体,与普通太阳电池略有不同,因需耐高倍率的太阳辐射,特别是在较高温度下的光电转换性能要得到保证,故在半导体材料选择、电池结构和栅线设计等方面都比较特殊。
最理想的材料是砷化镓,其次是单晶硅材料。
在电池结构方面,普通太阳电池多用平面结构,而聚光太阳电池常采用垂直结构,以减少串联电阻的影响。
同时,聚光电池的栅线也较密,典型的聚光电池的栅线约占电池面积的1O%,以适应大电流密度需要。
适合于聚光用的太阳能电池有两种:单晶硅的背接触电池和砷化镓多结电池,以后者的光转化效率为最高(目前实验室达41%,量产高于35%)。
这些电池过去用于非聚光的航天航空的高端应用。
目前为止,国际上生产厂家很少也很低。
图1聚光太阳电池的原理1.2聚光型太阳能电池的关键技术聚光太阳能电池是由跟日器、聚光电池组件和聚光器及相关动力和降温装置构成,采用聚焦的方式将太阳光的光能密度大大提高(400倍以上),可使太阳能电池转换效率提高,在小面积的单晶硅片上获得大的电流。
太阳光的聚焦可采用费涅尔透镜或抛物面反射镜,太阳能聚光电池的散热采用大面积的散热片自然冷却,或者是采用循环水冷将热量二次利用。
太阳能自动跟踪聚焦式光伏发电系统的关键技术是精确跟踪太阳,其聚光比越大跟踪精度要求就越高,聚光比为400小时跟踪精度要求小于0.2度。
在一般情况下跟踪精度越高其结构就越复杂,造价就越高,甚至造价高于光伏发电系统的光电池的总造价。
聚光电池及发电系统的广泛应用的成功与否,关键在于技术上实现聚光发电系统的高跟踪度、可靠性、耐侯性,确保能否在恶劣自然环境下的长期使用。
一般商用太阳电池的光电转换效率为6%~15%,在运行的过程中,未被利用的太阳辐射能除了一部分被反射外其余大部分被电池吸收转化为热能;如果这些吸收的热量不能及时排除,电池温度就会逐渐升高,发电效率降低(据统计电池组件温度每降低1K输出电量增加0.2%~0.5%),太阳电池长期在高温下工作还会因迅速老化而缩短使用寿命。
1.3塔式太阳能发电技术塔式太阳能发电主要有大量的跟踪太阳的定向反射镜和装在中央塔上的热接收器这两大部分组成,成千上万面定日镜将太阳光聚焦到中央接收器上,接收器将太阳辐射能转换成热能。
然后再将热能传递给热力循环工具,驱动热机做工发电。
随着镜场中定日镜的增加,塔式聚光系统的聚光比也随之上升,最高可达1500,运行温度为1000℃~ 1500℃。
它因其聚光倍数高、能量集中过程简单、热转化效率高等特点,极适合大规模并网发电,图1为塔式太阳能发电的系统图。
从图2中可以看出,他是太阳能发电系统包括:跟踪太阳能的定日镜、接收器、工质加热器、储能系统以及汽轮机组等部分。
收集装置由多面定日镜、跟踪装置支撑结构等构成。
系统通过对收集装置的控制,实现对太阳的最佳跟踪,从而将太阳的反射光准确聚焦到中央接收器内的吸热器中,使传热介质受热升温,进入蒸汽发生器产生蒸汽,最终驱动汽轮机组进行发电。
此外,为了保证持续供电需要储热装置将高峰时段的热量进行存储以备早晚和阴雨间隙使用。
图2塔式太阳能结构示意图1.4槽式太阳能发电槽式太阳能发电采用多个槽型抛物面式聚光器,将太阳光聚集到接收装置的集热管上,加热工质,产生高温蒸汽后推动汽轮机发电。
收集装置的几何特性决定了槽式太阳能发电的聚光比要低于塔式,通常在10~100之间,运行温度达400℃。
如图3所示,槽式太阳能发电包括聚光集热部分、换热部分、发电储能部分等。
聚光集热是整个槽式发电系统的核心,它由聚光阵列、集热器和跟踪装置组成。
在此部分,集热器大多采用串、并联排列的方式可按南北、东西和极轴3个方向对太阳光进行一维跟踪。
在换热部分,预热器、蒸汽发生器、过热器和再热器4组件实现了工质加热、换热、产生蒸汽、进行发电的过程。
由于槽式发电系统结构相对紧凑,其收集装置的占地面积比起塔式和碟式来说,相对较小,因而为槽式太阳能发电向产业化发展奠定了基础。
图3 槽式太阳能发电示意图1.5碟式太阳能发电作为目前热发电效率最高的方式,碟式太阳能发电整合多个反射镜组成抛物面碟形聚光镜,通过对其的旋转,将太阳光聚集到接收器中,经接收器吸热后加热工质,进一步驱动发电机组发电。
旋转抛物面碟形聚光镜的应用使得碟式太阳能发电的聚光比达到3000以上,这一方面有效地提高了光热转换的效率,但是另一方面也由于其较高的接受温度,对接收器的材料和工艺提出更高的要求。
1.6电池的冷却技术聚光型光伏发电技术采用低成本的反射镜或者透镜可以减少使用部分昂贵的太阳电池,太阳电池工作在低倍甚至高倍的光强照射下,单位面积的有效输出功率大幅增加发电成本大幅下降,但是随着单位面积的电池板辐射光强的增加吸收的热量也增加,电池的温度控制和散热问题也更为突出。
空气冷却技术是指在太阳电池背面通过空气自然或强制对流带走热量,可以达到降温目的。
采用自然对流冷却时把铜、铝等高导热材料作为电池背板,并安装肋片,可以加强自然对流换热。
采用强制对流换热,组件背面被制成通风流道,流道的入口(或同时在出入口)设置风机增强空气流动,但风机的使用会额外消耗一部分电能。
通常,采用空气冷却,换热性能与空气的流速和流道长度高度等有关,优化这些参数可以达到最佳的换热效果。
Araki等实验研究了500倍日照聚光条件下单个太阳电池的自然对流冷却问题,研究结果表明,电池与铝板间良好的热接触是保持电池低温的关键因素。
水冷却方式可分为自然循环冷却和强制循环冷却;水冷却系统的设计关键是保证太阳电池与换热器表面间良好的热传导和电绝缘。
典型的水冷却系统由换热器、水箱、若干连接阀门等部件组成,换热器的结构通常有管板式、流道式和水箱底座式等。
管板式结构是参照传统的平板太阳能集热板发展而来的,能很好解决工质的渗漏和电池的绝缘;流道式结构则同空气流道散热相似,换热工质与电池接触面积大换热效果高,但存在工质的渗漏和电池的绝缘等问题;水箱底座式将太阳电池直接粘接到具有斜面的水箱上,水箱作为工质容器和系统底座。
Solar Systems公司报道了一种应用于抛物型聚光式光伏发电系统的水冷却系统,电池的背面设置了平行的水流窄通道,试验结果表明在340倍的聚光条件下,当水流量为0.56kg/(m2·s)和泵功率为86W时,太阳电池的平均温度为38.52℃,电池效率为24.0%;如果能够充分利用冷却水的热量,系统的综合能量利用率可超过70%。
表1列举了一些研究者关于空气和水在自然对流或强制对流冷却时系统热阻的比较。
表1 空气和水在自然对流或强制对流冷却时系统热阻比较热管冷却技术是指在聚光型光伏发电系统利用菲涅耳透镜或者抛物面反射镜来聚光时,由于阳光不能均匀地投射在电池组件表面,将引起电池间的电阻不均匀导致电池效率降低;James和Williams指出,在1000倍日照的聚光条件下照射度的不均匀将会造成4%以上的效率损失。
热管是一种高效传热元件,同时具有很好的均温性能,非常适用于聚光条件下的电池冷却。
采用热管冷却热管的蒸发端紧贴太阳电池的背面,冷凝段暴露在大气中与周围空气进行自然对流换热,安装翅片增加散热面积可以提高冷凝段的换热效果。
由于冷却元件的温度一般要求在20~100℃内,热管的设计可选择R-11或R-22以及水作为工作液体。
采用水作为工作液体,在温度不超过140℃时,热管的散热热流可达到250~1000kW/m2。
Akbarzadeh和Wadowski报道了一种带扁平状铜热管蒸发端的热管冷却系统,太阳电池垂直粘贴扁平的铜热管蒸发端;研究表明:在有太阳的天气情况下,该系统的聚光率是20倍,采用热管冷却系统后电池的温度上升不会超过46℃;不用热管冷却电池的温度超过84℃。