经典路由算法

合集下载

计算机网络中的路由算法

计算机网络中的路由算法

计算机网络中的路由算法路由算法在计算机网络中起着关键的作用,它用于确定数据包在网络中的传输路径。

根据不同的网络拓扑和需求,有多种不同的路由算法被应用。

本文将介绍几种常见的路由算法。

1. 距离矢量算法(Distance Vector Algorithm)距离矢量算法是一种分布式的路由算法,每个节点在路由表中记录到达目的节点的距离向量。

节点之间通过交换距离向量信息来更新路由表,并且通过Bellman-Ford算法来计算最短路径。

该算法简单易实现,但是在大型网络中容易产生计数到无穷大的问题,即由于链路故障等原因产生的无限循环。

2. 链路状态算法(Link State Algorithm)链路状态算法是一种集中式的路由算法,每个节点都会收集与自身相连的链路状态信息,并通过最短路径算法(如Dijkstra算法)计算出到达其他节点的最短路径。

然后,每个节点都将自己的链路状态信息广播给所有其他节点,使得每个节点都有完整的网络拓扑和链路状态信息。

该算法需要节点之间频繁的广播和计算,但是能够保证收敛,即要么找到最短路径,要么不进行路由。

3. 路径向量算法(Path Vector Algorithm)路径向量算法可以看作是距离矢量算法和链路状态算法的结合,它通过回退进行路径检测和避免计数到无穷大的问题。

每个节点在路由表中记录到达目的节点的路径和向量信息,通过交换路径向量信息来更新路由表。

在计算最短路径时,路径向量算法使用类似链路状态算法的Dijkstra算法,但是在寻找路径时,会检查前面的节点是否已经在路径中出现,以避免产生环路。

4. 队列距离矢量算法(Queue Distance Vector Algorithm)队列距离矢量算法是距离矢量算法的一种改进算法,主要解决计数到无穷大问题。

该算法引入了队列和计数器,通过计数器和链路状态信息来确定数据包是否进入队列。

每个节点在路由表中记录到达目的节点的距离向量和队列的长度。

第6章路由算法总结ppt课件

第6章路由算法总结ppt课件

在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
非自适应路由算法
固定路由算法(fixed routing algorithm) 洪泛法(flooding) 随机走动法(random walk) 基于流量的路由算法(flow-based routing)
由所有的线路平均延迟,可直接计算出流量的加权 平均值,从而得到整个网络的平均分组延迟
这样找出网络的最小平均延迟就可以实现最优路由 选择
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
自适应路由算法
孤立路由选择 集中路由选择 分布式路由选择
当结点或链路发生故障时,该方法可使路由算法有 较好的稳健性
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
基于流量的路由算法
该方法不仅考虑网络的拓扑结构,还要考虑网络的 负载因素
对某一给定的线路,如果已知负载量与平均流量, 那么可以根据排队论的知识计算出该线路上的平均 分组延迟
• 如果找不到相应的表项,在G的路由表中增加一项 :(N,G’,D’+C)
• 如果V=G’,G中路由表对应的表项根据D’+C和D的 比较获得
– 如果D’+C<D,G中表项更新为(N,G’,D’+C)
– 否则G中表项保持原状,仍为(N,V,D)
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么

计算机网络网络层路由算法

计算机网络网络层路由算法
一个网络示例
链路状态包
分发链路状态数据包
泛洪法:为了控制泛洪规模,每个数据包包含一个序号,序号随着每个数据包发出逐一递增,路由器记录下它所看到的所有(源路由器,序号)对,当一个新的链路状态数据包到达时,路由器检查这个数据包是否已经出现在上述观察到的列表中,若是新的数据包,则转发,若重复或过时则丢弃。
交换距离信息更新路由表示例
无穷计算问题
∞ 第1次交换后
∞ 第3次交换后
A
B
C
D
E
1
2
3
4 初始时
3
2
3
4 第1次交换后
3
4
3
4 第2次交换后
5
4
5
4 第3次交换后
5
6
5
6 第4次交换后
7
6
7
6 第5次交换后
7
8
7
8 第6次交换后




(b)
.
.
.
A
B
C
D
E



∞ 初始时
1
路由算法(Routing Algorithm)
是网络层软件的一部分,负责所收到数据包发送到哪一条线路上。
路由选择算法应具有下列特性:正确性、简单性、鲁棒性、稳定性、公平性和最优性。
路由算法应该能够处理拓扑结构和流量方面的各种变化,而不能要求所有主机停止所有工作。
路由选择算法可以分为两大类:
01


1
2

∞ 第2次交换后
1
2
3
1
2
3
4 第4次交换后
(a)

路由器转发算法带例题

路由器转发算法带例题

路由器转发算法带例题路由器转发算法是指在计算机网络中,路由器根据接收到的数据包的目的地址,决定将数据包转发到哪个出口端口的算法。

它是网络中的关键技术之一,能够实现网络中数据的快速、准确传输。

常见的路由器转发算法有以下几种:1. 静态路由算法:静态路由算法是指管理员手动配置路由器的路由表,将目的地址与出口端口的对应关系预先设定好。

当路由器接收到数据包时,根据目的地址查找路由表,找到对应的出口端口进行转发。

例如,假设路由器的路由表如下:目的地址出口端口192.168.1.0 1192.168.2.0 2当路由器接收到一个目的地址为192.168.1.100的数据包时,根据路由表可以得知该数据包需要通过出口端口1进行转发。

2. 动态路由算法:动态路由算法是指路由器通过与相邻路由器交换路由信息,自动学习网络拓扑和最优路径,并更新自己的路由表。

常见的动态路由算法有距离矢量路由算法(Distance Vector Routing)和链路状态路由算法(Link State Routing)。

距离矢量路由算法中,路由器通过周期性地交换路由表信息,计算到达目的地址的最短路径。

每个路由器根据相邻路由器发送过来的路由表信息,更新自己的路由表。

链路状态路由算法中,路由器通过交换链路状态信息,计算网络中的最短路径树。

每个路由器根据收集到的链路状态信息,计算出到达目的地址的最短路径,并更新自己的路由表。

3. 自适应路由算法:自适应路由算法是指路由器根据网络拥塞情况和链路质量动态调整路由选择。

常见的自适应路由算法有最小带宽算法、最短延迟算法和最小负载算法等。

最小带宽算法中,路由器根据链路的带宽情况选择最大带宽的路径进行转发。

最短延迟算法中,路由器根据链路的延迟情况选择最短延迟的路径进行转发。

最小负载算法中,路由器根据链路的负载情况选择负载最小的路径进行转发。

总结起来,路由器转发算法根据不同的需求和网络情况,选择合适的算法来实现数据包的转发。

最短路径路由算法

最短路径路由算法

最短路径路由算法1. 引言最短路径路由算法是计算机网络中的一种重要算法,用于确定网络中两个节点之间的最短路径。

在网络通信中,选择最短路径可以大大提高数据传输的效率和可靠性。

本文将介绍最短路径路由算法的原理、常见算法以及应用领域。

2. 原理概述最短路径路由算法是基于图论的算法。

它将网络抽象成一个有向图,其中节点表示网络中的路由器或交换机,边表示节点之间的连接。

每条边都有一个与之相关的权重,表示在该路径上传输数据的代价。

最短路径路由算法的目标是找到网络中两个节点之间的最短路径,即路径上的所有边的权重之和最小。

3. 常见算法3.1 Dijkstra算法Dijkstra算法是最短路径路由算法中最经典的算法之一。

它通过逐步确定从源节点到其他节点的最短路径来实现最短路径的计算。

算法的核心思想是维护一个距离表,记录从源节点到其他节点的当前最短距离。

通过不断更新距离表中的值,最终得到源节点到目标节点的最短路径。

3.2 Bellman-Ford算法Bellman-Ford算法是另一种常见的最短路径路由算法。

与Dijkstra 算法不同,Bellman-Ford算法可以处理带有负权边的图。

算法通过进行多次迭代,逐步更新节点之间的最短距离,直到收敛为止。

Bellman-Ford算法的优势在于可以处理具有负权边的情况,但由于需要进行多次迭代,算法的时间复杂度较高。

3.3 Floyd-Warshall算法Floyd-Warshall算法是一种全局最短路径算法,用于计算图中任意两个节点之间的最短路径。

算法通过动态规划的方式,逐步更新节点之间的最短距离。

Floyd-Warshall算法的时间复杂度较高,但由于可以同时计算所有节点之间的最短路径,因此在网络规模较小的情况下,仍然是一个有效的算法。

4. 应用领域最短路径路由算法在计算机网络中有广泛的应用。

其中,最为典型的应用之一就是Internet路由器的路由选择。

Internet由大量的路由器组成,路由器之间的通信需要选择最短路径,以保证数据的快速传输和网络的稳定性。

机会网路典型路由算法

机会网路典型路由算法

1.1机会网路典型路由算法研究机会网络是一种节点分布稀疏、网络拓扑结构不断发生变化的间歇性通信网络。

数据以多跳方式,采用“接收-携带-转发”的机制传输给目的节点,如果中间节点没有合适的可供传输的路径或节点,则无法立刻将数据转发出去,而是保存在节点缓存中,等到出现合适的传输机会之后,再将消息转发出去。

而现有的有线网络和无线自组织网络中基于TCP/IP 协议的端到端路由协议已经不再适用于机会网络。

因此,如何在机会网络中寻找一条时延尽可能低、消耗尽可能小、传输成功率尽可能高的路径,将消息准确传递到目的节点,是机会网络中一个极具挑战性的问题。

从不同角度出发,机会网络的路由策略有不同的分类方式[27]。

按照消息传输方式可分为洪泛路由策略和转发路由策略;按照路由所使用报文的份数可分为单报文路由策略和多报文路由策略;按照节点所掌握的网络拓扑信息还可分为确定性路由策略和随机性路由策略。

本文按照消息传输方式不同将目前的路由协议分为如下几类:直接传输路由策略(Direct Transmission)、基于泛洪的路由策略(Flooding Based)、基于情景感知的路由策略(Context Based)、基于社区的路由策略(Community Based)、基于编码的路由策略(Coding Based)、基于预测的路由策略(Predicted Based)。

1.1.1基于副本或泛洪的路由策略直接传输(Direct Transmission,DT)路由在运行过程中,不产生消息副本,消息一直保存在源节点缓存中,直到源节点在运动过程中遇到目的节点,才将消息转发给目的节点。

DT 路由协议由于没有进行路由优化处理,也没有产生任何副本消息,因此传输时延很大。

为了减少网络中消息的传输时延,研究人员提出了基于泛洪的路由协议,通过消息携带节点产生大量的消息副本,转发给每一个相遇的节点,完成消息的投递。

根据网络中消息副本数量的多少,还可以将基于泛洪的路由分为两大系列:泛洪路由和限制性泛洪路由。

sdn路由算法

sdn路由算法

sdn路由算法
SDN(软件定义网络)的路由算法是一种基于软件的网络管理和控制方法,它将网络控制和数据转发功能分离,并使用集中式的控制器来管理网络中的所有交换设备。

SDN路由算法主要有以下几种:
1. 单路径路由算法:最常见的路由算法,通过确定单一的最佳路径将数据包从源节点发送到目标节点。

常用的单路径路由算法有最短路径算法、Bellman-Ford算法和Dijkstra算法等。

2. 多路径路由算法:在拓扑图中存在多条连接路径时,多路径路由算法可以同时利用这些路径,从而提高网络容量和性能。

常见的多路径路由算法有ECMP(等价多路径)和OSPF(开放最短路径优先)等。

3. 负载均衡路由算法:通过在网络中分配负载,将数据流量均衡地分发到多个路径上,从而避免单一路径过载的问题。

常用的负载均衡路由算法有随机路由、带宽感知路由和最短队列优先路由等。

4. 多组播路由算法:用于将组播数据从源节点发送到多个目标节点的路由算法。

常见的多组播路由算法有DVMRP(分布式组播路由协议)、PIM(组播协议独立模式)和CAMP(核心光网络依赖链路状态的自适应组播路由协议)等。

5. 安全路由算法:用于保护网络免受恶意攻击和未经授权的访问。

安全路由算法可以包括防火墙、访问控制列表(ACL)和
流量监测等技术,以保障网络的安全性和可靠性。

这些SDN路由算法可以根据网络的需求和拓扑结构选择合适的算法,以实现最佳的网络性能和效率。

常见的路由算法

常见的路由算法

常见的路由算法常见的路由算法路由算法是指为了用于在互联网之类的分组通讯网络中的数据包进行寻址所使用的一种算法。

其目的是为了能够掌握网络拓扑结构,更有效的使用网络资源,提供更好的服务质量,在众多的路由算法中,下面列出了一些常见的。

1. 链路状态路由协议(Link State Routing Protocol)链路状态路由协议是一种以网络中所有的节点为基础的路由协议,它的特点是在所有节点之间建立并保持一个网络状态数据库,每个节点首先会发出一个链路状态数据包来描述自己知道的其他节点的相关信息,并通过该信息计算出一张最短路径树。

LSRP一般都有洪泛问题,产生洪泛的原因在于每个节点的发出的链路状态数据包要发到整个网络中,所以数据包会不断传播,产生大量网络流量。

常见的LSRP有OSPF等。

2. 距离向量路由协议(Distance Vector Routing Protocol)距离向量路由协议是一种以自身节点所连接的邻居节点的路由信息为基础的协议,每个节点只知道自己所连接的邻居节点的路由信息,而不知道整张网络的拓扑结构。

DVRP算法通过递归与相邻节点交换距离向量信息来分配最短路径,因此它能够在网络中改变路由波动时使整个路由表保持一致。

常见的DVRP有RIP等。

3. 混合路由协议(Hybrid Routing Protocol)混合路由协议是链路状态和距离向量路由协议的混合体,它采用链路状态路由协议的优点,建立了一张网络拓扑地图;同时又采用距离向量路由协议的算法对网络进行遍历,它使用距离向量路由协议的性质表明每个路由器只需要与它的成邻接的路由器通信,这样可以大大减小链路状态路由协议产生的洪泛问题。

4. 路由发现协议(Route Discovery Protocol)路由发现协议通常是物理网络发挥作用的协议。

当网路中有一个新的路由器被连接时,路由器会通过路由发现协议来发现新路由器,这样数据就可以经过新路由器并到达目的地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经典路由算法
一、先验式路由协议(DSDV)
先验式路由协议是一种基于表格的路由协议。

在这种协议中,每个节点维护一张或多张表格,这些表格包含到达网络中其它所有节点的路由信息。

当检测到网络拓扑结构发生变化时,节点在网络中发送路由更新信息。

收到更新信息的节点更新自己的表格,以维护一致的、及时的、准确的路由信息。

不同的先验式路由协议的区别在于拓扑更新信息在网络中传输的方式和需要存储的表的类型。

先验式路由协议不断的检测网络拓扑和链路质量的变化,根据变化更新路由表,所以路由表可以准确地反映网络的拓扑结构。

源节点一旦需要发送报文,可以立即得到到达目的节点的路由。

(DSDV、OLSR路由协议等很多普通的因特网路由协议)它们查找路由是不依赖于路径上的节点是否要发包,而是每个节点维护一张包含到达其它节点的路由信息的路由表。

节点间通过周期性的交换路由信息来不断更新自身的路由表,以便能够及时的反映网络拓扑结构和变化,以维护一致的、及时的、准确的路由信息。

DSDV:目的节点序列距离矢量协议(待补充)
可以解决路由成环问题,每一个节点维持一个到其它节点的路由表,表的内容为路由的“下一跳”节点。

1)给每条路径增加了一个序列号码
2)每个目的节点会定期广播一个单调递增的偶数序列号号码
3)当一个节点发现它到某个目的节点的路径断开时,它把到这个节点的距离
设为无穷大。

并且将这条路径的序列号加1(此时为奇数),然后向网络中
广播这个更新包。

当这条路径修复时,它又将序列号加1然后广播出去。

换另一种方式来说,每个节点都保持着一张路由表,路由表中的每一项记录了
它到目的节点的距离和序列号,也就是(s,d)。

我们假设有一目的节点为D,当
以下任何一情况发生时,都会发送更新:
1)D定期将自己的序列号加2并广播出去,即(S,0)
2)如果节点X要通过Y到达节点D,当X和Y之间的连接断开后,X将到D的路径的序列号加1,同时将路径值设为∞,然后将信息发送给邻居。

参考资料:/candycat1992/article/details/8100146 CSDN博客DSDV协议
DSDV创新之处是为每一条路由设置一个序列号,序列号大的路由为优选路由,序列号相同时,跳数少的路由为优选路由。

正常情况下,节点广播的序列号是单调递增的偶数,当节点B发现到节点D的路由(路由序列号为s)中断后,节点B 就广播一个路由信息,告知该路由的序列号变为s+l,并把跳数设置为无穷大,这样,任何一个通过B发送信息的节点A的路由表中就包括一个无穷大的距离,这一过程直到A收到一个到达D的有效路由(路由序列号为s+1-1)为止。

在此方案中,网络内所有的移动终端都建立一个路由表,包括所有的目的节点到达各个目标节点的跳跃次数(或标识距离矢量的路径矩阵)。

每个路由记录都有一个由目标节点设定的序列号。

序列号使移动终端可以区分当前有效路由路径和已过时的路由路径。

路由表周期性地做全网更新以维护全网的通信有效性。

通常,为了减少由于路由表更新而产生的大量路由信息传递,减少网络路由开销,可以采用两种路由更新方式。

1)第一种是全清除方式:
即通过多个网络协议数据单元将路由更新信息在全网中传输。

如果网络内终端出现移动,则产生的新路由分组信息不定期的传达至网络内所有终端。

2)第二种是部分更新方式:
或称为增量更新方式,即在最后一次全清除传输后,只传递那些涉及变化了的路
由信息进行传输,这些信息通常被放置在一个标准的NPDU里,从而减少路由信息的传递量。

在增量更新方式中移动终端可以增加另外一个附加的表来存储路由更新信息。

新路由信息的广播信息包含目标节点的地址,到每个目标节点的跳数、接收信息的序列号,以及独有的广播序列号。

新路由信息适用最新的序列号。

如果两次更新具有相同的序列号,则具有较小的距离矢量阵的路由具有优先权。

因为它代表路径最短(或跳数最少)。

在通常情况下,从源节点到目的节点可能存在多条路径,在最佳路由路径的确定过程中,移动终端跟踪不同路由路径的时间,最佳路由路径就是时间最短的路径。

在找到最佳路径之前,该时间呈收敛性涨落。

一旦路径确定,这些信息就存放到每一个终端的路由表中,直到节点收到新的路由信息。

二、反应式路由协议(AODV)
反应式路由选择协议是一种当需要一条从源节点到目的节点的路径进行数据发送时才查找路由的路由选择方式。

节点并不保存整个网络的及时准确的路由信息。

当源节点要向目的节点发送报文时,源节点在网络中发起路由查找过程,找到相应的路由后,才开始发送报文。

为了提高效率,节点可以将找到的路由保存在缓存中供后续发送使用。

反应式路由协议按需路由的特点可以较好地适应节点移动较为频繁的无线网络环境,节点发生移动后,只需要更新需要发送数据的相关路径的路由信息即可。

AODV: adhoc on-demand distance vetor routing 无线自组网按需平面距离矢量路由协议
当一个节点需要给网络中的其他节点传送信
息时,如果没有到达目标节点的路由,则必须先以
多播的形式发出路由请求消息RREQ (route request
packet)。

RREQ报文中记录着发起节点和目标节点
的网络层地址。

邻近节点收到RREQ,首先判断目标节点是否
为自己。

如果是,则向发起节点发送路由应答消息
RREP (route reply packet);如果不是,则首先在路
由表中查找是否有到达目标节点的路由,如果有,
则向源节点单播RREP,否则继续转发RREQ进行
查找。

直至发现目的节点。

在网络资源充分的情况下,AODV协议可以通过定期广播hello报文来维护路由,一旦发现某一个链路断开,节点就发送ERROR报文通知那些因链路断开而不可达的节点删除相应的记录或者对已存在的路由进行修复。

在AODV中,整个网络都是静止的除非有连接建立的需求。

这就是说一个网络节点要建立连接时才广播一个连接建立的请求。

其他的AODV节点转发这个请求消息,并记录源节点,和回到源节点的临时路由。

当接收连接请求的节点
知道到达目的节点的路由时,就把这个路由信息按照先前记录的回到源节点的临时路由发回源节点。

于是源节点就开始使用这个经由其他节点并且有最短跳数的路由。

当链路断掉,路由错误就被回送给源节点,于是源节点就重新发起路由查找的过程。

参考资料:https:///item/AODV/7811971?fr=aladdin百度百科AODV
三、基于位置的路由协议(GPSR)
GPSR路由协议:greedy perimeter stateless routing
GPSR路由算法是使用地理位置信息实现路由(非辅助作用)的一种算法,它使用贪婪算法来建立路由。

当节点S需要向节点D转发数据分组的时候,它首先在自己的所有邻居节点中选择一个距节点D最近的节点作为数据分组的下一跳,然后将数据传送给它。

该过程一直重复,直到数据分组到达目的节点D或某个最佳主机。

贪心算法:在对问题求解时,总是做出在当前看来是最好的选择。

也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

一般步骤是:
1.建立数学模型来描述问题;
2.把求解的问题分成若干个子问题;
3.对每一子问题求解,得到子问题的局部最优解;
4.把子问题的局部最优解合成原来问题的一个解。

参考资料:/qq_32400847/article/details/51336300从零开始学贪心算法
空洞问题:
产生或收到数据的节点向以欧氏距离计算出的最靠近目的节点的邻节点并向其转发数据,但由于数据可能会到达没有比现节点更接近目的点的区域(称为空洞),导致数据无法传输。

解决方法:当出现这种情况时,空洞周围的节点能够探测到,并利用右手法则沿空洞周围传输来解决此问题。

优点:
1)该协议避免了在节点中建立、维护、存储路由表,只依赖直接邻节点进行路由
选择,几乎是一个无状态的协议;
2)且使用接近于最短欧氏距离的路由,数据传输时延小;并能保证只要网络连通
性不被破坏,一定能够发现可达路由。

缺陷:需要GPS定位系统或其他定位方法协助计算节点位置信息。

参考资料:/showcontent_38756.htm无线网状网络的路由协议分析。

相关文档
最新文档