6 高层剪力墙结构设计

合集下载

高层建筑框支剪力墙结构设计

高层建筑框支剪力墙结构设计

高层建筑框支剪力墙结构设计摘要:本文结合某高层建筑结构设计的实例,对其框支剪力墙结构的抗震设计进行了分析。

关键词:高层建筑剪力墙结构1 工程概况本工程主体结构层高60.3m,地下室2 层,层高分别为3.5m,4.7m;地上1 层为居民活动空间,高5.4m;2层~13 层为住宅,层高2.8m,以上至屋顶层高均为3.0m。

2 结构设计中的计算和分析2.1转换体系的选取与计算框支转换层楼板在地震中受力变形较大, 其在整体电算中的模型选择很关键。

由于工程转换梁上部层数多,地震时楼板将传递相当大的地震力,其在平面内的变形是不可忽略的。

因此采用弹性板或弹性膜的计算模型较为适宜。

由于弹性板的平面外刚度在整体计算中已被计入,相当于考虑了板对梁的卸荷作用,会使梁的设计偏于不安全。

在进行整体结构分析时,将转换层楼板用弹性膜单元模拟。

2.2嵌固端与转换层楼板板厚的确定工程以±0.000 板作为嵌固端,既保证上部结构的地震剪力通过地下室顶板传递到全部地下室结构, 同时能够保证上部结构在地震作用下的变形是以地下室为参照原点。

《抗规》第6.1.14条规定:当地下室顶板作为上部嵌固端部位时, 地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2。

故地下室顶板厚度取200mm,同时,为了有效地将水平地震力传递给剪力墙,在应力集中的楼层,将楼板厚度加大,转换层楼板取180mm,与其相邻的层也适当加厚至150mm。

考虑抗震需要,施工图阶段时更有意提高转换层配筋率,使单层配筋率达到0.35%, 以进一步提高转换层楼板和(1)q≤ect310l02(2)γe≤δ1h2δ2h1框支大梁共同作用的能力。

考虑到梁宽大于上部剪力墙的两倍,宽度较宽,对边转换梁,板面钢筋不是简单地要求伸入梁内满足锚固要求即可,而是要求必须贯穿梁顶截面,以确保梁内扭矩在板上的有效传递。

2.3框支柱与剪力墙底部加强部位墙厚的设计框支柱基本布置于上部剪力墙对齐的下方或就近区域, 这样不仅能使竖向荷载的传力途径直接、明确,减少转换板的内力,同时,上下抗侧力结构对齐,对于抵抗水平地震荷载作用,改善转换板的复杂受力情况也是大有益处的(详见图1)。

《高层》第6章 框架-剪力墙结构设计

《高层》第6章 框架-剪力墙结构设计

注意查表得到的是“剪力墙的广义剪力”V_W VW m “框架的广义剪力”V_F VF m
近似按刚度比分开,得到“总框架剪力”和“梁端总约束
弯矩” VF
CF
CF
_
mij VF
h
mij
m CF
h
mij
_
VF
h
_
“总剪力墙的剪力”为 VW VW m

6EI (1 a b) l(1 a b)3(1
)
6EI (1 a b)
m12 l(1 a b)31
m21

6EI (1 b a)
l(1 a b)31

M12 m12 M 21 m21
mi x
M ij h

mij h
330 WH
770 WH
注:H—结构地面以上的高度(m);W—结构地面以上的总重量。
1.框架一剪力墙结构应设计成双向抗侧体系。抗震设计 时,结构两主轴方向均应布置剪力墙。
2.框架一剪力墙结构可采用下列形式): (1)框架与剪力墙(单片墙、联肢墙或较小井筒)分开
布置; (2)在框架结构的若干跨内嵌入剪力墙(带边框剪力墙
); (3)在单片抗侧力结构内连续分别布置框架和剪力墙; (4)上述形式的混合。
3.框架—剪力墙结构中,梁与柱或柱与剪 力墙的中线宜重合;框架梁、柱中点之间 有偏离时,应符合:
1)
1

e0 4 bc
2)计算中应考虑其对节点核心和柱的不利影 响。
① 剪力墙宜均匀布置在建筑物的周边附近、楼 梯间、电梯间、平面形状变化及恒载较大的部 位,剪力墙间距不宜过大;
第6章 框架-剪力墙结构设计

浅谈高层建筑中剪力墙结构设计

浅谈高层建筑中剪力墙结构设计

浅谈高层建筑中剪力墙结构设计作者:吴建通来源:《中国房地产业》 2018年第5期【摘要】本文概述了剪力墙的定义及特点,介绍了剪力墙结构设计的基本要求,重点对高层建筑中剪力墙结构设计的具体运用进行了探讨,以供参考。

【关键词】高层建筑;剪力墙结构设计;运用高层建筑数量的不断增加更加充分利用土地资源,在结构设计中我们需要考虑高层建筑与多层建筑的区别,且高层建筑由于整体高度,结构内部受力情况也更加复杂。

而剪力墙作为高层建筑中主要的受力及抗震构件,其设计合理与否对结构的安全及经济性有着重要影响。

1、剪力墙的定义剪力墙是房屋或构筑物中主要承受风荷载或地震作用引起的水平荷载和竖向荷载(重力)的墙体。

在剪力墙体中,又分为筒状和平面两种结构,平面结构的剪力墙适用于一般钢筋混凝土建筑物,筒状结构的剪力墙则适用于高度较高的建筑物。

筒状结构主要用于高层建筑的楼梯间或电梯间的墙体设计。

筒壁均为现浇钢筋混凝土墙体,其刚度和强度较平面剪力墙可承受较大的水平荷载。

2、剪力墙结构的特点从结构的角度来说,剪力墙的承载力很强,并且对多角度的负荷量都能够很好的承受,可以承受住高层建筑结构中的竖向和水平两方面的负荷量;其次,剪力墙在受力上与建筑物的楼板可以形成共同的受力体系,使得建筑物的实用空间的高度和宽度都有所提升[2]。

第三,剪力墙及连梁在承受强烈的外力作用发生破坏时,可以有效抵消掉一部分外力作用产生的能量,为建筑物的安全系数提供有效保障。

3、剪力墙结构设计的基本要求3.1 调整楼层剪力系数在对剪力墙进行设计时需要尽量将构件布置降到最低,采用最佳办法就是布置大开间剪力结构,从而使侧向结构可以满足高层建筑需求。

此外,要保障楼层间的剪力系数是最小的,但不可高于设计标准,高层建筑整体承受的地震力与剪力墙承受的地震力之间的比不宜过大,这样才会确保结构自身的重量,从而将地震带来的破坏地降到最低,节约建筑成本。

3.2 调整楼层间位移与层高在计算楼层间的位移时,若是高层建筑建设在一个地震多发的地区,需要对楼层的标准值进行合理计算,这样可以把结构弯曲变形保留下来,在基于弯曲变形为核心的高层建筑中需要计入扭转变形。

高层住宅剪力墙结构设计控制及调整

高层住宅剪力墙结构设计控制及调整

高层住宅剪力墙结构设计控制及调整高层住宅设计中广泛采用剪力墙结构,本文给出了剪力墙结构的布置原则及设计时的注意事项;汇总了剪力墙结构计算的各个设计指标以及对应的调整方法。

随着社会进步,科技发展,人们对住宅的功能要求越来越丰富,建筑设计越来越符合功能和审美的要求;为实现建筑的要求,结构选型主要与其使用功能直接相关,同时拟建场地的地理位置,抗震烈度也是影响结构选型的重要因素。

为了进一步提高土地利用率,建设单位倡导建设高层住宅,以满足市场的需求及企业自身经济效益的要求;目前高层住宅成为人们的主要居住形式,高层住宅主要的结构形式多为剪力墙结构。

1剪力墙结构的特点剪力墙结构是由竖向剪力墙和水平楼面梁板组成的结构。

剪力墙既作为承受水平和竖向作用的构件,又有分隔房间的作用。

其布置原则除了应满足建筑使用要求,对结构受力是否合理至关重要,剪力墙布置是否合理进一步决定了该建筑的建设费用,所以更多的建设单位在前期建筑方案及与相应的结构选型上尽量优化,而达到节省造价的目的。

2建模时的注意事项(1)剪力墙:目前结构常用计算软件:中国建筑科学研究院开发的软件PKPM,北京盈建科软件XXXX有限公司编制的软件YJK,均可进行剪力墙结构的计算。

(2)剪力墙平面布置原则:依据建筑平面图:①外墙可布置为剪力墙,增加建筑平面的抗扭刚度。

②内墙布置时,平面均匀对称布置,竖向连续,避免楼层错洞保证剪力墙边缘构件上下连续贯通,同时避免墙肢开洞过大形成抗震性能较差的短肢墙(短肢剪力墙指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙)。

③剪力墙的截面厚度及构造配筋应当依据实际工程剪力墙部位及抗震等级,参见《高层建筑混凝土结构技术规程(JGJ3-2010)》7.2.1,10.4.6,《建筑抗震设计规范(GB52022-0510)》(以下简称抗规)6.4.1,6.4.3条。

④内墙长度除应满足建筑条件,还要考虑墙下桩最小桩间距的要求,例如:常规设计时,桩直径700mm,桩间距不小于3倍桩径,加上0.5倍的桩径,建议上部剪力墙的长度为2500mm,上部如有结构洞口,宜尽量使洞口避开桩位。

高层建筑结构设计第4章剪力墙结构设计课件.ppt

高层建筑结构设计第4章剪力墙结构设计课件.ppt

4.1剪力墙结构布置与计算基本假定
4.1.1剪力墙结构布置与设计要点 4.1.2剪力墙结构的承重方案 4.1.3计算基本假定 4.1.4剪力墙内力计算
4.1.1剪力墙结构布置要点
剪力墙结构布置与设计要点 1.剪力墙平面布置(双向或多向) 2.剪力墙竖向布置(连续布置,避免突变) 3.剪力墙的配筋 4.剪力墙的墙肢分类 5.短肢剪力墙的设计要求 6.剪力墙结构的典型平面 7.剪力墙结构的变形
a ——洞口两侧墙肢轴向间距
6.4双肢墙内力及位移计算
力与变形关系
M 1 ( x)
EI1 y1"
EI
'
11
M 2 (x)
EI 2 y2"
EI
2
' 2
y1 y2 y
1 2
4.4双肢墙内力及位移计算
根据力与变形关系得不同荷载情况下得微分方程
2 1 1 2
倒三角荷载
( ) 2( ) 2
4.4双肢墙内力及位移计算
1、适用条件: 开洞规则,墙厚、层 高不变的双肢剪力墙。
➢ 判别条件: =1~10
4.4双肢墙内力及位移计算
➢ 2、基本假定 (1)忽略连梁轴向变形,即假定两墙肢水平位移完
全相同 (2)两墙肢各截面的转角和曲率都相等,连梁两端
转角相等,连梁反弯点在梁的中点 (3)墙肢截面、连梁截面、层高等几何尺寸沿全高
4.2.5剪力墙截面设计
内力与位移计算思路 N-由竖向荷载和水平荷载共同产生 M-由水平荷载产生 V-由水平荷载产生——受剪(水平钢筋)
压弯构件 (竖向构件)
竖向荷载下的N:按照每片墙的承载面积计算
水平荷载下的M、N、V:按照墙的等效刚度分配至 各墙

(完整)高层住宅剪力墙结构设计原则

(完整)高层住宅剪力墙结构设计原则

5.方茴说:“那时候我们不说爱,爱是多么遥远、多么沉重的字眼啊。

我们只说喜欢,就算喜欢也是偷偷摸摸的。

”6.方茴说:“我觉得之所以说相见不如怀念,是因为相见只能让人在现实面前无奈地哀悼伤痛,而怀念却可以把已经注定的谎言变成童话。

”7.在村头有一截巨大的雷击木,直径十几米,此时主干上唯一的柳条已经在朝霞中掩去了莹光,变得普普通通了。

8.这些孩子都很活泼与好动,即便吃饭时也都不太老实,不少人抱着陶碗从自家出来,凑到了一起。

9.石村周围草木丰茂,猛兽众多,可守着大山,村人的食物相对来说却算不上丰盛,只是一些粗麦饼、野果以及孩子们碗中少量的肉食。

高层住宅剪力墙结构设计原则1 剪力墙布置原则(1)剪力墙的位置:1)遵循均匀、分散、对称和周边的原则。

2)剪力墙应沿房屋纵横两个方向布置。

3)剪力墙宜布置在房屋的端部附近、平面形状变化处、恒荷载较大处以及两端楼(电)梯处,在结构中部尽量减少剪力墙的布置量。

4)在平面布置上尽可能均匀、对称,以减小结构扭转。

不能对称时,应使结构的刚度中心和质量中心接近。

5)沿高度均匀变化;在竖向布置上应贯通房屋全高,使结构上下刚度连续、均匀。

6)多均匀长墙(增加抗侧刚度和减少剪力墙数和混凝土用量),少短墙(抗震性差);可布置成单片形(不少于三道,长度不超过8m)、L形、T形、工字形、十字形或筒形最佳,H/L≥2, 少复杂形状转折。

7)洞口布置在截面中部,避免布置在剪力墙端部或柱边。

(2)剪力墙的间距:为了保证楼(屋)盖的侧向刚度,避免水平荷载作用下楼盖平面内弯曲变形,应控制剪力墙的最大间距。

(3)剪力墙的厚度:剪力墙厚度取值由以下因素确定:1)通过结构分析,在满足最大层间位移、周期比、位移比的各项指标确定每层剪力墙的厚度;2)不同抗震等级的轴压比的限制;3)构造性及稳定性要求(而稳定性一般会满足);对于普通的住宅建筑在7度或8度地区,墙厚大多情况下是按稳定性和构造要求所控制的;首先剪力墙厚度应满足《高规》7.2.1条7.7.2条规定(其实是高厚比要求),当不能满足上面几条的时候应按《高规》附录D 计算墙体的稳定,从大量工程实例看,按《高规》附录D 计算的墙厚比《高规》7.2.1条7.7.2条规定的小得多。

高层建筑结构设计 第06章 剪力墙结构内力计算

高层建筑结构设计 第06章 剪力墙结构内力计算

为简化计算,可将上述三式写成统一公式,并取G=0.4E 可得到整截面墙的等效刚度计算公式为
Ec Ieq Ec Iw
1
9Iw
AwH 2

引入等效刚度,可把剪切变形与弯曲变形 综合成弯曲变形的表达形式

11
V0
H
3
倒三角荷载
60 EIeq


1
V0
H
3
8 EIeq
• 内力 先将整体小开
口墙视为一个上 端自由、下端固 定的竖向悬臂构 件,如图所示, 计算出标高处 (第i楼层)截面 的总弯矩和总剪 力,再计算各墙 肢的内力。
• 墙肢的弯矩 将总弯矩Mi分为两部 分,其一为产生整体
弯曲的弯矩;另一为
产生局部弯曲的局部 弯矩,如图所示。
• 第j墙肢承受的全部弯矩可按下式计算
当剪力墙各墙段错开距离a不大于实体连接墙厚度的 8倍,并且不大于2.5m时,整片墙可以作为整体平 面剪力墙考虑;计算所得的内力应乘以增大系数1.2, 等效刚度应乘以折减系数0.8。当折线形剪力墙的各 墙段总转角不大于15°时,可按平面剪力墙考虑。
6.2 整体墙和小开口整体墙的计算
6.2.1 整体墙的内力和位移计算 1、墙体截面内力
Mi (x)

0.85M p (x)
Ii I
0.15M p (x)
Ii Ii
式中,Ii第i个墙肢的惯性矩,
I 对组合截面形心的组合截面惯性矩。
I I j Aj y2
• 墙肢的剪力 第j墙肢的剪力可近似按下式计算
Vi

1 2
Vp

A Ai
Ii Ii

高层剪力墙住宅结构优化设计

高层剪力墙住宅结构优化设计

高层剪力墙住宅结构优化设计1. 引言随着我国城市化进程的不断推进,高层住宅建筑已经成为城市居住的主要形式之一。

剪力墙结构作为高层住宅建筑中常用的一种结构形式,其设计合理性对建筑的安全性、稳定性和经济性具有重要影响。

本文将探讨如何对高层剪力墙住宅结构进行优化设计,以提高其性能和效益。

2. 剪力墙结构特点及优化目标剪力墙结构具有较高的抗侧刚度、良好的抗震性能和较大的使用空间,但其自重较大,材料消耗较多,且墙体较为厚重,影响室内采光和通风。

因此,剪力墙结构的优化应围绕提高结构性能、降低成本、改善室内环境等方面展开。

3. 结构优化设计方法3.1 合理布置剪力墙1.根据建筑平面布局和功能需求,合理划分剪力墙的位置和尺寸,使墙体既能够满足结构受力需求,又能够兼顾室内空间使用。

2.在保证结构安全的前提下,适当减小墙体厚度,以降低自重和提高空间利用率。

3.2 采用新型材料及构件1.采用高强度钢材、高性能混凝土等新型材料,以提高剪力墙的承载能力和降低自重。

2.引入钢框架、空腹墙等新型构件,以提高结构的抗震性能和减小墙体厚度。

3.3 优化结构体系1.采用框架-剪力墙结构,使剪力墙与框架共同承担水平力,提高结构的整体稳定性。

2.考虑采用多重剪力墙体系,通过设置多道墙体,提高结构的抗侧刚度和抗震性能。

3.4 合理设置连梁1.合理设置连梁的截面尺寸和连接方式,以提高剪力墙之间的协同工作性能。

2.考虑连梁的屈服强度和极限强度,以保证结构在地震作用下的安全性。

4. 结构优化设计实例以一栋18 层的高层剪力墙住宅为例,采用上述优化方法进行设计。

经过优化,该结构在满足安全性的前提下,自重降低约 10%,墙体厚度减小约 20%,且室内空间利用率得到提高。

5. 结语高层剪力墙住宅结构优化设计应注重合理布置剪力墙、采用新型材料及构件、优化结构体系和合理设置连梁等方面。

通过这些方法,可以提高结构的性能和效益,满足现代城市居住的需求。

6. 结构优化设计软件应用在实际设计过程中,为了更好地实现结构优化,可以借助结构优化设计软件进行模拟和分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Iq I jhj hjFra bibliotek时扣Ij—除剪洞力口墙的沿影竖响向;各段的惯性矩,有洞口
hj—各段相应的高度;
15
6.5 连续化方法计算联肢剪力墙
对于联肢墙,连续化方法是一种相对比较精确 的手算方法,而且通过连续化方法可以清楚地了 解剪力墙受力和变形的一些规律。连续化方法把 连梁看做分散在整个高度上的连续连杆。
18
2.方程的建立
在连梁的反弯点处切开,双肢墙变成两个静定的悬臂 墙,切口处的轴力σ(x)和剪应力τ(x)是未知力,由切点处的 相对位移为零的变形协调条件,可得沿剪应力τ(x)方向的 变形连续条件的表达式:
1x 2 x 3x 0
δ1(x)——由墙肢的弯曲和剪切变形产生的竖向相对位移;
1m
(x)
2m
不宜将楼面主梁支承在剪力墙之间的连梁上。
7
6.2 剪力墙的类型
1.整截面墙
不开洞或开洞面积不大于15%的整截面剪力墙 受力特点:整体悬臂墙,弯矩图既不突变也无反弯点。 变形特点:弯曲型变形
8
2.整体小开口墙
开洞面积大于15%但仍较小的墙 受力特点:弯矩图在连系梁处发生突变,但在整个墙肢高 度上没有或仅在个别楼层中才出现反弯点。 变形特点:以弯曲型为主
12
2.竖向荷载分配
按每片墙的承荷面积计算它的荷载。
3.水平荷载分配
总水平荷载按各片剪力墙刚度分配到每片墙,然后分片计 算剪力墙的内力。
Vij
Ec I eqj Ec I eqj
Vpi
式中,Vpi—第i层总剪力 EcIeqj—第j片墙的等效抗弯刚度。
13
6.4 整体墙近似计算方法
My
I
VS
Vb Mb
22
二、墙肢的弯矩和剪力
墙肢的总弯矩和总剪力:
n
M j M pj ms s j
V j Vpj
式中,Mpj,Vpj——第j层由于外荷载产生的弯矩和剪力。 ms——第s层(s≥i)的总约束弯矩:
M1
I1
2
Mj
Ii
i 1
M2
I2
2
Mj
Ii
i 1
V1
I~1 2 I~i
V
j
i 1
3
是剪影跨响比剪:力VMhw墙表破示坏截形面态上的弯重矩要与因剪素力。的相对大小,
弯作曲用破为坏主:,VMh容w 易 2实时现,弯高曲墙破(坏H/,hw延≥2性~3较)好,。以弯矩
4
弯剪破坏:
2 M Vhw
1 ,中高墙(H/hw=1~2),很难
避免出现剪切斜裂缝,视设计措施是否得当而可
能弯坏,也可能剪坏,按照强剪弱弯合理设计,
9
3.双肢墙及多肢墙
开洞较大、洞口成列布置的墙 受力特点:与整体小开口墙相似 变形特点:以弯曲型为主
10
4.壁式框架
开洞尺寸大、连梁线刚度大于或接近墙肢线刚度的墙 受力特点:弯矩图在楼层处有突变,在大多数楼层中都出 现反弯点 变形特点:以剪切型为主
11
6.3 计算假定及荷载分配
1.计算基本假定 (1)一片剪力墙可以抵抗在本身平面内的侧向力, 而在平面外的刚度很小,可以忽略。 (2)楼板在其自身平面内刚度无限大,楼板平面 外刚度很小,可以忽略。
Ib
式中,σ—截面的正应力; τ—截面的剪应力; M—截面的弯矩;
q
V—截面的剪力; I—截面惯性矩; S—截面的静矩; b—截面宽度; y—截面重心到所求正 应力点的距离。
M
V
14
11
60
V0 H 3 EIq
1
3.64EIq
H 2GAq
1 8
V0 H 3 EIq
1
4EIq
H 2GAq
1 3
V0 H 3 EIq
1
3EIq
H 2GAq
倒三角形分布荷载 均布荷载 顶部集中荷载
式中,V0——底部截面总剪力;
G—混凝土的剪切模量,G=0.4E Aq—小洞口整体墙折算截面面积; A—墙截面毛面积;
Aq 1 1.25
Ad A0
A
Ad—墙面洞口立面面积; A0——墙立面总墙面面积; Iq—等效惯性矩;
问题:为什么可以采用连续化方法计算联 肢剪力墙?
16
1.基本假定
(1)连梁的反弯点在跨中,连梁的作用可以用沿 高度均匀分布的连续弹性薄片代替(连梁连续化 假定);
b
bb
1
2
1
2
1
2
1
2
(x) (x)
1
2
1
2
(a)结构尺寸; (b) 计算简图;
(c) 基本体系
17
(2)忽略连梁轴向变形,即假定两墙肢水平位移 完全相同,同一标高处,两肢墙的转角和曲率相 等。 (3)层高h和惯性矩I1、I2、Ib及面积A1、A2、Ab 等参数,沿高度均为常数。
也可能实现延性尚好的弯剪破坏。
剪切破坏:
M Vhw
1
的剪力墙,矮墙(H/hw≤1)
滑移破坏:实际工程中,滑移破坏很少见,可能 出现的位置是施工缝截面。
5
剪力墙宜自下到上连续布置,避免刚度突变;
6
应控制剪力墙平面外的弯矩,以保证剪力墙平面 外的稳定性;
(1)沿梁轴方向设置与梁相连的剪力墙,抵抗该墙肢平面外弯 矩; (2)当不能设置与梁轴线方向相连的剪力墙时,宜在墙与梁相 交处设置扶壁柱; (3) 当不能设置扶壁柱时,应在墙与梁相交处设置暗柱,并宜 按计算确定配筋; (4)必要时,剪力墙内可设置型钢。
1v
2v
1
(x)
(a)弯曲变形
(b) 剪切变形
19
δ2(x)——由墙肢的轴向变形产生的竖向相对位移;
(x)
(x)
2 3
δ3(x)——由连梁的弯曲和剪切变形产生的竖向相对位移。
(x)h Ab
b
(x)h
问题:切口处的轴力σ(x)为什么不列变形连续方程? 20
在x处作截面截断双肢墙,由平衡条件有:
M1 M 2 M p 2cN x
P wq
(x) (x)
V1 M1
N
V2
N
M2
21
3.联肢墙的内力计算
一、连梁的剪力和弯矩
由以上两式,可得连梁中点处的剪应力τ(x),计算j层 连梁内力,用该连梁中点处的剪应力乘以层高得剪力(近 似于层高范围内积分),剪力乘连梁净跨度的1/2得连梁 根部的弯矩:
Vbj xh
(x)
M bj Vbj a
式中, I~i 是墙肢考虑剪切变形后的折算惯性矩:
6 高层剪力墙结构设计
1
6.1 结构布置
剪力墙宜沿主轴方向或其他方向双向布置;
2
剪力墙墙肢截面宜简单、规则、剪力墙的竖向刚 度应均匀,剪力墙的门窗洞口宜上下对齐、成列 布置,形成明确的墙肢和连梁;
为了避免剪力墙脆性破坏,较长的剪力墙宜开设 洞口,将其分成长度较均匀的若干墙段,墙段之 间宜采用弱梁连接,每个独立墙段的总高度与其 截面高度之比不应小于2,墙肢截面高度不宜大于 8m;
相关文档
最新文档