第12章稳恒磁场
比奥萨伐尔定律

βdβ
2 β1
20
第 12 章 稳恒磁场
∫ B = − μ o nI β 2 sin β ⋅ dβ
2
β1
B
=
μonI
2
(cosβ2
− cosβ1)
磁场的方向
磁场方向与电流满足右手螺旋法则。
β1 = π , β2 = 0 B = μonI
β1 = π / 2, β2 = 0
B = μonI / 2
=
dq T
=
σ 2πρdρ 2π / ω
= σωρ
dρ
已知圆电流在圆心处的磁感应强度为 B=μ0I/2R,其中I为圆电流,R为圆电流半 径,因此,圆盘转动时,圆电流在盘心O 的磁感应强度为:
时,在盘心O的磁
感应强度为
∫ B = r μ0 σωdρ
02
=
1 2
μ0σωr
dB = μ0dI = μ0 σωρdρ = μ0 σωdρ
内容:
•描述磁场的基本物理量——磁感应强度 •电流磁场的基本方程——Biot-savart定律 •磁场性质的基本方程——高斯定理与安培环路定理 •磁场对电流与运动电荷的作用——Lorentz力、Ampere力
2014-10-14
2
第 12 章 稳恒磁场
一一、、磁磁现现象象及及其其规规律律
磁性
天然磁石成人工磁铁吸收铁(Fe), 钴( Co),镍(Ni)的性质。
4
第 12 章 稳恒磁场
安培提出分子电流假设:
分子的磁矩是各原子中电子轨道磁矩和自旋
磁矩的矢量和,称为分子磁矩。可以看作由一个
等效的圆电流 ----分子电流产生的。
prm = ISern
《大学物理》稳恒磁场

第四节 安培环路定理
Bdl L
0 (I1 I2 )
(0 I1
I
)
2
I1
I2 I3
I1
L
I1
问(1)B 是否与回路 L 外电流有关?
(2)若
LB d l 0 ,是否回路 L 上各处
B
0
?
是否回路 L 内无电流穿过?
43
第四节 安培环路定理
安培环路定理的应用
例题 无限长载流圆柱体的磁场
33
第三节 磁通量 磁场的高斯定理
例题 如图载流长直导线的电流为 I, 试求通过矩形面积的磁通量.
B
I
l
d1 d2
o
x
解
B 0I
2π x
dΦm
BdS
0I
2πx
ldx
Φm
B dS 0Il
S
2π
d2 dx x d1
Φm
0 Il
2π
ln
d2 d1
34
第三节 磁通量 磁场的高斯定理 磁场的高斯定理
d
I
B1
r1
dl1
B2 dl2
r2
l
B1
0I ,
2 π r1
B2
0 I
2 π r2
B1
dl1
B2
dl2
0 I
2π
d
B1 dl1 B2 dl2 0
l B d l 0
40
第四节 安培环路定理
多电流情况
I1
I2
I3
l
B B1 B2 B3
Bdl
l
0(I2 I3)
推广:
➢ 安培环路定理
第13章
第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论12-1将一条形磁铁插入一闭合线圈,线圈中将产生感应电动势。
问在磁铁与线圈相对位置相同的情况下,迅速插入和缓慢插入线圈中所产生的感应电动势是否相同感应电流是否相同因电磁感应所产生的总电量是否相同答:迅速插入在线圈中产生的感应电动势大,缓慢插入线圈中产生的感应电动势小。
感应电流也不相同(因为I=Rε),但电磁感应所产生的总电量是相同的。
(因为11d q Idt dt dt R R dt RεΦ===-=-∆Φ⎰⎰⎰,∆Φ相同,所以q 相同)12-2一闭合圆形线圈在匀强磁场中运动,在下列情况下是否会产生感应电流为什么(1)线圈沿磁场方向平移; (2)线圈沿垂直于磁场方向平移;(3)线圈以自身的直径为轴转动,轴与磁场方向平行;(4)线圈以自身的直径为轴转动,轴与磁场方向垂直。
解:由d dt εΦ=-1d I R R dt εΦ==- (1)因为0d dt Φ=,所以没有电流产生(2)0d dtΦ= 也没有电流产生(3) 0Φ= 0d dtΦ= 没有电流产生(4)0d dt Φ≠ 若转动的角速度为,则2sin d R dtπωθΦ=(θ为线圈平台与之间的夹角)12-3在一环状铁芯上绕有两组线圈1和2,如题图所示,这样就构成了一个变压器。
当在线圈1中所通电流I 增大或减小时,在线圈2中都要感应电动势。
判断在这两种情况下,线圈2中的感应电流的方向。
答:(1)当I 增大,∆Φ增大,由楞次定律,I 产生的磁场应阻碍变化, 所以I 感的方向如图所示(从B 端流出)(2)当I 减小时,∆Φ减小,由楞次定律产生的磁场应阻碍变化 所以I 感的方向从A 端流出。
(3) (4) AB12-4将一条形磁铁插入电介质环中,环内会不会产生感应电动势会不会产生感应电流环内还会发生什么现象 答:不会产生感应电流,但会产生感应电动势(很小)。
环内还会产生极化现象,因为变化的磁场能产生电场,因此会使电解质极化。
《大学物理》(8-13章)练习题

《大学物理》(8-13章)练习题(2022年12月)第八章气体运动论1.气体温度的微观或统计意义是什么?2.理想气体状态方程的三种形式?PV=N KT, p=nkT, (n=N/V)3.气体的最概然速率、方均根速率、平均速率的关系是什么?4.气体分子的平均平动动能的表达式及其意义?5.理想气体的内能?6.气体分子的平均自由程是指?7.单原子分子、刚性双原子分子气体的自由度数目各是多少?8、理想气体的微观模型是什么?综合练习1. 在某容积固定的密闭容器中,盛有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 4p1. ;B. 5p1;C. 6p1;D. 8p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B.pV mT⁄; C. pV kT⁄; D. pV RT⁄.3. 压强为p、体积为V的氢气(视为刚性分子理想气体)的内能为( )A. 52pV; B. 32pV; C. pV; D. 12pV。
4 刚性双原子分子气体的自由度数目为()。
A. 2B. 3C. 4D. 55.气体温度的微观物理意义是:温度是分子平均平动动能的量度;温度是表征大量分子热运动激烈程度的宏观物理量,是大量分子热运动的集体表现;在同一温度下各种气体分子平均平动动能均相等。
6. 设v̅代表气体分子运动的平均速率,v p代表气体分子运动的最概然速率,(v2̅̅̅)12代表气体分子运动的方均根速率。
处于平衡状态下理想气体,三种速率关系为( )A. (v2̅̅̅)12=v̅=v p;B. v̅=v p<(v2̅̅̅)12;C. v p<v̅<(v2̅̅̅)12;D. v p>v̅>(v2̅̅̅)12。
《大学物理》习题册题目及答案第12单元稳恒电流的磁场

第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。
第十二章电磁感应电磁场

bA cb 0
bA cb bc
a
a
vBdy v
0I
dy
b
b 2y
0Iv ln b 2 a
O
I
a
C
v
B
A
v
b
y
bc
bA
讨论:(1)在磁场中旋转的导体棒
(a)棒顺时针旋转
v
L
S
0 (v B) dl
L
0 Bvdl
ω
L Bl dl 1 BL2
0
2
动生电动势的方向由 O指向A 。
回路中产生的感应电动势 的大小与磁通量对时
间的变化率成正比。
k dΦm
dt
dm
dt
负号表示感应电动势总是反抗磁通的变化
国际单位制中 k =1
单位: 1V=1Wb/s
若有N匝线圈,每匝磁通量相同,它们彼此串联,总电动 势等于各匝线圈所产生的电动势之和。令每匝的磁通量为 m
磁链数: Ψ NΦm
(2) 在磁场中旋转的线圈
在匀强磁场B 中, 面积为S 的N 匝矩形线
圈以角速度为 绕固定
的轴线作匀速转动。
在任意时刻 t,线圈平面法 线与磁场的夹角为,这时
通过线圈平面的磁链数
Nm NBS cos
ωn
d(Nm )
dt
NBS d sin NBS sin t
dt
max sin t ——交变电动势
能量的转换和守恒
外力做正功输入机械能,安培力做负功吸收 了它,同时感应电流以电能的形式在回路中输出 这份能量。
发电机的工作原理: 靠洛仑兹力将机械能转换为电能
3、动生电动势的计算
计算动生电动势的一般方法是:
高中物理知识点考试总结(第12章电磁波)

2
三、电磁场:变化的电场和变化的磁场相互联系,形成一个 不可分割的统一场,这就是电磁场;
四、电磁波:电磁场由近及远的传播,就形成了电磁波; 1、有效向外发射电磁波的条件: (1)要有足够高的频率; (2)电场、磁场必须分散到尽可能大的空间(开放电路) 2、电磁场的性质:
1
(1)电磁波是横波; (2)电磁波的速度 v=3.0*108; (3)遵守波的一切性质;波的衍射、干涉、反射、折射; (4)电磁波的传播不需要介质
高中物理知识点考试总结(第 12 章电磁波)
第 12 章电磁波
一、麦克斯韦的电磁场理论: 1、不仅电荷能产生电场,变化的磁场亦能产生电场; 2、不仅电流能产生磁场,变化的电场亦能产生磁场;
ቤተ መጻሕፍቲ ባይዱ
二、对麦氏理论的理解 1、稳恒的电场周围没有磁场; 2、稳恒的磁场周围没有电场 3、均匀变化的电场产生稳恒的磁场; 4、均匀变化的磁场产生稳恒的电场; 5、非均匀变化的电场、磁场可以相互转化;
《大学物理》习题册题目及答案第12单元 稳恒电流的磁场

第12单元 稳恒电流的磁场第七章 静电场和恒定磁场的性质(三)磁感应强度序号 学号 姓名 专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是: (A) Wb 2a R π(B) Wb 2b R π (C) Wb 2c R π(D) Wb 2abc R π[ B ]2. 若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.0×105- T ,则铜线中需要通过的电流为(μ0=4π×107-T ·m ·A1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B沿图中闭合路径L 的积分l B d ⋅⎰等于(A)I 0μ(B)I 031μ (C) I 041μ(D)I 032μ[ D ]5. 有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0二 填空题1.一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度 B 的大小为aIπμ830。
3.半径为0.5cm 的无限长直圆柱形导体上,沿轴线方向均匀地流着I=3A 的电流,作一个半径r=5cm 、长l=5cm 且与电流同轴的圆柱形闭合曲面S ,则该曲面上的磁感应强度 B 沿曲面的⎰=⋅Sd s B _______0_________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算磁感应强度
1. 无限长载流圆柱导体的磁场分布
I
R
已知:I、R
电流沿轴向,在截面上均匀分布
分析对称性
电流分布——轴对称 磁场分布——轴对称
B的方向判断如下:
r
dS1
O
l
dS2
dB dB2 dB1
P
作积分环路并计算环流
如图 r R
B • dl
Bdl
2rB
利用安培环路定理求 B
B • dl 0 I
]ldr r)
0 I1l ln r1 r2 0 I2l ln d r1
2
r1
2
d r1 r2
2.26 106 wb
三、 安培环路定理
静电场 磁场
?
E
dl
0
B dl
I
l
r
B
1、圆形积分回路
B dl
0I 2r
dl
0I 2r
dl
0I 2r
2r
B dl 0I
改变电流方向 B dl 0I
方向
例2、均匀带电圆环
已知:q、R、 圆环绕轴线匀速旋转。
求圆心处的
B
B
q
解: 带电体转动,形成运流电流。
I q q q T 2 2
R
B 0I 0q 2R 4R
例3、 均匀带电圆盘
已知:q、R、 圆盘绕轴线匀速旋转。
dr
求圆心处的
B
及圆盘的磁矩
解:如图取半径为r,宽为dr的环带。
J dQ qnv
J
qdnSv
J
n
qni vi
i`
dI
q v
dS
dl
导体中任一面积元 dS
nv
单位时间内通过dS的电量 即电流强度
dQqnvd•IdSqnvJc•osdSdS
dI J • dS
穿过任一曲面的电流强度: I J • dS S
电流强度是电流密度的通量。
电流密度
J
• BA
l
r1
r2 d r3
d 40cm
r2 20cm
l 25cm
r1 r3 10cm
I1 I2 20A
如图取微元
dm B • dS Bldr
B 0I1 0I2 2r 2 (d r )
方向 •
B
•
I2
I1
l
r dr
r1
r2 d r3
m
dm
r1 r1
r2
[
0 I1 2r
0I2 2 (d
rR
B
0I 2R
O
R
r
讨论:长直载流圆柱面。已知:I、R
B • dl Bdl 2rB
I
0
rR
R
0 I
rR
0
B
0I 2r
0I B
r R 2R
rR
OR
r
练习:同轴的两筒状导线通有等值反向的电流I,
求 B的分布。
取一半径为 r 的回路如
图示
B • dl L
0
Ii
r R2
LB • dl 2rB
r0
B
dB
0 4
Idl sin
r2
统一积分变量
O
a
dl a csc2 d
l actg( ) actg r a sin
dB
P
X
B
0 4
I
sindl
r2
0 4
sin2
a2
I
sin
ad sin2
2 0 I sind
1 4a
0I 4a
(cos1
cos2 )
B
0I 4a
(cos1
cos2 )
磁感应强度的定义:
大小: B Fmax q0v
磁力 Fm
+
v 方向: 小磁针在该点的N 极指向
单位: T(特斯拉)
B
1T 104G (高斯)
12-3 毕奥---沙伐尔定律
一、毕奥---沙伐尔定律
I dB
电流元 Idl
dB
0 4
Idl sin
r2
Idl
.P
r 方平0向面 判,4d断B1和0:d7TIBmdlA的及1方r向三垂矢直量于满电足流矢元量Id叉l乘与关r系组。成的
q
v
例1、 氢原子中电子绕核作圆周运动
已知
v 0.2 106 ms1 r 0.53 1010m
求: 轨道中心处 B
电子的磁矩 pm
解:
B
0
4
qv r0 r2
又
vr0
B 0 4
ev r2
13T
方向
r v
pm
pm
ISn
IS
1 2
S r 2 I v e
2r vre 0.93 1023 Am 2
m B • dS B cosdS
磁场中的高斯定理
m B • dS
B • dS 0
S
B
穿过任意闭合曲面的磁通量为零
磁场是无源场。
1. 求均匀磁场中 半球面的磁通量
B S1
R
O S2
S1 S2 0 S1 ( BR2 ) 0 S1 BR2
课 2. 在均匀磁场B 3i 2 j
的任意曲面的电流强度)的代数和的
倍。即:
0
B • dl 0 Ii
I1 I2说明:I4 NhomakorabeaI3
电流取正时与环路成右旋关系
l
如图 B • dl 0 Ii
0(I2 I3)
由环路内电流决定
B • dl 0 Ii 0 (I2 I3 )
由环路内外电流产生
环路所包围的电流
I1 I2
I4
I3
12-2 磁场 磁感应强度
一、基本磁现象 天然磁石 同极相斥 异极相吸
SN
S
N
电流的磁效应 1820年 奥斯特
I
SN
F F I
电子束
S
+
N
磁现象: 1、天然磁体周围有磁场; 2、通电导线周围有磁场; 3、电子束周围有磁场。
表现为: 使小磁针偏转
4、通电线能使小磁针偏转; 5、磁体的磁场能给通电线以力的作用; 6、通电导线之间有力的作用; 7、磁体的磁场能给通电线圈以力矩作用; 8、通电线圈之间有力的作用; 9、天然磁体能使电子束偏转。
0
r
2
rdr
R4
4
方向:
12-4 磁场的高斯定理和安培环路定理
一、磁感应线 (或磁力线 B线) Bb
方向:切线
b
Bc
c
大小: B dm dS
Ba a
直线电流
圆电流
B
通电螺线管
I
I
I
I
磁感应线的基本性质: 1、每一条磁力线都是环绕电流的闭合曲线,因此 磁场是涡旋场。磁力线是无头无尾的闭合回线。 2、任意两条磁力线在空间不相交。 3、磁力线的环绕方向与电流方向之间可以分 别用右手定则表示。
B 0I
2R
载流圆弧
圆心角
B 0 I • 0 I 2R 2 4R
B
I
B
I
练
如图,求圆心O点的
B
习
I
O
•
R
B 0I
4R
I
R
O•
B 0I •
8R
R
•O I
B 0I 0I 4R 2R
•
2 3 I
•R
O
B 0I 0I (1 3 ) 6R 2R 2
三、运动电荷的磁场
电流 电荷定向运动
dI
n
dS
方向:该点场强的方向。
二 电动势
一、电源、电动势 静电力欲使正电荷从高电位到低电位。 在回路中有稳恒电流就不能单靠静电场 必须有非静电力把正电荷从负极板搬到 正极板才能在导体两端维持有稳恒的电 势差。 提供非静电力的装置就是电源。
非静电力欲使正电荷从低电位到高电位。 电动势 描述非静电力作功能力大小的量.
表现为:
相互吸引 排斥 偏转等
安培指出: 天然磁性的产生也是由于磁体内部有电流流动。
分子电流
I n
N
S
电荷的运动是一切磁现象的根源。
二、磁场 磁感应强度
运动电荷 磁场
磁场 对运动电荷有磁力作用
电流(或磁铁) 磁场
电流(或磁铁)
磁场对外的重要表现为:
(1)磁场对进入场中的运动电荷或载流导体有磁力 作用. (2)载流导体在磁场中移动时,磁力将对载流导体 作功,表明磁场具有能量。
点的磁感应强度。
解:建立坐标系OXY
任取电流元 Idl
大小
dB
0 4
Idl r2
Y
I Idl
r0
OR
dB dB
p•
dBx
X
方向
Idl r0
分析对称性、写出分量式
B
dB 0
Bx
dB x
0 4
Idl sin
r2
统一积分变量
Y
sin R r
Bx
dB x
0 4
Idl sin
r2
I Idl
Y
I 2
dl
r
l
1
r0
O
a
dB
P
X
B
0I 4a
(cos1
cos2 )
无限长载流直导线1 0 2
B 0I 2a
半无限长载流直导线 1 2
2
B 0I 4a