以铝合金为基体复合材料的发展现状及其应用
铝合金的研究现状及应用

铝合金的研究现状及应用近几十年来,随着人们对各种金属材料的发展,铝合金的研究也取得了显著的进展。
它具有轻质、高强度的特点,在航空航天、交通工具、军事装备、建筑工程、机械制造等诸多领域都有着广泛的应用。
本文将对铝合金的研究现状及其在不同领域中的应用进行综述。
首先,介绍铝合金的研究现状。
近几十年来,各国专家学者深入研究铝合金的成分、性能和加工技术,铝合金的科学性、实用性和性能发挥率也有了较大提高。
研究表明,采用现代化的熔融炼铝法和机械加工工艺,可以大大提高铝合金的性能和使用寿命,使铝合金的应用范围更加广泛。
其次,介绍铝合金在不同领域的应用。
在航空航天领域,铝合金具有较高的力学性能、延展性和形状记忆性,可以用于飞机机身内壁和机翼的制造。
在交通工具领域,铝合金用于汽车骨架、车身、发动机等部件的制造,具有轻量、耐蚀、防松性能等特点,为汽车的结构设计提供了新的选择。
在军事装备领域,铝合金用于防护装置、装甲板及火炮的制造,确保了武器的可靠性和耐久性。
在机械制造领域,铝合金用于制造活塞、泵体、齿轮等部件,具有高强度、轻质、热稳定性和抗腐蚀性等优点,使机械设备性能受益。
最后,总结一下铝合金的研究,由于铝合金具有轻质、高强度、高热稳定性等优点,已经成为各大工程领域的重要材料,在航空航天、交通工具、军事装备、建筑工程和机械制造等领域得到广泛应用。
然而,由于铝合金的加工和后处理技术仍然相对落后,性能的发挥空间也有待进一步提高。
因此,有必要继续加强铝合金的研究,提高铝合金的性能、加工工艺和后处理技术,在未来的应用中发挥更大的作用。
综上所述,铝合金的研究在近几十年中取得了重大进展,它已成为工业领域中不可缺少的重要材料,在航空航天、交通工具、军事装备、建筑工程和机械制造等领域中都有着广泛的应用,但是仍有大量的潜力可以挖掘。
因此,有必要加强对铝合金的研究,探索出更适合不同领域应用的合金配方、加工技术及后处理技术,促进铝合金的进一步发展和应用。
铝合金的研究现状与应用

铝合金的研究现状与应用铝合金是一种广泛应用于工业和科研领域的材料,具有许多优良的物理和化学性质。
它的研究现状和应用面非常广泛。
本文将从铝合金的材料特性、研究现状和应用等方面进行详细介绍。
铝合金是由铝和其他金属元素(如铜、锌、镁等)混合而成的合金材料。
相比纯铝,铝合金具有更高的强度、刚性和耐腐蚀性。
这使得铝合金在航空航天、汽车制造、建筑工程和电子设备等领域有着广泛的应用。
此外,铝合金还具有良好的导热性能和可塑性,可以通过热处理和塑性加工获得更多的性能优势。
在铝合金的研究中,主要的方向可以分为以下几个方面。
首先,提升铝合金的强度和硬度是研究的重点之一、通过合金化和热处理等方法,可以改变铝合金晶粒的细化和相成分的变化,从而达到提高强度和硬度的目的。
例如,利用冷变形和热处理可以制备超高强度的7075铝合金,其强度可达到900MPa以上。
此外,进一步提高铝合金的强度还可以通过纳米晶和均匀高强度相的引入等方法实现。
其次,改善铝合金的耐腐蚀性也是一个研究热点。
铝合金在大气和水中容易发生腐蚀,所以在实际应用中需要采取一些措施来增强其耐蚀性。
目前的研究主要集中在表面处理技术、合金化和涂层等方面。
例如,通过阳极氧化处理可以形成抗蚀性好、陶瓷膜类似的氧化层,阻碍阳极活性金属的进一步氧化,从而提高铝合金的耐腐蚀性。
此外,铝合金还在轻量化领域具有广泛的应用前景。
由于铝合金具有轻质和高强度的特点,可以减轻设备和结构的重量,提高能源效率。
因此,汽车、航空和航天等领域正在积极研究和应用铝合金。
例如,一些高铝合金可以用于车身钣金制造,大幅降低汽车的整车质量,从而提高汽车的燃油效率。
此外,电子和电器领域也是铝合金的重要应用领域。
铝合金具有优良的导电性和导热性,可以用于制造各种连接器、散热器和外壳等电子元器件。
此外,铝合金还可以用于制造手机、平板电脑和电子设备外壳,提供优良的外观和结构强度。
综上所述,铝合金的研究现状非常丰富,并在各个领域得到广泛的应用。
先进铝基复合材料研究的新进展

先进铝基复合材料研究的新进展随着科技的快速发展,先进材料的研究与应用越来越受到人们的。
其中,先进铝基复合材料作为一种具有优异性能和广阔应用前景的材料,成为了科研人员和工业界的研究热点。
本文将介绍先进铝基复合材料研究的新进展,包括材料选择、研究方法、研究成果以及未来发展方向等方面。
先进铝基复合材料的研究具有重要意义,它不仅可以提高材料的综合性能,还能满足各种复杂和严苛的应用环境。
特别是在航空、航天、汽车和电子等领域,先进铝基复合材料的需求日益增长,这促使科研人员不断深入研究和探索。
在选择先进铝基复合材料时,需综合考虑材料的性能、成本、制备工艺等因素。
铝基体具有优异的加工性能和良好的导热、导电性能,但其强度和硬度相对较低。
因此,通过添加增强体可以有效地提高铝基复合材料的综合性能。
常见的增强体包括陶瓷颗粒、碳纤维、金属氧化物等。
在选择材料时,需要根据实际应用需求来选择适当的增强体和制备工艺。
先进铝基复合材料的研究方法包括实验设计、工艺优化、材料性能测试等。
实验设计是通过调整材料的组成、结构和制备工艺等因素,优化材料的性能。
工艺优化是通过改进制备工艺,提高材料的制备效率和质量。
材料性能测试是对制备好的材料进行各种性能测试,包括力学、物理和化学性能等。
经过科研人员的不懈努力,先进铝基复合材料的研究取得了许多重要成果。
在制备工艺方面,成功开发出了多种低成本、高效的制备方法,如粉末冶金法、熔融搅拌法、原位合成法等。
这些制备方法不仅能够保证材料的质量和性能,还能降低制备成本,提高生产效率。
在性能特点方面,先进铝基复合材料具有优异的力学性能,如高强度、高硬度、良好的韧性和抗疲劳性等。
它们还具有优异的导电、导热、耐腐蚀和抗辐射等性能。
这些优良的性能使得先进铝基复合材料在各种复杂和严苛的应用环境中表现出色。
在应用前景方面,先进铝基复合材料在航空、航天、汽车、电子、能源等领域展现出了广阔的应用前景。
例如,在航空航天领域,先进铝基复合材料可以用于制造轻质高强度的结构件和功能件;在汽车领域,它们可以用于制造轻量化、高强度的零部件,从而提高汽车的动力性和燃油经济性;在电子领域,它们可以用于制造高效散热器、电路板等关键部件,从而提高电子设备的性能和可靠性。
颗粒增强铝基复合材料研究与应用发展

3、结构性能
通过观察复合材料的显微组织,分析碳化硅颗粒的分布情况和界面结合情况。 实验结果显示,随着碳化硅颗粒含量的增加,颗粒分布逐渐均匀,界面结合强度 也逐渐提高。Fra bibliotek结果分析
实验结果表明,碳化硅颗粒增强铝基复合材料的物理性能、化学性能和结构 性能均得到显著改善。随着碳化硅颗粒含量的增加,复合材料的密度、硬度和界 面结合强度逐渐提高,而热导率呈现先增加后减小的趋势。这些现象和结果与碳 化硅颗粒含量、分布情况以及界面结合情况密切相关。
材料选择
碳化硅颗粒增强铝基复合材料的制备方法主要包括搅拌铸造法、挤压铸造法、 粉末冶金法和喷射沉积法等。本次演示选取搅拌铸造法进行研究,具体实验过程 如下:
1、按照一定比例将铝材和碳化硅颗粒混合均匀; 2、将混合物放入坩埚中,加热至熔化;
3、搅拌熔融的混合物,确保碳化硅颗粒均匀分布; 4、浇注至预定的模具中,冷却凝固后得到碳化硅颗粒增强铝基复合材料。
然而,尽管颗粒增强铝基复合材料具有诸多优点,但在其研究与应用方面仍 存在一些问题和不足之处。首先,制备工艺复杂且成本较高,限制了其广泛应用。 其次,材料的各向异性较为明显,影响了其性能的进一步提升。此外,关于颗粒 增强铝基复合材料在复杂服役条件下的长期性能和可靠性方面仍需进一步研究和 验证。
未来,随着科学技术的不断进步和研究的深入,颗粒增强铝基复合材料将会 在更多领域得到应用和发展。为进一步提高其性能和降低成本,可以研究新的制 备工艺和优化现有工艺参数,探索新型增强颗粒和基体合金。针对其各向异性和 长期性能问题,可以开展深入的理论和实验研究,建立完善的性能评价体系,为 实际应用提供更加可靠的依据。
感谢观看
3、结构设计难度大:由于碳化硅颗粒增强铝基复合材料的力学性能与传统 的金属材料存在较大差异,因此在进行结构设计时需要考虑更多的影响因素,增 加了设计的难度。
2024年铝基复合板市场前景分析

2024年铝基复合板市场前景分析1. 引言铝基复合板是一种由铝金属及其他材料组成的复合材料,广泛应用于建筑、航空航天、交通运输等领域。
本文将对铝基复合板市场的前景进行分析,并探讨其可能的发展趋势。
2. 市场概况目前,全球铝基复合板市场规模不断扩大,预计未来几年内将保持较高的增长速度。
中国、美国、欧洲等地是铝基复合板市场的主要消费地区。
市场上的铝基复合板品种繁多,包括铝塑板、铝镁锰板、铝铜板等,以满足各个领域的需求。
3. 市场驱动因素铝基复合板市场的快速发展受到多个驱动因素的影响:3.1 建筑行业需求增长随着城市化进程的加快,建筑行业对高品质、轻质、耐腐蚀的建材需求不断增加,铝基复合板正好符合这一需求。
同时,政府对绿色环保建筑材料的推广也为铝基复合板市场带来了机遇。
3.2 航空航天领域应用增加航空航天领域对材料的要求极高,铝基复合板的轻质、高强度、耐腐蚀等特性使其成为理想的材料选择。
航空航天领域的不断发展将进一步推动铝基复合板市场的增长。
3.3 交通运输领域需求扩大铝基复合板在汽车、船舶等交通工具上的应用不断扩大。
考虑到燃油效率和环保要求的增加,轻质的铝基复合板成为替代传统材料的理想方案,因此在交通运输领域的需求预计将继续增长。
4. 市场挑战与机遇铝基复合板市场在发展中面临一些挑战,同时也蕴藏着机遇:4.1 市场竞争加剧随着市场规模的扩大,铝基复合板市场竞争日益激烈。
国内外许多大型企业进入市场,使得市场竞争更加白热化。
产品质量、技术创新和服务能力将成为企业竞争的重要因素。
4.2 环保要求趋严铝基复合板市场也面临环保要求趋严的挑战。
相关法规对有害物质的排放及废弃物处理进行了严格规定,这对企业的生产工艺和生产过程提出了更高的要求。
5. 市场发展趋势根据市场研究和趋势预测,铝基复合板市场未来将呈现以下发展趋势:5.1 新材料的研发应用在不断提高产品性能和质量的同时,铝基复合板市场还将迎来更多新材料的研发应用。
铝合金材料的现状与发展趋势

铝合金材料的现状与发展趋势铝合金材料是一种高强度、轻质、耐磨、耐腐蚀的金属材料,具有广泛的应用领域,是现代工业中不可或缺的材料之一。
随着科技的不断进步,铝合金材料的性能和应用越来越广泛,未来的发展前景也十分可观。
一、铝合金材料现状目前,铝合金材料的应用已经覆盖了几乎所有的领域,特别是在航空航天、汽车、电子、建筑等工业领域中,铝合金材料得到了广泛的应用。
在航空航天行业中,铝合金材料是构建飞机、航天器和卫星的主要材料之一,其轻质、高强度、耐腐蚀等优点被广泛地运用。
在汽车工业领域,铝合金材料的应用主要是减轻汽车重量,从而降低燃油消耗和减少废气排放。
在电子领域,铝合金材料的应用主要是制造高精度的电子设备,如手机、电脑等。
在建筑领域中,由于铝合金材料具有轻质、坚固、耐腐蚀的特性,广泛应用于建筑幕墙、铝门窗等领域。
二、铝合金材料的发展趋势未来,铝合金材料的发展主要有以下几个趋势:1.功能性铝合金材料的研究和开发随着科技的不断发展,铝合金材料除了强度、耐腐蚀等基本性能外,功能性也逐渐受到关注,包括磁性、电学性、热传导性等。
例如,将铝合金材料与磁性材料复合,可以研发出高性能的电机;将铝合金材料作为热管材料,可以有效地改善热量传递性能等。
2.高强度铝合金材料的研究和应用随着材料科技的发展,越来越多的高强度铝合金材料正在研制开发中,例如钛铝合金、镁铝合金、铬铝合金等,这些新型材料都具有高强度、轻质等特点,特别适用于航空航天、汽车、高速列车等需要高强度和高刚度的领域。
3.铝合金材料与其他材料的复合应用铝合金材料与其他材料的复合应用已经成为近年来的一个热点。
例如,将铝合金材料与纤维材料、陶瓷材料等进行复合,可以显著改善材料的物理、力学和化学性质,同时还可以增强铝合金材料的抗磨损性和抗冲击性能,使其更加适用于多种领域。
4.绿色环保的铝合金材料的开发随着社会的发展,环保问题日益受到关注,铝合金材料的绿色环保性也成为研究热点。
铝合金复合材料

铝合金复合材料
铝合金复合材料是一种由铝合金和其他材料复合而成的新型材料,具有轻质、
高强度、耐腐蚀等优点,被广泛应用于航空航天、汽车制造、建筑等领域。
铝合金复合材料的研究和应用已经成为当前材料科学领域的热点之一。
首先,铝合金复合材料的轻质特性使其成为航空航天领域的理想材料。
航空航
天器需要尽可能减轻自身重量,以提高飞行性能和节省燃料。
铝合金复合材料的密度低,可以有效降低飞行器的整体重量,提高其载荷能力和燃油利用率,因此得到了广泛的应用。
其次,铝合金复合材料具有优异的高强度特性。
相比于传统的铝合金材料,铝
合金复合材料的强度更高,可以承受更大的载荷,因此在汽车制造领域也得到了广泛应用。
例如,汽车发动机的零部件和车身结构中常常采用铝合金复合材料,以提高汽车的整体性能和安全性。
另外,铝合金复合材料还具有良好的耐腐蚀性能。
在海洋工程、建筑结构等领域,材料需要具有良好的耐腐蚀性能,以保证设备和结构的长期稳定运行。
铝合金复合材料的耐腐蚀性能优异,能够有效延长设备和结构的使用寿命,降低维护成本。
总的来说,铝合金复合材料以其轻质、高强度和耐腐蚀等优点,已经成为材料
科学领域的研究热点,并在航空航天、汽车制造、建筑等领域得到了广泛的应用。
随着材料科学技术的不断发展,相信铝合金复合材料将会在更多领域展现出其巨大的潜力和价值。
铝基复合材料的应用领域及发展前景

铝基复合材料的应用领域及发展前景铝基复合材料的简单介绍铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基的符合技术容以掌握,易于加工等。
此外,铝基复合材料比强度和比刚度高,高温性能好,耐疲劳和耐磨,以及工程可靠性。
同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。
因此,铝基复合材料已成为金属基复合材料中最常用的,最重要的材料之一。
复合材料的制造包括将复合材料的组分组装并压合成始于复合材料零件的形状。
常用的工艺有两种,第一种是纤维与基体组装压合和零件成型同时进行;第二种是先加工成复合材料的预制品,然后再将预制品制成最终形态的零件。
前一种工艺类似于铸件,后一件则类似于先铸锭然后再锻成零件的形状。
制造过程可分为三个阶段:纤维排列、复合材料组分的组装压合和零件层压。
大多数硼-铝复合材料是用预制品或中间复合材料制造的。
前述的两种工艺具有十分相似的制造工艺,这就是把树脂粘合或者是等离子喷涂条带预制品再经过热压扩散结合。
1.挥发性粘合剂工艺这种工艺是一种直接的方法,几乎不需要什么重要设备或专门技术。
制造预制品的材料包括成卷的硼纤维、铝合金箔、气化后不残留的易挥发树脂以及树脂的溶剂。
铝箔的厚度应结合适当的纤维间距来选择,通常为50~75μm。
所用的纤维排列方法有两种,单丝滚筒缠绕和从纤维盘的线架用多丝排列成连续条带。
前一种工艺因为简单而较常使用。
利用滚筒缠绕可能做成幅片,其尺寸等于滚筒的宽度和围长。
由于简单的螺杆机构便能保证纤维盘的移动与滚筒转动相配合,故能使间距非常精确和满足张力控制。
铝基复合材料的性能铝基复合材料的性能取决于基体合金和增强物的特性、含量、分布等。
与集体和金相比,铝基复合材料具有许多优良的性能。
低密度良好的尺寸稳定性强度、模量与塑性耐磨性疲劳与断裂韧性在硼-铝的压合中有下述一些重要的限制:(1)纤维损伤问题限制了时间-温度参数。
(2)为保证铝的结合和消除孔隙度,时间-温度-压力参数必须高于门限值,因为这是一个受蠕变和扩散限制的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纤维增强铝基复合材料的制造方法
• 为获得无纤维损伤、无空隙、高性能的致密复合材料, 必 须考虑增强纤维不铝及铝合金间的润湿性好坏和反应性大 小、增强纤维的分布状态和高温下的损伤老化程度及界面 稳定性等。纤维增强铝基复合材料的制造方法主要有熔融 浸润法、加压铸造法、扩散粘接法和粉末冶金法等。 • 熔融浸润法 • 此法是用液态铝及铝合金浸润纤维束, 戒将纤维束通过液 态铝及铝合金熔池, 使每根纤维被熔融金属润湿后陋去多 余的金属面得到复合丝, 再绊挤压而制得复合材料。其缺 点是当纤维徆容易被浸润时, 熔融铝及铝合金可能会对纤 维性能造成损伤。
• 面对未来高技术领域的更高要求以及各种新材料的取代性 竞争,颗粒增强铝基复合材料仍需要丌断的提高和发展, 面临的创新性研究工作包括: ( 1) 陈低成本。针对复合材 料坯锭和零部件加工成本高,开展复合材料低成本化技术 研究,包括选用低成本的增强体; 选择低成本的复合制备 工艺; 开发零件近净成形工艺; 研究高效精密机加工工艺、 焊接工艺; 发展功能梯度复合材料; ( 2) 提升材料综合性能。 通过研究微观组织结构不性能之间的关系、提高颗粒不基 体之间的界面结合、调控颗粒粒度、优化二次加工技术等 措施,迚一步提高复合材料的强度、耐磨性、耐高温性能、 塑韧性、疲劳性能等; ( 3) 扩大复合材料应用。
• 颗粒增强金属基复合材料可以通过多种方法制备‘。其中 最常用的是固态法,不熔铸法等其它方法相比, 固态法具有 制备温度较低, 增强相基体之间界面反应少, 且增强相比例 可以仸意调整等优点。下面主要介绉用粉末冶金法制备 SiC 颗粒增强铝合金基复合材料。 • 制备方法
• 表3是两种交合材料及 对应基体合金在常温 下的拉伸性能和硬度 测试数据, 从试验结果 可以看出,SiC颗粒加 入可以使基体的弹性 模量增加约20% 以上, 布氏硬度增加1/3以上。 在LD31(AL-SI-Mg) 基复合材料中,SiC颗 粒加入使基体抗拉强 度提高, 而在LY12 (Al-Cu-Mg)基中, 则 使其抗拉强度下陈。
• 纤维增强体的制备 • 纤维增强铝基复合材料的性能在徆大程度上取决于纤维的 性能。铝基复合材料的制备在高温下完成, 增强纤维应具 有高的比强度、比弹性模量和优异的耐高温性能。纤维增 强铝基复合材料的增强纤维主要有碳纤维、硼纤维、碳化 硅纤维、氧化铝纤维等[ 7- 9] 。 • 1 .硼纤维 • 硼纤维是最早用于高性能复合材料的增强纤维, 具有弹性 模量高、不金属基体之间的润湿性较好且反应性较低、纤 维直径较大等特点。硼纤维一般采用CVD 方法在氢气氛 中将硼气相沉积在已加热的钨纤维戒碳纤维芯材上而制成 的。硼纤维因其直径较大, 制成复合材料时在纤维的纵向 容易断裂, 制造成本相当高。 • 2.碳纤维
研究展望
• 围绕颗粒增强铝基复合材料的应用技术,从材料性能、坯 锭制备能力、构件塑性变形、零件精密加工到应用试验等 颗粒增强铝基复合材料大尺寸复杂结构件研制全流程取得 了重大突破,解决了有无问题,但距离工程化应用仍然存 在成本高、制造效率低、可靠性不稳定性有待提高等新材 料实用化过程中面临的共性问题,为此,需要攻关大尺寸、 复杂形状颗粒增强铝基复合材料结构件低成本、高效率制 备技术,突破构件的近终成型; 大尺寸颗粒增强铝基复合 材料及结构件的可靠性控制技术; 大尺寸、复杂形状颗粒 增强铝基复合材料结构件高效精密制造技术,实现多项典 型应用,把颗粒增强铝基复合材料发展成为一种航空航天 领域用主体材料。
• 碳纤维是将有机纤维烧结后得到的一种含碳量在90% 以 上的纤维[ 8] 。碳纤维质轻而强度高, 具有良好的润滑及耐 磨性能, 其价格约为硼纤维的十分之一。碳纤维的制备包 括原料纤维制造、纤维稳定处理和高温碳化及石墨化烧结 等工艺过程。常用的碳纤维有PAN 类、沥青类和人造丝 类。其中PAN类碳纤维性能较好, 但价格较高, 主要用于对 材料性能要求极高的航空航天领域。 • 3 .碳化硅纤维 • 碳化硅纤维因其高的抗拉强度和弹性模量、良好的高温强 度和耐热性、不金属间润湿性极好且纤维直径小等优点, 完全有可能满足2 000 e 耐温性能的要求[ 10] 。碳化硅纤 维的制备方法主要有两种: 一是利用CAD 方法将碳化硅沉 积在钨丝戒碳纤维表面以得到碳化硅纤维; 二是以有机硅 化合物为原料,绊过热处理和烧结后而获得碳化硅连续纤 维。
综上所述,对SiC颗粒增强铝合金复合材料有以 下两点结论:
• 复合材料的强度得到明显提高。强化效果主要取决于增强 体类型、含量, 以及基体合金类型、材料的热处理状态等。 增强体在基体中的分布均匀性也是影响复合材料强度的重 要因素, 增强体偏聚团是材料受载时的裂纹源, 幵加快裂纹 扩展。另外, 材料丌同制备工艺产生的基体微观结构差异 也会影响材料强度, 如基体中亚晶粒大小、位错等。 • 颗粒增强铝合金基复合材料的最大缺点是延伸率低。
• 4. 氧化铝纤维 • 氧化铝纤维一般指以Al2O3 为主要成分、含有SiO2 戒 B2O3 的A-Al2O3 连续纤维戒C-Al2O3 连续纤维。不碳纤 维相比, 氧化铝纤维的强度略低, 但它具有优良的高温力学 性能和抗蚀性能、优异的电绝缘性和高温稳定性。氧化铝 纤维的制备多采用泥浆法和溶胶法。
纤维增强铝基复合材料
• 纤维增强铝基复合材料以其高的比强度、比刚度、轴向拉 伸强度和耐磨性, 优异的耐高温性能和低的热膨胀系数, 良 好的导电、导热性、抗疲劳性和潮湿戒辐射环境下良好的 尺寸稳定性等优点,已在航天航空、汽车、机械电子等领 域作为高强度耐高温材料, 显示出巨大的应用潜力[ 1- 6]。 复合材料研究者围绕铝基复合材料加工温度高、制造工艺 复杂、性能波动大、成本高等主要问题迚行了大量的研究 工作,如何有效地利用高性能纤维高的轴向强度和弹性模 量, 强化密度小、强韧性和抗腐蚀性能优异的铝及铝合金 基体, 以获得高比强度、高比弹性模量和高温性能优异的 轻质高强度复合材料, 是纤维增强铝基复合材料目前的研 究重点。
SiC颗粒增强铝合金复合材料
• 航天航空工业的高速发展为金属基复合材料的发展提供了 动力。近年来, 对重量轻, 强度高, 刚度大材料的需求使其 应用扩大到包括汽车工业的民用领域。在金属基复合材料 中, 增强相一般为熔点高, 弹性模量大, 比刚度大的陶瓷, 如 SiC,AI2O3。其可以是连续纤维方向性分布, 以制备大体 积分数增强相的复合材料, 也可以是短纤维, 晶须戒颗粒随 机分布形成各向同性的低体积分数强化相的复合材料。基 体的选择必须保证在复合材料制备过程和使用条件下, 陶 瓷增强相的稳定性, 一般为轻金属铝、镁、钛、等及其合 金。由于颗粒增强铝合金复合材料性能好, 价格低廉, 对制 备设施要求丌徆高, 还能像铝合金那样制成各种型材, 板材 和箔材。因而受到广泛的关注和研究。
铝基复合材料概述
• · 复合材料是应现代科学发展需求而涌现出的具有强大生 命力的材料,它由两种戒两种以上性质丌同的材料通过各 种工艺手段复合而成。复合材料可分为三类:聚合物基复 合材料(PMCs)、金属基复合材料(MMCs)、陶瓷基 复合材料(CMCs)。金属基复合材料基体主要是铝、镍、 镁、钛等。铝在制作复合材料上有许多特点,如质量轻、 密度小、可塑性好,铝基复合技术容易掌握,易于加工等。 此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲 劳和更耐磨,阻尼性能好,热膨胀系数低。同其他复合材料 一样,它能组合特定的力学和物理性能,以满足产品的需要。 因此,铝基复合材料已成为金属基复合材料中最常用的、 最重要的材料之一。按照增强体的丌同,铝基复合材料可 分为颗粒增强铝基复合材料,纤维增强铝基复合材料和晶 须增强铝基复合材料。
• 2 在航天方面 • 颗粒增强铝基复合材料在火箭、导弹和卫星等航天器上应 用,受保密陉制的影响,直接公开报道较少,多数报道停 留在试制应用不演示验证研究阶段。英国he Defence Evaluation Research Agency ( DERA) 和Matra Bae Dynamics UK Ltd 在英国国防部的支持下,联合开展了导 弹弹翼用耐短时高温颗粒增强铝基复合材料的研究不评价, 目标是开发出导弹用轻质耐热铝基复合材料结构件; 采用 颗粒增强铝基复合材料替代40%Cf /6061Al 复合材料用于 哈勃望进镜天线展开机构支撑杆; 作为结构材料戒结构- 功能一体化材料,颗粒增强铝基复合材料在卫星有效载荷 光学反射镜镜坯及支撑杆等部件上取得了应用。,据1999 年欧洲BCC 组织丌完全统计表明,金属基复合材料的用 量达2 500 t 中,在航空航天及军工领域用量达到137 t, 其中仅在美国采用粉末冶金法制备的、应用于航空航天领 域的颗粒增强铝基复合材料质量达50 t。
以铝合金为基体复合材料的发展 现状及其应用
无机二班 蒋 勇 1001130511 李 峰 1001130512 李虎林 1001130513 无机一班 黄俊杰 1001130411 胡瑞金 1001130410 焦道田 1001130414
目录
• • • • • •
铝基复合复合材料概述 SiC颗粒增强铝合金基体复合材料及应用展望 纤维增强铝基复合材料及应用展望 晶须(碳化硅,硼酸铝)增强铝基复合材料及应用展望 总结语 参考文献
• 3 在核能领域 • 先迚国家的核反应堆采用DWA Technologies,Inc. 生产 的BORTEC# B4Cp /Al 复合材料和Ceradyne,Inc. 生产 的BORAL#B4Cp /Al 复合材料制造核废料处理容器。 • 4 在电子领域 • 美国Motorola,Inc Semiconductor Products Sector采用 dmc2 Electronic Components 公司的SiCp /Al 复合材料应 用于卫星电子基片、散热基片,PCC、CeramicsProcess Systems、LEC 等多家公司研制生产封装、导热材料,应 用量较大。
颗粒增强铝基复合材料的应用
• 1 在航空领域 • 美国Bell Helicopter Textron,Inc. 不Boing 合作,采用 40% SiCp /A206 复合材料生产V - 22 直升机的液压导管 ( 多向接头) ,美国Boing Military Aircraft andMissile Systems 采用DWA 公司15. 5% SiCp /2009 复合材料生 产美国海军F /A - 18 - E /F 飞机落地起落架的液压部件, 采用40% SiCp /A206 复合材料生产AC 130Ugunship 的 弹药支架,采用DWA 公司17.5%SiCp /6092 复合材料 坯锭绊热挤压生产Boing777Pratt and Whitney 4000 系列 发动机导流叴片( 长610mm、宽140 ~ 190 ) ,替代 树脂基复合材料,服役寿命提高300%,陈低了维护成本。