2017上海各区数学一模重难汇编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年上海市初三一模 压轴题

一、(2017徐汇一模)

24.(本题共3小题,每题4分,满分12分)

如图7,已知抛物线32

++-=bx x y 与x 轴交于点A 和点B (点A 在点B 的左

侧),与y 轴交于点C ,且OC OB =,点D 是抛物线的顶点,直线AC 和BD 交于点E .

(1)求点D 的坐标;

(2)联结BC CD 、,求DBC ∠的余切值;

(3)设点M 在线段CA 延长线上,如果EBM ∆和ABC ∆相似,求点M 的坐标.

25.(本题满分14分)

如图8,已知ABC ∆中,3==AC AB ,2=BC ,点D 是边AB 上的动点,过点D 作BC DE //,交边AC 于点E ,点Q 是线段DE 上的点,且DQ QE 2=,联结BQ 并延长,交边AC 于点P .设x BD =,y AP =.

(1)求y 关于x 的函数解析式及定义域; (4分) (2)当PEQ ∆是等腰三角形时,求BD 的长; (4分) (3)联结CQ ,当CQB ∠和CBD ∠互补时,求x 的值. (6分)

图8

Q

P

D

B A

C E B

A

C

备用图

24.在平面直角坐标系xOy 中,对称轴平行于y 轴的抛物线过点A (1,0)、B (3,0)和C

(4,6). (1)求抛物线的表达式;

(2)现将此抛物线先沿x 轴方向向右平移6个单位,再沿y 轴方向平移k 个单位,若所得抛物线与x 轴交于点D 、E (点D 在点E 的左边),且使△ACD ∽△AEC (顶点A 、C 、D 依次对应顶点A 、E 、C ),试求k 的值,并注明方向.

25.如图17,△ABC 边AB 上点D 、E (不与点A 、B 重合),满足∠DCE =∠ABC .已知∠ACB =90°,AC =3,BC =4.

(1)当CD ⊥AB 时,求线段BE 的长;

(2)当△CDE 是等腰三角形时,求线段AD 的长;

(3)设AD =x ,BE =y ,求y 关于x 的函数关系式,并写出定义域.

C

B

A D

E

A

备用图

图17

O

x

y

24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+4与x轴的正半轴相交于点A,与

y轴相交于点B,点C在线段OA上,点D在此抛物线上,CD⊥x轴,且∠DCB=∠DAB,AB与CD相交于点E.

(1)求证:△BDE∽△CAE;

(2)已知OC=2,tan∠DAC=3,求此抛物线的表达式.

25.如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=.

(1)求证:BC2=CD•BE;

(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;

(3)如果△DBC∽△DEB,求CE的长.

24.如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.

(1)求这个二次函数的解析式并写出其图象顶点D的坐标;

(2)求∠CAD的正弦值;

(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.

25.如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=.点E为线段BD上任意

一点(点E与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,

y=.

(1)求BD的长;

(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;

(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.

24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.

(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;

(2)求∠CAB的正切值;

(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.

25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠

DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.

(1)当CM=2时,求线段CD的长;

(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;

(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.

24. 在直角坐标系xOy 中,抛物线2

443y ax ax a =-++(0)a <的顶点为D ,它的对称

轴与x 轴交点为M ; (1)求点D 、点M 的坐标;

(2)如果该抛物线与y 轴的交点为A ,点P 在抛物线上,且AM ∥DP ,2AM DP =,

求a 的值;

25. 在Rt △ABC 中,90ACB ︒

∠=,2AC BC ==,点P 为边BC 上的一动点(不与点B 、C 重合),点P 关于直线AC 、AB 的对称点分别为M 、N ,联结MN 交边AB 于点F ,交边AC 于点E ;

(1)如图,当点P 为边BC 的中点时,求M ∠的正切值;

(2)联结FP ,设CP x =,MPF S y ∆=,求y 关于x 的函数关系式,并写出定义域; (3)联结AM ,当点P 在边BC 上运动时,△AEF 与△ABM 是否一定相似?若是,请

证明;若不是,试求出当△AEF 与△ABM 相似时CP 的长;

相关文档
最新文档