数据结构之顺序表元素查找

合集下载

数据结构顺序表的查找插入与删除

数据结构顺序表的查找插入与删除
void InsertList(SeqList *L,DataType x,int i);
void DeleteList(SeqList *L,int i);
CreateList(&L,n);/*建立顺序表*/
PrintList(L,n);/*打印顺序表*/
prinnf("%d",&x);
scanf("%d",&i);
DeleteList(&L,i);/*顺序表删除*/
PrintList(L,n);/*打印顺序表*/
}
/*顺序表的建立:*/
void CreateList(SeqList *L,int n)
{
int i;
for(i=0;i<n;i++)
scanf ("%d",&L->data[i]);
{
int i=0;
while (i<L.length && L.data [i]!=x)
++i;
if (i<L.length)
return i+ 1;
else return 0;
}
/*顺序表的插入:*/
void InsertList(SeqList *L,DataType x,int i)
{
int j;
4.从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。
二、源程序及注释:
#include <stdio.h>
#include <stdlib.h>
/*顺序表的定义:*/
#include<iostream.h>

数据结构——查找,顺序查找,折半查找

数据结构——查找,顺序查找,折半查找

实验五查找的应用一、实验目的:1、掌握各种查找方法及适用场合,并能在解决实际问题时灵活应用。

2、增强上机编程调试能力。

二、问题描述1.分别利用顺序查找和折半查找方法完成查找。

有序表(3,4,5,7,24,30,42,54,63,72,87,95)输入示例:请输入查找元素:52输出示例:顺序查找:第一次比较元素95第二次比较元素87 ……..查找成功,i=**/查找失败折半查找:第一次比较元素30第二次比较元素63 …..2.利用序列(12,7,17,11,16,2,13,9,21,4)建立二叉排序树,并完成指定元素的查询。

输入输出示例同题1的要求。

三、数据结构设计(选用的数据逻辑结构和存储结构实现形式说明)(1)逻辑结构设计顺序查找和折半查找采用线性表的结构,二叉排序树的查找则是建立一棵二叉树,采用的非线性逻辑结构。

(2)存储结构设计采用顺序存储的结构,开辟一块空间用于存放元素。

(3)存储结构形式说明分别建立查找关键字,顺序表数据和二叉树数据的结构体进行存储数据四、算法设计(1)算法列表(说明各个函数的名称,作用,完成什么操作)序号 名称 函数表示符 操作说明1 顺序查找 Search_Seq 在顺序表中顺序查找关键字的数据元素2 折半查找 Search_Bin 在顺序表中折半查找关键字的数据元素3 初始化 Init 对顺序表进行初始化,并输入元素4 树初始化 CreateBST 创建一棵二叉排序树5 插入 InsertBST 将输入元素插入到二叉排序树中6 查找 SearchBST在根指针所指二叉排序树中递归查找关键字数据元素 (2)各函数间调用关系(画出函数之间调用关系)typedef struct { ElemType *R; int length;}SSTable;typedef struct BSTNode{Elem data; //结点数据域 BSTNode *lchild,*rchild; //左右孩子指针}BSTNode,*BSTree; typedef struct Elem{ int key; }Elem;typedef struct {int key;//关键字域}ElemType;(3)算法描述int Search_Seq(SSTable ST, int key){//在顺序表ST中顺序查找其关键字等于key的数据元素。

数据结构_查找原理及典型的查找算法

数据结构_查找原理及典型的查找算法
无法实现!因全部元素的定位只能从头指针head开 始,是一种非随机存取结构。
3.对非线性(树)结构如何进行折半查找? 可借助二叉排序树来查找(属动态查找表形式)。
9.1.2 有序表的查找
折半查找过程可以描述为一棵二叉树
折半查找的判定树 如:(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11)
总之:
二叉排序树既有类似于折半查找的特性,又采用了链 表存储,它是动态查找表的一种适宜表示。
一、二叉排序树
(3)构造过程: 例:输入序列{45,12,37,3,53,100,24}
45
12
53
3
37
100
24
一、二叉排序树
(2)非递归查找过程 BiTree SearchBST(BiTree T,KeyType key){
CH9 查找
查找的基本概念 9.1 静态查找表
9.1.1 顺序查找 9.1.2 有序表的查找 9.1.3 索引顺序表的查找
9.2 动态查找表
9.2.1 二叉排序树和平衡二叉树 9.2.2 B-和B+树
9.3 哈希表
查找的基本概念
1.查找表 2.查找
关键字 主关键字 次关键字
}
9.2.1 二叉排序树和平衡二叉树
一、二叉排序树 二、平衡二叉树
一、二叉排序树
1.定义、特点、构造过程
(1)定义 二叉排序树或者是一棵空树,或是具有下列性质的二叉树:
若左子树非空,则左子树上所有结点的值均小于它的 根结点的值。
若右子树非空,则右子树上所有结点的值均大于它的 根结点的值。
有序/无序表 有序表
顺序/链式存 储
顺序存储
分块查找 介于二者之间 表中元素逐段有序 顺序/链式存储

大学数据结构课件--第9章 查找

大学数据结构课件--第9章 查找
——这种既查找又插入的过程称为动态查找。
二叉排序树既有类似于折半查找的特性,又采用了链表存储,它是动态 查找表的一种适宜表示。
注:若数据元素的输入顺序不同,则得到的二叉排序树形态 也不同!
17
二、二叉树的插入和删除操作
1、二叉排序树的插入和查找操作
例:输入待查找的关键字序列=(45,24,53,12,90)
折半查找举例:
已知如下11个元素的有序表:
(05 13 19 21 37 56 64 75 80 88 92), 请查找关键字为21和85的数据元素。
Low指向待查元 素所在区间的下 界
mid指向待查元素所在 high指向待查元素所
区间的中间位置
在区间的上界
8
9.1.2 折半查找(又称二分查找或对分查找)
balance。这样,可以得到AVL树的其它性质:
❖ 任一结点的平衡因子只能取:-1、0 或 1;如果树中任 意一个结点的平衡因子的绝对值大于1,则这棵二叉树 就失去平衡,不再是AVL树;
24
三、平衡二叉树
例:判断下列二叉树是否AVL树?
-1
1
-1
0
0
1
0
(a) 平衡树
2
-1
0
0
1
0
(b) 不是平衡树
(1)p为叶子结点,只需修改p双亲f的指针f->lchild=NULL或 f->rchild=NULL
(2)P只有左子树或右子树 ❖ P只有左子树,用P的左孩子代替P ❖ P只有右子树,用P的右孩子代替P
(3)P左、右子树均非空 (P左子树的根C的右子树分支找到S,S的右子树为空) ❖ P的左子树成为双亲f的左子树,P的右子树成为S的右子树 ❖ S的左子树成为S的双亲Q的右子树,用S取代p; 若C无右子树,用C取代p

数据结构:顺序表单元测试与答案

数据结构:顺序表单元测试与答案

一、单选题1、对有14个元素的有序表A[14]作二分查找,查找元素A[3]时,将会与元素依次比较。

A.A[0],A[1],A[2],A[3]B.A[6],A[2],A[4],A[3]C.A[6],A[4],A[2],A[3]D. A[0],A[13],A[6],A[3]正确答案:B2、如果线性表最常用的操作是取第i个结点及其前驱,则采用_____存储方式最节省时间。

A.顺序表B.单向链表C.单向循环链表D.双向链表正确答案:A3、对于顺序存储的长度为n的线性表,在第i个位置插入一个元素需要移动____个元素。

其中,0≤i<n。

A.n-i+1B.n-iC.iD.n-i-1正确答案:B4、对线性表进行二分查找时,要求线性表必须采用 _____。

A.链式存储,且结点有序排序B.顺序存储,且结点有序排序C.链式存储D.顺序存储正确答案:B5、有一个长度为12的有序表,按二分找法对该表进行查找,在表内各元素等概率情况下查找成功所需的平均比较次数为_____。

A.37/12B.35/12C.39/12D.43/12正确答案:A6、有序数组a[18]进行二分查找时,查找到a[5]的查找路径(下标序列)为_____。

A.8,4,5B.1,3,5C.8,2,5D.8,3,5正确答案:D7、用二分法对数组a[13]进行查找,若待查元素为x,且a[7]<x<a[8],那么查找路径为____________A.6,9,7B.7,9,8C.6,9,7,8D.6,9,8正确答案:C8、对于顺序存储的长度为n的线性表,删除第i个元素需要移动____个元素。

其中,0≤i<n。

A.iB.n-i-1C.n-i+1D.n-i正确答案:B9、用二分法对数组a[13]进行查找,在等概率的情况下,查找不成功的平均查找长度为________。

A.49/13B.49/14C.27/7D.54/13正确答案:C10、对a[12]进行二分查找,查找下标为_____的元素时,查找长度最大。

数据结构(八)查找

数据结构(八)查找
122
99
250
110
300
280
类C程序实现: void InsertBST(*&t,key) //在二叉排序树中插入查找关键字key { if(t= = NULL){ t=new BiTree; t->lchild=t->rchild=NULL; t->data=key; return; } if(key<t->data ) InsertBST(t->lchild,key); else InsertBST (t->rchild, key ); } void CreateBiTree(tree,d[ ],n) //n个数据在数组d中,tree为二叉排序树根 { tree=NULL; for(i=0;i<n;i++) InsertBST(tree,d[i]); }
p q
void delete(*&p) { if(p->rchild = = NULL) { q=p; p=p->lchild; delete q; } else if(p->lchild= =NULL) { q=p; p=p->rchild; delete q; } else { q=p; s=p->lchild; while(s->rchild!=NULL) {q=s; s=s->rchild;} p->data=s->data; if(q!=p) q->rchild=s->lchild; else q->lchild=s->lchild; } delete s; }
在xL中选值最大的代替x,该数据按二叉排序树的性质应在 最右边。
f x f s c

数据结构实验一顺序表

数据结构实验一顺序表

数据结构实验一1、实验目的∙掌握线性表的逻辑特征∙掌握线性表顺序存储结构的特点,熟练掌握顺序表的基本运算2、实验内容:建立顺序表,完成顺序表的基本操作:初始化、插入、删除、逆转、输出、销毁, 置空表、求表长、查找元素、判线性表是否为空;1.问题描述:利用顺序表,设计一组输入数据(假定为一组整数),能够对顺序表进行如下操作:∙创建一个新的顺序表,实现动态空间分配的初始化;∙根据顺序表结点的位置插入一个新结点(位置插入),也可以根据给定的值进行插入(值插入),形成有序顺序表;∙根据顺序表结点的位置删除一个结点(位置删除),也可以根据给定的值删除对应的第一个结点,或者删除指定值的所有结点(值删除);∙利用最少的空间实现顺序表元素的逆转;∙实现顺序表的各个元素的输出;∙彻底销毁顺序线性表,回收所分配的空间;∙对顺序线性表的所有元素删除,置为空表;∙返回其数据元素个数;∙按序号查找,根据顺序表的特点,可以随机存取,直接可以定位于第i 个结点,查找该元素的值,对查找结果进行返回;∙按值查找,根据给定数据元素的值,只能顺序比较,查找该元素的位置,对查找结果进行返回;∙判断顺序表中是否有元素存在,对判断结果进行返回;.编写主程序,实现对各不同的算法调用。

2.实现要求:∙“初始化算法”的操作结果:构造一个空的顺序线性表。

对顺序表的空间进行动态管理,实现动态分配、回收和增加存储空间;∙“位置插入算法”的初始条件:顺序线性表L 已存在,给定的元素位置为i,且1≤i≤ListLength(L)+1 ;操作结果:在L 中第i 个位置之前插入新的数据元素e,L 的长度加1;∙“位置删除算法”的初始条件:顺序线性表L 已存在,1≤i≤ListLength(L) ;操作结果:删除L 的第i 个数据元素,并用e 返回其值,L 的长度减1 ;∙“逆转算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行交换,为了使用最少的额外空间,对顺序表的元素进行交换;∙“输出算法”的初始条件:顺序线性表L 已存在;操作结果:依次对L 的每个数据元素进行输出;∙“销毁算法”初始条件:顺序线性表L 已存在;操作结果:销毁顺序线性表L;∙“置空表算法”初始条件:顺序线性表L 已存在;操作结果:将L 重置为空表;∙“求表长算法”初始条件:顺序线性表L 已存在;操作结果:返回L 中数据元素个数;∙“按序号查找算法”初始条件:顺序线性表L 已存在,元素位置为i,且1≤i≤ListLength(L)操作结果:返回L 中第i 个数据元素的值∙“按值查找算法”初始条件:顺序线性表L 已存在,元素值为e;操作结果:返回L 中数据元素值为e 的元素位置;∙“判表空算法”初始条件:顺序线性表L 已存在;操作结果:若L 为空表,则返回TRUE,否则返回FALSE;分析: 修改输入数据,预期输出并验证输出的结果,加深对有关算法的理解。

数据结构顺序查找与折半查找

数据结构顺序查找与折半查找

数据结构顺序查找与折半查找1,顺序查找顺序查找⼜称线性查找,它对顺序表和链表都适⽤。

(1)以下给出相关函数1 typedef struct{2 ElemType *elem; //元素存储空间地址,建表时按实际长度分配,0号单元留空3int TableLen; //表的长度4 }SSTable;5int Search_Seq(SSTable ST,ElemType key)6 {7 ST.elem[0]=key; //把要查找的关键字放在0号位置,称“哨兵”8for(int i=ST.TableLen;ST.elem!=key;i--) //从后往前找9 {10return i; //若表中不存在关键字为key的元素,将查找i=0时退出循环11 }12 }在上述算法中,将ST.elem[0]称为“哨兵”。

引⼊它的⽬的是使得Search_Seq内的循环不必判断数组是否会越界。

因为满⾜i=0时,循环⼀定会跳出。

除此之外,引⼊“哨兵”可以避免很多不必要的判断语句,从⽽提⾼算法的执⾏效率。

(2)算法效率分析当每个元素查找概率相同时,平均查找长度ASL=(n+1)/2, 查找不成功时,需要⽐较整个顺序表,所以⽐较次数时(n+1)次,从⽽顺序查找不成功的平均查找长度为(n+1)。

2.有序表的顺序查找(假设从⼩到⼤排列)有序表的顺序查找成功的平均查找长度与⼀般的线性表⼀样,即(n+1)/2.当查找失败时,待查找的元素为key,当查找第i个元素时,发现第i个元素的对应的关键字⼩于key,但第i+1个元素对应的关键字⼤于key,这时就可以返回查找失败的信息。

查找失败的平均查找长度为ASL=n/2+n/(n+1).3.折半查找前提:折半查找仅适⽤于有序的顺序表。

折半查找原理:将给定的key与中间元素⽐较,直到查到要找的元素。

以下是相关函数1int Binary_Search(SeqList L,ElemType key){2int low=0,high=L.TableLen-1,mid;//low指向表头,high指向表尾,mid中间值3while(low<=high)4 {5 mid=(low+high)/2;6if(L.elem[mid]==key) //中间值等于要查找元素7return mid;8else if(L.elem[mid]<key) //要查找元素在中间值右边9 low=mid+1;10else11 hign=mid-1; //要查找元素在中间值左边12 }13 }查找成功的时间复杂度为log2n,平均情况下⽐顺序查找效率⾼⼀些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构--顺序表查找#include<stdio.h>
#include<stdlib.h>
#define MAXSIZE 100
int data[MAXSIZE];
int len;
typedef struct
{
int data[MAXSIZE];
int len;
} SeqList;
SeqList *Init_SeqList( )
{
SeqList *L;
L=(SeqList*)malloc(sizeof(SeqList));
L->len= -1;
return L;
}
//顺序查找
int SearchSeq(SeqList *S,int t)
{
int i;
for(i=0;i<S->len;i++)
if(t==S->data[i])
{
return i;
break;
}
if(i==S->len)
return -1;
}
//对顺序表进行排序
SeqList *Sort(SeqList *S)
{
int temp,i,j;
for (i=0;i<s->len;i++)
{
for (j=i+1;j<s->len;j++)
if(S->data[j]>S->data[j+1])
{
temp=S->data[j];S->data[j]=S->data[j+1];S->data[j+1]=temp;
}
}
for(int k=0;k<S->len;k++)
{
printf("%d ",S->data[k]);
}
return S;
}
//折半查找
int SearchBin(SeqList *S ,int t)
{
int mid,low=0,high=S->len-1;
while(low<=high)
{
mid=(low+high)/2;
if(t==S->data[mid])
return mid;
else if(t>S->data[mid]) low=mid+1;
else high=mid-1;
}
return -1;
}
int main()
{
SeqList *L=Init_SeqList();
int t1,t2,len,e;
printf("请输入顺序表的长度");
scanf("%d",&L->len);
printf("请输入顺序表中各元素:\n");
getchar();
for(int k=0;k<L->len;k++)
{
scanf("%d",&e);
L->data[k]=e;
}
printf("请输入要查找的数:\n");
scanf("%d",&t1);
int m=SearchSeq(L,t1);
if(m>-1)
printf("该查找的数顺序查找后在顺序表中的位置为%d:\n",m+1); else printf("该数没有找到\n");
printf("排序之后的顺序表");
SeqList*S=Sort(L);
printf("请输入要查找的数:\n");
scanf("%d",&t2);
int s=SearchBin(S ,t2);
if(s>-1)
printf("该查找的数折半查找后在顺序表中的位置为%d:\n",s+1); else printf("该数没有找到\n");
return 0;
}。

相关文档
最新文档