数据结构实现顺序表各种基本运算

合集下载

数据结构能力测试集训题目

数据结构能力测试集训题目

数据结构能力测试集训题目线性表1.实现顺序表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化顺序表L;(2)采用尾插法依次插入a,b,c,d,e;(3)输出顺序表L;(4)输出顺序表L的长度;(5)判断顺序表L是否为空;(6)输出顺序表L的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出顺序表L;(10)删除顺序表L的第3个元素;(11)输出顺序表L;(12)释放顺序表L。

2.实现单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化单链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出单链表h;(4)输出单链表h的长度;(5)判断单链表h是否为空;(6)输出单链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出单链表h;(10)删除单链表h的第3个元素;(11)输出单链表h;(12)释放单链表h;3.实现双链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化双链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出双链表h;(4)输出双链表h的长度;(5)判断双链表h是否为空;(6)输出双链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出双链表h;(10)删除双链表h的第3个元素;(11)输出双链表h;(12)释放双链表h;4.实现循环单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化循环单链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出循环单链表h;(4)输出循环单链表h的长度;(5)判断循环单链表h是否为空;(6)输出循环单链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出循环单链表h;(10)删除循环单链表h的第3个元素;(11)输出循环单链表h;(12)释放循环单链表h;5.实现循环单链表各种基本运算的算法,并基础上设计一个主程序完成如下功能:(1)初始化循环双链表h;(2)采用尾插法依次插入a,b,c,d,e;(3)输出循环双链表h;(4)输出循环双链表h的长度;(5)判断循环双链表h是否为空;(6)输出循环双链表h的第3个元素;(7)输出元素a的位置;(8)在第四个元素位置上插入f元素;(9)输出循环双链表h;(10)删除循环双链表h的第3个元素;(11)输出循环双链表h;(12)释放循环双链表h;6.求集合的并,交,差运算(用有序单链表表示)栈和队列7.实现顺序栈各种基本运算的算法,编写一个程序实现顺序栈的各种基本运算,并在此基础上设计一个主程序完成以下各种功能:(1)初始化栈s(2)判断栈s是否非空(3)依次进栈元素a,b,c,d,e(4)判断栈s是否非空(5)输出栈长度(6)输出从栈顶到栈底元素(7)输出出栈序列(8)判断栈s是否非空(9)释放栈8.实现链栈各种基本运算的算法,编写一个程序,实现链栈的各种基本算法,并在此基础上设计一个主程序完成如下功能:(1)初始化链栈s(2)判断链栈s是否非空(3)依次进栈元素a,b,c,d,e(4)判断链栈s是否非空(5)输出链栈长度(6)输出从栈顶到栈底元素(7)输出链栈序列(8)判断链栈s是否非空(9)释放链栈9.实现顺序队列各种基本运算的算法,编写一个程序,实现顺序循环队列各种基本运算,并在此基础上设计一个主程序完成如下功能:(1)初始化队列q(2)判断队列q是否非空(3)依次进队列元素a,b,c(4)出队一个元素,输出该元素(5)输出队列q的元素的个数(6)依次进队列元素d,e,f(7)输出队列q的元素的个数(8)输出出队序列(9)释放队列10.实现链队各种基本运算的算法,编写一个程序,实现链队的各种基本运算,在此基础上设计一个主程序完成如下功能:(1)初始化链队q(2)判断链队q是否非空(3)依次进链队元素a,b,c(4)出队一个元素,输出该元素(5)输出链队q的元素的个数(6)依次进链队元素d,e,f(7)输出链队q的元素的个数(8)输出出队序列(9)释放链队串11.实现顺序串各种基本运算的算法,编写一个程序实现顺序的基本运算的算法,比在此基础上设计一个主程序完成如下功能:(1)建立s=”abcdefghefghijklmn”和串s1=”xyz”(2)输出串s(3)输出串s的长度(4)在串s的第9个字符位置插入串s1而产生串s2(5)输出串s2(6)删除串s第2个字符开始的5个字符而产生的串s2(7)输出串s2(8)将串s第2个字符开始的5个字符替换成串s1而产生串s2(9)输出串s2(10)提取串s的第2个字符开始的10个字符而产生串s3(11)输出串s3(12)将串s1和串s2连接起来而产生的串s4(13)输出串s412.实现链串个各种基本运算的算法,编写一个程序实现链串的各种基本运算,并在此基础上设计一个主程序完成如下功能;(1)建立s=”abcdefghefghijklmn”和串s1=”xyz”(2)输出串s(3)输出串s的长度(4)在串s的第9个字符位置插入串s1而产生串s2(5)输出串s2(6)删除串s第2个字符开始的5个字符而产生的串s2(7)输出串s2(8)将串s第2个字符开始的5个字符替换成串s1而产生串s2(9)输出串s2(10)提取串s的第2个字符开始的10个字符而产生串s3(11)输出串s3(12)将串s1和串s2连接起来而产生的串s4(13)输出串s413.顺序串的各种模式匹配运算,编写一个程序实现顺序串的各种模式匹配运算,并在此基础上完成如下功能:(1)建立”abcabcdabcdeabcdefabcdefg”目标串s和”abcdeabcdefab”模式串t(2)采用简单匹配算法求t在s中的位置(3)由模式串t求出next值和nextval值(4)采用KMP算法求t在s中的位置(5)采用改进的KMP算法求t在s中的位置查找14.实现顺序查找的算法,编写一个程序输出在顺序表{3,6,2,10,1,8,5,7,4,9}中采用顺序方法查找关键字5的过程。

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法顺序表是一种基本的数据结构,它可以存储线性结构,支持随机访问,具有较好的存储效率。

在实际应用中,我们需要实现顺序表的各种基本运算,包括插入、删除、查找、遍历、排序等操作。

下面介绍一些实现顺序表基本运算的算法。

1.插入算法顺序表插入算法的基本思路是:将插入位置之后的所有元素向后移动一位,然后将待插入元素放入插入位置。

具体实现如下:```void Insert(SqList &L, int pos, int data){if (pos < 1 || pos > L.length + 1) // 插入位置非法return;if (L.length == L.MAXSIZE) // 顺序表已满return;for (int i = L.length; i >= pos; i--) // 将pos以后的元素依次后移,腾出pos位置L.data[i] = L.data[i - 1];L.data[pos - 1] = data; // 将新元素插入pos位置L.length++; // 顺序表长度+1}```2.删除算法顺序表删除算法的基本思路是:将待删除元素之后的所有元素向前移动一位,然后将顺序表长度减1。

具体实现如下:```void Delete(SqList &L, int pos){if (pos < 1 || pos > L.length) // 删除位置非法return;for (int i = pos; i < L.length; i++) // 将pos以后的元素依次前移,覆盖pos位置L.data[i - 1] = L.data[i];L.length--; // 顺序表长度-1}```3.查找算法顺序表查找算法的基本思路是:从表头开始逐个比较元素,直到找到目标元素或者搜索到表尾。

具体实现如下:```int Search(SqList L, int data){for (int i = 0; i < L.length; i++){if (L.data[i] == data) // 找到目标元素,返回其下标return i;}return -1; // 未找到目标元素,返回-1}```4.遍历算法顺序表遍历算法的基本思路是:从表头开始依次输出元素。

数据结构与算法分析实验报告

数据结构与算法分析实验报告

数据结构与算法分析实验报告一、实验目的本次实验旨在通过实际操作和分析,深入理解数据结构和算法的基本概念、原理和应用,提高解决实际问题的能力,培养逻辑思维和编程技巧。

二、实验环境本次实验使用的编程语言为 Python,使用的开发工具为 PyCharm。

操作系统为 Windows 10。

三、实验内容(一)线性表的实现与操作1、顺序表的实现使用数组实现顺序表,包括插入、删除、查找等基本操作。

通过实验,理解了顺序表在内存中的存储方式以及其操作的时间复杂度。

2、链表的实现实现了单向链表和双向链表,对链表的节点插入、删除和遍历进行了实践。

体会到链表在动态内存管理和灵活操作方面的优势。

(二)栈和队列的应用1、栈的实现与应用用数组和链表分别实现栈,并通过表达式求值的例子,展示了栈在计算中的作用。

2、队列的实现与应用实现了顺序队列和循环队列,通过模拟银行排队的场景,理解了队列的先进先出特性。

(三)树和二叉树1、二叉树的遍历实现了先序、中序和后序遍历算法,并对不同遍历方式的结果进行了分析和比较。

2、二叉搜索树的操作构建了二叉搜索树,实现了插入、删除和查找操作,了解了其在数据快速查找和排序中的应用。

(四)图的表示与遍历1、邻接矩阵和邻接表表示图分别用邻接矩阵和邻接表来表示图,并比较了它们在存储空间和操作效率上的差异。

2、图的深度优先遍历和广度优先遍历实现了两种遍历算法,并通过对实际图结构的遍历,理解了它们的应用场景和特点。

(五)排序算法的性能比较1、常见排序算法的实现实现了冒泡排序、插入排序、选择排序、快速排序和归并排序等常见的排序算法。

2、算法性能分析通过对不同规模的数据进行排序实验,比较了各种排序算法的时间复杂度和空间复杂度。

四、实验过程及结果(一)线性表1、顺序表在顺序表的插入操作中,如果在表头插入元素,需要将后面的元素依次向后移动一位,时间复杂度为 O(n)。

删除操作同理,在表头删除元素时,时间复杂度也为 O(n)。

数据结构实验报告-线性表(顺序表实现)

数据结构实验报告-线性表(顺序表实现)

实验1:线性表(顺序表的实现)一、实验项目名称顺序表基本操作的实现二、实验目的掌握线性表的基本操作在顺序存储结构上的实现。

三、实验基本原理顺序表是由地址连续的的向量实现的,便于实现随机访问。

顺序表进行插入和删除运算时,平均需要移动表中大约一半的数据元素,容量难以扩充四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和一些预定义:2.定义顺序表:3.初始化:4.插入元素:5.查询元素:6.删除元素:7.销毁顺序表:8.清空顺序表:9.顺序表长度:10.判空:11.定位满足大小关系的元素(默认小于):12.查询前驱:13.查询后继:14.输出顺序表15.归并顺序表16.写测试程序以及主函数对顺序表的每一个操作写一个测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。

实验完整代码:#include <bits/stdc++.h>using namespace std;#define error 0#define overflow -2#define initSize 100#define addSize 10#define compareTo <=typedef int ElemType;struct List{ElemType *elem;int len;int listsize;}L;void init(List &L){L.elem = (ElemType *) malloc(initSize * sizeof(ElemType)); if(!L.elem){cout << "分配内存失败!";exit(overflow);}L.len = 0;L.listsize = initSize;}void destroy(List &L){free(L.elem);L.len = L.listsize = 0;}void clear(List &L){L.len = 0;}bool empty(List L){if(L.len == 0) return true;else return false;}int length(List L){return L.len;}ElemType getElem(List L,int i){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}return L.elem[i - 1];}bool compare(ElemType a,ElemType b) {return a compareTo b;}int locateElem(List L,ElemType e) {for(int i = 0;i < L.len;i++){if(compare(L.elem[i],e))return i;}return -1;}int check1(List L,ElemType e){int idx = -1;for(int i = 0;i < L.len;i++)if(L.elem[i] == e)idx = i;return idx;}bool check2(List L,ElemType e){int idx = -1;for(int i = L.len - 1;i >= 0;i--)if(L.elem[i] == e)idx = i;return idx;}int priorElem(List L,ElemType cur_e,ElemType pre_e[]) {int idx = check1(L,cur_e);if(idx == 0 || idx == -1){string str = "";str = idx == 0 ? "无前驱结点" : "不存在该元素";cout << str;exit(error);}int cnt = 0;for(int i = 1;i < L.len;i++){if(L.elem[i] == cur_e){pre_e[cnt ++] = L.elem[i - 1];}}return cnt;}int nextElem(List L,ElemType cur_e,ElemType next_e[]){int idx = check2(L,cur_e);if(idx == L.len - 1 || idx == - 1){string str = "";str = idx == -1 ? "不存在该元素" : "无后驱结点";cout << str;exit(error);}int cnt = 0;for(int i = 0;i < L.len - 1;i++){if(L.elem[i] == cur_e){next_e[cnt ++] = L.elem[i + 1];}}return cnt;}void insert(List &L,int i,ElemType e){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}if(L.len >= L.listsize){ElemType *newbase = (ElemType *)realloc(L.elem,(L.listsize + addSize) * sizeof(ElemType));if(!newbase){cout << "内存分配失败!";exit(overflow);}L.elem = newbase;L.listsize += addSize;for(int j = L.len;j > i - 1;j--)L.elem[j] = L.elem[j - 1];L.elem[i - 1] = e;L.len ++;}void deleteList(List &L,int i,ElemType &e){if(i < 1 || i > L.len + 1){cout << "下标越界!";exit(error);}e = L.elem[i - 1];for(int j = i - 1;j < L.len;j++)L.elem[j] = L.elem[j + 1];L.len --;}void merge(List L,List L2,List &L3){L3.elem = (ElemType *)malloc((L.len + L2.len) * sizeof(ElemType)); L3.len = L.len + L2.len;L3.listsize = initSize;if(!L3.elem){cout << "内存分配异常";exit(overflow);}int i = 0,j = 0,k = 0;while(i < L.len && j < L2.len){if(L.elem[i] <= L2.elem[j])L3.elem[k ++] = L.elem[i ++];else L3.elem[k ++] = L2.elem[j ++];}while(i < L.len)L3.elem[k ++] = L.elem[i ++];while(j < L2.len)L3.elem[k ++] = L2.elem[j ++];}bool visit(List L){if(L.len == 0) return false;for(int i = 0;i < L.len;i++)cout << L.elem[i] << " ";cout << endl;return true;}void listTraverse(List L){if(!visit(L)) return;}void partion(List *L){int a[100000],b[100000],len3 = 0,len2 = 0; memset(a,0,sizeof a);memset(b,0,sizeof b);for(int i = 0;i < L->len;i++){if(L->elem[i] % 2 == 0)b[len2 ++] = L->elem[i];elsea[len3 ++] = L->elem[i];}for(int i = 0;i < len3;i++)L->elem[i] = a[i];for(int i = 0,j = len3;i < len2;i++,j++) L->elem[j] = b[i];cout << "输出顺序表:" << endl;for(int i = 0;i < L->len;i++)cout << L->elem[i] << " ";cout << endl;}//以下是测试函数------------------------------------void test1(List &list){init(list);cout << "初始化完成!" << endl;}void test2(List &list){if(list.listsize == 0)cout << "线性表不存在!" << endl;else{int len;ElemType num;cout << "选择插入的元素数量:" << endl;cin >> len;cout << "依次输入要插入的元素:" << endl;for(int i = 1;i <= len;i++){cin >> num;insert(list,i,num);}cout << "操作成功!" << endl;}}void test3(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{cout << "请输入要返回的元素的下标" << endl;int idx;cin >> idx;cout << "线性表中第" << idx << "个元素是:" << getElem(L,idx) << endl;}}void test4(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{int idx;ElemType num;cout << "请输入要删除的元素在线性表的位置" << endl;cin >> idx;deleteList(L,idx,num);cout << "操作成功!" << endl << "被删除的元素是:" << num << endl; }}void test5(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{destroy(L);cout << "线性表已被销毁" << endl;}}void test6(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{clear(L);cout << "线性表已被清空" << endl;}}void test7(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else cout << "线性表的长度现在是:" << length(L) << endl;}void test8(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else if(empty(L))cout << "线性表现在为空" << endl;else cout << "线性表现在非空" << endl;}void test9(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num;cout << "请输入待判定的元素:" << endl;cin >> num;cout << "第一个与目标元素满足大小关系的元素的位置:" << locateElem(L,num) << endl;}}void test10(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num,num2[initSize / 2];cout << "请输入参照元素:" << endl;cin >> num;int len = priorElem(L,num,num2);cout << num << "的前驱为:" << endl;for(int i = 0;i < len;i++)cout << num2[i] << " ";cout << endl;}}void test11(){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{ElemType num,num2[initSize / 2];cout << "请输入参照元素:" << endl;cin >> num;int len = nextElem(L,num,num2);cout << num << "的后继为:" << endl;for(int i = 0;i < len;i++)cout << num2[i] << " ";cout << endl;}}void test12(List list){if(L.listsize == 0)cout << "线性表不存在!" << endl;else{cout << "输出线性表所有元素:" << endl;listTraverse(list);}}void test13(){if(L.listsize == 0)cout << "初始线性表不存在!" << endl; else{List L2,L3;cout << "初始化一个新线性表" << endl;test1(L2);test2(L2);cout << "归并两个线性表" << endl;merge(L,L2,L3);cout << "归并成功!" << endl;cout << "输出合并后的线性表" << endl;listTraverse(L3);}}void test14(){partion(&L);cout << "奇偶数分区成功!" << endl;}int main(){std::ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);int op = 0;while(op != 15){cout << "-----------------menu--------------------" << endl;cout << "--------------1:初始化------------------" << endl;cout << "--------------2:插入元素----------------" << endl;cout << "--------------3:查询元素----------------" << endl;cout << "--------------4:删除元素----------------" << endl;cout << "--------------5:销毁线性表--------------" << endl;cout << "--------------6:清空线性表--------------" << endl;cout << "--------------7:线性表长度--------------" << endl;cout << "--------------8:线性表是否为空----------" << endl;cout << "--------------9:定位满足大小关系的元素--" << endl;cout << "--------------10:查询前驱---------------" << endl;cout << "--------------11:查询后继---------------" << endl;cout << "--------------12:输出线性表-------------" << endl;cout << "--------------13:归并线性表-------------" << endl;cout << "--------------14:奇偶分区---------------" << endl;cout << "--------------15: 退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl; if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1(L);break;case 2:test2(L);break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:test12(L);break;case 13:test13();break;case 14:test14();break;case 15:cout << "测试结束!" << endl;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果1.初始化:2.插入元素3.查询元素(返回的是数组下标,下标从0开始)4.删除元素(位置从1开始)5.销毁顺序表6.清空顺序表7.顺序表长度(销毁或清空操作前)8.判空(销毁或清空操作前)9.定位满足大小关系的元素(销毁或清空操作前)说明:这里默认找第一个小于目标元素的位置且下标从0开始,当前顺序表的数据为:1 4 2 510.前驱(销毁或清空操作前)11.后继(销毁或清空操作前)12.输出顺序表(销毁或清空操作前)13.归并顺序表(销毁或清空操作前)七、思考讨论题或体会或对改进实验的建议通过本次实验,我掌握了定义线性表的顺序存储类型,加深了对顺序存储结构的理解,进一步巩固和理解了顺序表的基本操作,如建立、查找、插入和删除等。

实现顺序表各种基本运算的算法.doc

实现顺序表各种基本运算的算法.doc

实现顺序表各种基本运算的算法.doc
创建顺序表:创建顺序表需要先确定表的大小,即容量。

可以通过动态分配内存来创建顺序表,或者直接在程序中定义一个静态数组作为顺序表的存储空间。

创建时需要初始化表中元素的数量为0。

插入元素:在顺序表中插入元素时,需要先判断表是否已满。

如果表已满,则需要扩容。

扩容可以通过动态分配更大的内存空间,并将原有元素拷贝到新的内存空间中来实现。

如果表未满,则可以直接在表的末尾插入元素。

如果要在指定位置插入元素,则需要先将该位置及其后面的元素依次后移一个位置,再在该位置插入新元素。

删除元素:在顺序表中删除元素时,需要先判断要删除的元素是否存在。

如果不存在,则无需进行任何操作。

如果存在,则可以直接删除该元素。

如果要删除指定位置的元素,则需要先将该位置后面的元素依次前移一个位置,再将表中元素的数量减1。

查找元素:在顺序表中查找元素时,可以使用顺序查找或二分查找算法。

顺序查找的时间复杂度为O(n),而二分查找的时间复杂度为O(log n)。

在使用二分查找时,需要保证顺序表中的元素已经按照升序或降序排列。

修改元素:在顺序表中修改元素时,需要先查找该元素的位置,然后将其修改为新值。

输出顺序表:输出顺序表时,需要遍历表中所有元素,并将它们依次输出。

可以使用循环来实现遍历。

总之,实现顺序表的基本运算需要涉及到动态内存分配、数组操作、循环遍历和查找算法等知识点。

在实际应用中,还需要考虑如何优化算法效率、如何处理异常情况等问题。

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法

实现顺序表的各种基本运算的算法1. 初始化顺序表算法实现:初始化操作就是将顺序表中所有元素的值设置为默认值,对于数值类型,可以将其设置为0,对于字符类型,可以将其设置为空格字符。

初始化的时间复杂度为O(n),其中n为顺序表的长度。

2. 插入操作算法实现:顺序表的插入操作就是在指定位置上插入一个元素,需要将该位置后面的元素全部后移,在指定位置上插入新元素。

若顺序表已满,则需要进行扩容操作,将顺序表长度扩大一倍或者按一定的比例扩大。

插入操作的时间复杂度为O(n),其中n为顺序表长度。

3. 删除操作算法实现:顺序表的删除操作需要将指定位置上的元素删除,并将该位置后面的元素全部前移。

删除操作后,如果顺序表的实际长度小于等于其总长度的1/4,则需要进行缩容操作,将顺序表长度缩小一倍或者按一定的比例缩小。

删除操作的时间复杂度为O(n),其中n为顺序表长度。

4. 修改操作算法实现:顺序表的修改操作就是将指定位置上的元素赋予新的值。

修改操作的时间复杂度为O(1)。

5. 查找操作算法实现:顺序表的查找操作就是在顺序表中找到指定位置的元素,并返回其值。

查找操作的时间复杂度为O(1)。

6. 遍历操作算法实现:顺序表的遍历操作就是依次访问顺序表中的每个元素,遍历操作的时间复杂度为O(n),其中n为顺序表的长度。

7. 合并操作算法实现:顺序表的合并操作就是将两个顺序表合并成一个新的顺序表,新的顺序表的长度为两个顺序表的长度之和。

合并操作的时间复杂度为O(n),其中n为两个顺序表的长度之和。

总结:顺序表是一种简单而高效的数据结构,其基本运算包括初始化、插入、删除、修改、查找、遍历和合并等操作。

其中,插入、删除、遍历和合并操作的时间复杂度比较高,需要进行相应的优化处理。

同时,在实际应用中,还需要注意顺序表的扩容和缩容操作,避免造成资源浪费或者性能下降。

数据结构-顺序表-实验报告

数据结构-顺序表-实验报告

实验报告课程数据结构及算法实验项目 1.顺序表的建立和基本运算成绩专业班级*** 指导教师***姓名*** 学号*** 实验日期***实验一顺序表的建立和基本运算一、实验目的1、掌握顺序表存储结构的定义及C/C++语言实现2、掌握顺序表的各种基本操作及C/C++语言实现3、设计并实现有序表的遍历、插入、删除等常规算法二、实验环境PC微机,Windows,DOS,Turbo C或者Visual C++三、实验内容1、顺序表的建立和基本运算(1)问题描述顺序表时常进行的运算包括:创建顺序表、销毁顺序表、求顺序表的长度、在顺序表中查找某个数据元素、在某个位置插入一个新数据元素、在顺序表中删除某个数据元素等操作。

试编程实现顺序表的这些基本运算。

(2)基本要求实现顺序表的每一个运算要求用一个函数实现。

(3)算法描述参见教材算法2.3、算法2.4、算法2.5等顺序表的常规算法。

(4)算法实现#include<malloc.h> // malloc()等#include<stdio.h> // NULL, printf()等#include<process.h> // exit()// 函数结果状态代码#define OVERFLOW -2#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等typedef int Boolean; // Boolean是布尔类型,其值是TRUE或者FALSE//-------- 线性表的动态分配顺序存储结构-----------#define LIST_INIT_SIZE 10 // 线性表存储空间的初始分配量#define LIST_INCREMENT 2 // 线性表存储空间的分配增量typedef int ElemType;struct SqList{ElemType *elem; // 存储空间基址int length; // 当前长度int listsize; // 当前分配的存储容量(以sizeof(int)为单位)};void InitList(SqList &L) // 算法2.3{ // 操作结果:构造一个空的顺序线性表LL.elem=new ElemType[LIST_INIT_SIZE];if(!L.elem)exit(OVERFLOW); // 存储分配失败L.length=0; // 空表长度为0L.listsize=LIST_INIT_SIZE; // 初始存储容量}void DestroyList(SqList &L){ // 初始条件:顺序线性表L已存在。

顺序表各种基本运算

顺序表各种基本运算
}
第二个类:
public class SeqList implements List{
final int defaultSize=10;
int maxSize;
int size;
Object[]listArray;
public SeqList(){
initiate(defaultSize);
}
public SeqList(int size){
for(int j=i;j<size-1;j++);
size--;
return it;
}
public Object getData(int i)throws Exception{
if(i<0||i>=size){
throw new Exception("参数错误");
}
return listArray[i];
else
System.out.println("顺序表L不为空");
System.out.println("顺序表L的第3个元素:"+L.getData(2));
if(L.MoreDataDelete(L,'d')==0)
System.out.println("顺序表L中没有'd'");
else
System.out.println("顺序表L中有'd'");
}
public int size(){
return size;
}
public boolean isEmpty(){
return size==0;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实现顺序表的各种基本运算
一、实验目的
了解顺序表的结构特点及有关概念,掌握顺序表的各种基本操作算法思想及其实现。

二、实验内容
编写一个程序,实现顺序表的各种基本运算:
1、初始化顺序表;
2、顺序表的插入;
3、顺序表的输出;
4、求顺序表的长度
5、判断顺序表是否为空;
6、输出顺序表的第i位置的个元素;
7、在顺序表中查找一个给定元素在表中的位置;
8、顺序表的删除;
9、释放顺序表
三、算法思想与算法描述简图
四、实验步骤与算法实现
#include<stdio.h>
#include<malloc.h>
#define MaxSize 50
typedef char ElemType;
typedef struct
{ElemType data[MaxSize];
int length;
}SqList;//顺序表类型的定义
void InitList(SqList*&L)//初始化顺序表L
{L=(SqList*)malloc(sizeof(SqList));
L->length=0;
}
void DestroyList(SqList*&L)//释放顺序表L
{free(L);
}
int ListEmpty(SqList*L)//判断顺序表L是否为空集{return(L->length==0);
}
int Listlength(SqList*L)//返回顺序表L的元素个数{return(L->length);
}
void DispList(SqList*L)//输出顺序表L
{int i;
if(ListEmpty(L))return;
for(i=0;i<L->length;i++)
printf("%c",L->data[i]);
printf("\n");
}
int GetElem(SqList*L,int i,ElemType e)/*获取顺序表L中的第i个元素*/
{if(i<1||i>L->length)//查找是否有这个i,若没有返回0
return 0;
e=L->data[i-1];
return 1;
}
int LocateEmpty(SqList*L,ElemType e)/*在顺序表L中查找元素e*/
{int i=0;
while (i<L->length&&L->data[i]!=e)
i++;
if(i>=L->length)
return 0;
else
return i+1;
}
int ListInsert(SqList*&L,int i,ElemType e)/*在顺序表中第i个位置上插入元素e*/ {int j;
if(i<1||i>L->length+1)
return 0;
i--;//将顺序表位序转化为data下标
for(j=L->length;j>i;j--)//将data[i]及后面元素后移一个位置
L->data[j]=L->data[j-1];
L->data[i]=e;
L->length++;//顺序表度增1
return 1;
}
int ListDelete(SqList*&L,int i,ElemType e)/*在顺序表L中删除第i个元素*/
{int j;
if(i<1||i>L->length)
return 0;
i--;//将顺序表位序转化为data下标
e=L->data[i];
for(j=i;j<L->length-1;j++)
L->data[j]=L->data[j+1];
L->length--;
return 1;
}
void main()
{SqList*L;
ElemType e;
printf("(1)初始化顺序表L\n");
InitList(L);//初始化
printf("(2)依次采用尾插法插入7,9,12,13,14,15,18\n"); ListInsert(L,1,'7');
ListInsert(L,2,'9');
ListInsert(L,3,'12');
ListInsert(L,4,'13');
ListInsert(L,5,'14');
ListInsert(L,6,'15');
ListInsert(L,7,'18');
printf("(3)输出顺序表L:");
DispList(L);
printf("(4)顺序表L长度=%d\n",Listlength(L));
printf("(5)顺序表L为%s\n",(Listlength(L)?"空":"非空")); GetElem(L,3,12);
printf("(6)顺序表第3个元素=%d\n",12);
printf("(7)元素a的位置=%d\n",LocateEmpty(L,'a'));
printf("(8)在第4个数位置上插入8元素\n");
ListInsert(L,4,'8');
printf("(9)输出顺序表L:");
DispList(L);
printf("(10)删除L的第3个元素\n");
ListDelete(L,3,e);
printf("(11)输出顺序表L:");
DispList(L);
printf("(12)释放顺序表L\n");
DestroyList(L);
}
五、实验测试及结果
六、思考题
按由表头至表尾与表尾至表头的次序输入数据元素,则顺序表建立的程序设计有何区别?
解答:若是按表头至表尾次序输入,则存放的元素与顺序表中位置一一对应,而表尾至表头输入则相反。

输出时,也相反!。

相关文档
最新文档