第3章 岩石力学性质试验..

合集下载

最新第3讲-岩石的力学性质(版)精品文档

最新第3讲-岩石的力学性质(版)精品文档

energy/108aJ s 1/M Pa
对预测岩爆、矿井冲击地压具有重要意义。
4
180
160
140 3
120
100 2
80
60 1
40
20
0
0
0
100
200
300
400
500
600
700
800
t/s
4、 岩石的破坏类型
稳定型破裂(Ⅰ型破裂):达到峰值 应力以后,试件内贮存的变形能并不 能使破裂继续扩展,只有试验机继续 作功才能导致试件进一步破坏,并由 于试件的有效面积随着破裂而减小, 才使试件的承载能力相应降低。特点: 即使当外力超过了岩石的最大承载力 以后,仍保持一定的强度。
主要是指岩石在天然含水量、饱和及自然风干三种状态下的 强度。国际岩石力学学会试验方法委员会在试验建议方法中对 试验的标准条件作了明确规定,试验必须按照标准条件的要求 进行。
以上两种主要的破坏形式都是由于破坏面的应力达到极 限状态引起的,此时破裂面上既承受压应力,又承受剪应 力,因而也称为压-剪破坏。通过分析可知,破坏面法线 与载荷轴线(即试件轴线)的夹角为
对大多数岩石,其应力应变曲线的加载与卸载路径不相重合, 形成滞回环(hysteresis loop)。滞回环的面积逐次扩大,但卸 载曲线斜率基本上维持常量。而且每次卸载后再加载到原来的 应力再继续加载时,则加载曲线仍然沿着单调连续加载曲线上 升——称为岩石的变形记忆效应。利用这一性质,可以获得岩 石稳定的卸载模量参数。
3.3 岩石力学性质的主要影响因素 1、水对岩石力学性质的影响
水溶液与岩石的物理化学作用导致岩石力学性质的改变。 岩石中的水通常以两种形式存在:结合水,自由水,它 们对岩石力学性质的劣化产生不同的影响:

第3章岩石结构面、力学性质岩体力学

第3章岩石结构面、力学性质岩体力学
nˆ =(sinαsinβ , sinαcosβ , conα )
岩石力学
3.3.1.2 结构面的连续性 结构面的连续性又称为结构面的延展性或贯通性,常用
迹长、线连续性系数和面连续性系数表示。 (1)迹长 结构面与勘测面交线的长度,称为迹长。 国际岩石力学学会(ISRM,1978年) 制订的分级标准(见
3.2.2 岩体结构的类型
在《岩土工程勘察规范(GB 50021-2001)》中,将岩体 结构划分为5大类(见下表)。
岩石力学
岩体结 构
类型 整体状
结构
块状结 构
层状结 构
岩体地质 类型
巨块状 岩浆岩和 变质岩
厚层状 沉积岩, 块状岩浆 岩和变质 岩 多韵律 薄层、中 厚层状沉 积岩,副
结构体 形状
岩石力学
3.1 概述
工程涉及的实际岩体与实验室内测试的岩石试件的力学 性能有着很大的差别,引起这种差别的主要因素有:
(1)岩体的非连续性; (2)岩体的非均质性; (3)岩体的各向异性; (4)岩体的含水性等。 其中最关键的因素是岩体的非连续性。
岩石力学
结构面(亦称弱面):岩体内存在的各种地质界面,
巨块状
块状 柱状
层状 板状
结构面发育情况
以层面和原生、 构造节理为主, 多呈闭合型,间 距大于1.5m,一 般为1~2组,无 危险结构
有少量贯穿性节 理裂隙,结构面 间距0.7~1.5m, 一般为2~3组, 有少量分离体
有层理、片理、 节理,常有层间 错动
岩土工程特 征
岩体稳定, 可视为均质 弹性各项同 性体
岩石力学
当试件沿结构面发生剪切破坏时,作用在结构面上的应力有:
T A
P cos

岩石力学实验报告

岩石力学实验报告

岩石力学实验报告岩石力学实验报告引言岩石力学实验是研究岩石的物理力学性质和力学行为的重要手段。

通过实验可以探索岩石的力学特性,为工程建设和地质灾害防治提供依据。

本文将介绍一次岩石力学实验的过程和结果,以及对实验结果的分析和讨论。

实验目的本次实验的目的是研究不同岩石样本在不同加载条件下的力学特性,包括强度、变形和破裂行为。

通过实验结果,可以了解岩石在实际工程中的承载能力和稳定性,为工程设计和施工提供参考。

实验方法1. 样本准备:从现场采集不同类型的岩石样本,经过加工和处理后制备成标准试样,确保试样的尺寸和质量符合实验要求。

2. 强度试验:将试样放置在强度试验机上,施加逐渐增加的加载,记录试样的应力-应变曲线。

通过分析曲线,可以确定试样的弹性模量、屈服强度和抗拉强度等力学参数。

3. 变形试验:在加载过程中,观察试样的变形情况,包括弹性变形和塑性变形。

通过测量试样的应变和变形量,可以计算出试样的变形模量和变形能力等指标。

4. 破裂试验:在试样达到极限承载能力时,观察试样的破裂形态和破裂面的特征。

通过分析破裂面的形貌和结构,可以了解试样的破裂机制和破裂韧性。

实验结果与分析1. 强度试验结果:不同类型的岩石样本在强度试验中表现出不同的力学特性。

例如,花岗岩样本的强度较高,具有较高的抗压和抗拉强度;而砂岩样本的强度较低,容易发生破裂。

通过对不同样本的应力-应变曲线进行比较分析,可以得出不同岩石类型的强度参数,为岩石工程设计提供依据。

2. 变形试验结果:在加载过程中,不同岩石样本表现出不同的变形特性。

弹性模量较高的岩石样本具有较小的弹性变形,而塑性变形较大的岩石样本具有较低的弹性模量。

通过测量试样的应变和变形量,可以计算出岩石的变形模量和变形能力,为岩石的变形预测和变形控制提供参考。

3. 破裂试验结果:不同岩石样本的破裂形态和破裂面特征各异。

有些岩石样本呈现出韧性破裂,破裂面较为平滑;而有些岩石样本呈现出脆性破裂,破裂面较为粗糙。

岩石基础力学性质的试验研究和应用

岩石基础力学性质的试验研究和应用

岩石基础力学性质的试验研究和应用岩石是地球壳中的主要构成元素之一,其力学性质的研究对于地质工程、岩土工程以及矿山工程等领域具有重要意义。

本文将探讨岩石基础力学性质的试验研究和应用,深入了解岩石的力学特性,为工程实践提供科学依据和指导。

一、岩石力学性质的试验研究1.1 岩石试验的重要性岩石的力学性质直接关系到岩体的稳定性和工程的安全性。

因此,进行岩石力学性质的试验研究是十分必要的。

通过试验可以获得岩石的抗压强度、抗拉强度、抗剪强度、弹性模量等重要参数,从而对岩石的力学性质进行全面的分析和评价。

1.2 岩石试验的基本内容岩石试验的基本内容包括物理试验、力学试验和数值模拟试验等。

物理试验可以了解岩石的物理特性,如密度、孔隙度等;力学试验可以测量岩石的力学性能,如强度、刚度等;而数值模拟试验则可以通过计算模拟来揭示岩石的力学行为和响应。

1.3 岩石试验的方法和设备岩石试验的方法和设备主要包括压力试验机、拉力试验机、剪力试验机等。

其中,压力试验机用于测量岩石的抗压强度,拉力试验机用于测量岩石的抗拉强度,剪力试验机用于测量岩石的抗剪强度。

通过这些试验方法和设备,可以对岩石的不同力学性质进行全面细致的研究。

二、岩石力学性质的应用2.1 岩石基础工程中的应用在岩石基础工程中,岩石力学性质的应用尤为重要。

通过对岩石力学性质的研究,可以确定合理的基础设计方案,避免因岩石的破坏而引发的工程事故。

此外,在基础工程中,还可以根据岩石的弹性模量和抗裂强度等参数,结合土体力学的原理,进行地基处理和加固,提高地基的承载力和稳定性。

2.2 岩石爆破工程中的应用岩石爆破工程是一种常见的岩石开采方法,也是岩石力学性质的重要应用领域之一。

通过对岩石的抗压强度和抗拉强度等参数的测定,可以确定爆破设计的参数和爆破药剂的种类,提高爆破效果和工程效率。

2.3 岩石地质灾害的防治岩石地质灾害是指岩石体在自然力作用下发生的破坏、滑动、崩塌等不利于工程建设和人类安全的现象。

岩石力学实验ppt课件

岩石力学实验ppt课件

3/64
绪言
地层中钻取的岩心
标准的岩心试样
采集的岩样用标 准尺寸钻头取心
获得标准直 径岩心试件
切割两端面获得标 准长度的岩心试样
精磨试样两端面 使端面平滑规则
绪言
样品采集和岩石学审查
钻岩心 几何形状检验
端面切割 端面磨平
环境存放
样品包裹(围压实验)
实验
.
6/64
岩石单轴抗压实验
➢ 实验目的 ➢ 实验原理 ➢ 实验仪器 ➢ 实验步骤 ➢ 结果处理 ➢ 报告编写
①在试样整个高度上,直径误差不得超过0.3mm; ②端面的不平行度,最大不超过0.3mm; ③试样的两端面应垂直于试样轴线。
.
16
四、实验步骤
(1) 试件端面垂直度测量
检测方法如图所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边, 转动试样两者之间无明显缝隙。对于不合格试样,使用锉刀打磨,直至符合要求。
P Rc A
(1)
Rc—试样单轴抗压强度,MPa;
P—试样破坏载荷,N;
A—试样初始截面积,mm2。
.
9
二、实验原理
岩石的弹性模量是指岩石在弹性变形阶段其应力
与应变变化值之比:
E
(2)
—轴向应力-应变曲线中直线段的轴向应
力增量,MPa;
—轴向应力-应力曲线直线段的轴向应变
增量;
O
Δσ Δε
石油工程岩石力学实验课程
.
2/64
绪言
岩石力学性质主要是指岩石的变形(deformation )特征及岩石的强度(strength )。对任 何工程现象来说,只有获得岩石的力学性质,得出力学参数(如弹性模量、泊松比、内聚力、 内摩擦角等),建立岩石的本构方程(constitutive equation)和破坏准则(failure criterion ),为进一步研究分析提供一定模式与依据。

第三章-3 影响岩石力学性质及概述

第三章-3    影响岩石力学性质及概述
2018年12月 10
图5-5
溶液和温度对大理岩变形影响的 应力-应变曲线图
(Griggs,围压为1000MPa)
11
2018年12月
图 5- 6
溶液和温度对石英变形影响的应力-应变曲 线图 (围压为1400MPa)
12
2018年12月
四、
孔隙压力
在地壳岩石中,常有孔隙流体存在。这 种孔隙流体的压力称为孔隙压力或孔隙液压。 存在于岩石中的流体可以促进岩石的重结晶作 用,并影响岩石的变形。如果不透水层阻挡含 水层中的孔隙流体流出,岩石中的孔隙压力就 会加大。孔隙压力的存在抵消了部分围压的影 响。即有效围压 (Pe)为围压 (Pc)与孔隙液压 (Pp) 之差: Pe = Pc- Pe…………………..(5-1) 因此 ; 孔隙压力的存在也降低了岩石的强 度,使得岩石易于发生脆性破坏。
第三章(三) 影响岩石力学性质及 岩石变形的因素
岩石的力学性质并不是固定不变的, 主要决定于岩石本身的成分、结构和构 造等,但岩石所处的外界地质环境因素, 包括围压、温度、溶液和应力作用时间 及变形速度等,都对岩石的力学性质以 致岩石变形有着明显的影响。本章主要 阐述外界因素的影响。
2018年12月
(据Paterson,1978)
2018年12月 4
二、 温 度
随着温度增高,可以使常温常压下 脆性的岩石,变得强度降低,弹性减弱, 塑性增大,韧性增强,易于变形。也就 是说,提高温度,加速了岩石由脆性向 韧性的转化。但是,影响的程度随岩性 不同有所差异。
2018年12月
5
矿物同岩石一样,温度升高,弹性极限和 抗压强度明显降低,易于形成塑性变形。图5-4 中的磁黄铁矿和闪锌矿在围压固定,温度从 25℃、100℃、200℃、300℃、400℃到500℃逐 渐升高的情况下,弹性极限等也逐渐降低,并 且温度升的越高,降得越快。 温度影响岩石力学特性的原因在于,随着 温度的升高,晶体质点的热运动增强,质点间 的凝聚力就减弱,质点容易位移;从而降低了岩 石的弹性极限与强度极限,提高了岩石的塑性 和韧性。

岩石力学性质的实验与模拟研究

岩石力学性质的实验与模拟研究

岩石力学性质的实验与模拟研究引言:岩石是地壳中最常见的地质体,对于地球科学研究和工程实践至关重要。

岩石力学是研究岩石及其围岩的力学性质和力学行为的学科,对于矿山、隧道、地铁、水利、核工程等领域起着重要的作用。

在实验室和模拟研究中,通过探索岩石的物理、力学性质可以更好地理解岩石结构、变形、破裂及围岩的稳定性,为相关工程项目提供科学依据,也为资源勘探提供技术支持。

一、岩石力学实验方法岩石力学的实验研究旨在通过实验手段来获得岩石的物理力学参数,为后续的数值模拟和工程设计提供基础数据。

岩石力学实验方法多种多样,主要包括材料力学试验、岩石强度试验、变形试验等。

1. 材料力学试验材料力学试验是最基本的研究方法之一,它通过对岩石试样进行拉伸、压缩、弯曲等加载,测试岩石的力学参数。

常用的试验方法包括拉压试验、剪切试验、三轴试验等。

在这些试验中,通过加载试样并测量力和变形,可以得到岩石的荷载-变形曲线,从而计算出各种力学参数,如岩石的弹性模量、抗拉强度、抗压强度等。

2. 岩石强度试验岩石强度试验主要是通过加载试样,观察其破坏形态,以及测量岩石的破坏强度等参数。

其中,抗拉强度试验和抗压强度试验是常用的试验方法。

在抗拉强度试验中,通过加载试样,观察其是否发生断裂,同时测量拉断强度。

而在抗压强度试验中,试样在加载过程中发生破裂,测量岩石的抗压强度。

3. 变形试验变形试验主要研究岩石在外力作用下的变形行为,常用的方法包括岩石变形试验、弹塑性试验、弹性恢复试验等。

通过这些试验,可以大致了解岩石在不同应力条件下的变形特点,如岩石的应变硬化、塑性变形、岩石的弹性恢复等。

二、岩石力学的数值模拟方法岩石力学的数值模拟通过建立岩石性质的数学模型,模拟岩石在不同力学条件下的行为,为工程设计和科学研究提供定量预测和评估。

常用的数值模拟方法包括有限元法、离散元法和边界元法等。

1. 有限元法有限元法是最常用的数值模拟方法之一,它将连续体分割成有限数量的小单元,通过有限元的位移函数和加权残差方法,求解各个单元上的力学行为,最终得到整个岩石体系的应力、应变分布。

第3讲 岩石的力学性质-强度性质

第3讲 岩石的力学性质-强度性质

11
3.实验原理
消除方法: ①润滑试件端部(如垫云 母片;涂黄油在端部)机)
12
4.影响单轴抗压强度的主要因素
(1)承压板端部的摩擦力及其刚度(加垫块的依据) (2)试件的形状和尺寸 形状:圆形试件不易产生应力集中,好加工 尺寸:大于矿物颗粒的10倍; φ50的依据 高径比:研究表明;L/D≥(2.5-3)较合理 (3)加载速度 加载速度越大,表现强度越高) 我国规定加载速度为0.5~0.8MPa/s (4)环境 含水量:含水量越大强度越低;岩石越软越明显,对 泥岩、粘土等软弱岩体,干燥强度是饱和强度的2-3倍。 温度:180℃以下不明显:大于180℃,温度越高强度 越小。
34



2)实验加载方式:
a. 真三轴加载:试件为立方体,加载方式如图所示。 应力状态:σ1>σ2> σ3 这种加载方式试验装置繁杂,且六个面均可受到由加 压铁板所引起的摩擦力,对试验结果有很大影响,因而实 用意义不大。故极少有人做这样的三轴试验。

b.伪三轴试验:,试件为圆柱体,试件直径25~150mm,长 度与直径之比为2:1或3:1。轴向压力的加载方式与单 轴压缩试验相同。 但由于有了侧向压力,其加载上时的端部效应比单轴加 载时要轻微得多。 应力状态:
a.试验者和时间:意大利人冯· 卡门(Von· Karman) 于1911年完成的。 b.试验岩石:白色圆柱体大理石试件,该大理石 具有很细的颗粒并且是非常均质的。 c.试验发现: ①在围压为零或较低时,大理石试件以脆性方式 破坏,沿一组倾斜的裂隙破坏。 ②随着围压的增加,试件的延性变形和强度都不 断增加,直至出现完全延性或塑性流动变形,并 伴随工作硬化,试件也变成粗腰桶形的。 ③在试验开始阶段,试件体积减小,当达到抗压 强度一半时,出现扩容,泊松比迅速增大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用的岩石强度理论主要有库仑强度准则、莫尔强度准 则、格里菲斯强度理论等。
1、库仑强度准则。库仑认为岩石的破坏主要是剪切破坏, 采用式(3-1)表示:
c tan
(3-1)
2、莫尔强度准则。莫尔把库仑准则推广到三向应力状态, f ( ) 认识到材料性质本身是应力的函数,用函数关系 表示,破坏条件可以从莫尔包络线得到,见图3-1。 Hohai University
2Ea C
(3-3)
双向压缩应力条件下(见图3-2),在不考虑摩擦对闭 合裂纹的影响并假定椭圆形裂纹将从最大拉应力集中点开 始扩展,裂纹扩展准则为:
2 (1 - 3) =81 (1 +3 3 >0) 1 3
(3-4)
3 1
(1 +3 3 0)
(3-5)
2P t DH
(3-8) Hohai University
试件尺寸及垫条材料和尺寸对抗拉强度试验的影 响比较明显,见表3-13~3-16。
Hohai University
Hohai University
Hohai University
第五节 岩石直剪试验
岩石抗剪强度是指岩石在剪切载荷作用下破坏时 所能承受的最大剪应力,按试验方法的不同分为岩石 直剪强度和岩石三轴抗剪强度。 关于试件破坏剪断破坏的判断标准。 (1)剪切载荷加不上或无法稳定; (2)剪切位移明显变大,在剪应力 与剪切位移u 关系曲线上出现明显的突变段; (3)剪切位移增大,在剪应力与剪切位移关系曲线 上未出现明显的突变段,但总剪切位移已达到试件连 长的10%。 Hohai University
1、岩石试件的防油处理; 2、加载速率的选择;
3、侧压力的侧压力的效应;
Hohai University
第四节 岩石抗拉强度试验
岩石抗拉强度是指岩石试件在外力作用下抵抗拉 应力的能力,为岩石试件拉伸破坏时的极限载荷与受 拉截面积的比值。 岩石抗拉强度的试验方法很多,分为轴向拉伸法、 劈裂法、弯曲试验法和圆柱体或球体的径向压裂法等。 其中劈裂法,由于操作简单且用而被广泛采用。图37为劈裂破坏形式,其抗拉节 岩石点荷载强度试验
岩石点荷载强度试验在点荷载仪上进行(试验装 置见图3-9),将岩石试件置于上下2个球端圆锥之间, 对其施加集中荷载,直至试件破坏,测定其点荷载强 度指数。 试件形态及尺寸是影响点荷载试验成果 最关键的因素,因此须进行修正。 另外,试件含水状态对测试成果的影响 尤为明显。
Hohai University
第七节 岩石断裂韧度试验
岩石的断裂韧度是表征岩石材料阻止裂缝扩展的 能力,是岩石抵抗断裂的力学指标,用 K IC 表示。 影响断裂韧度试验成果的因素有试件的各向异性、 试件的尺寸、试件的含水状态、加载速率以及切口形 式等。 夹式引伸计包括2要悬臂梁和1块隔离块,电阻应 变片贴在每根悬臂梁的拉伸面和压缩面,联接成包括 一个合适的平衡电阻的惠斯顿电桥(见图3-12),梁 和隔离块尺寸见图3-13。 Hohai University
3、格里菲斯强度理论。格里菲斯提出脆性材料断裂起因 是分布在材料中的微小裂纹尖端拉应力集中所致,建立了 确定断裂扩展的能量不稳定原理。 当作用力的势能始终保持不变时,裂纹扩展准则为:
(Wd Wc ) 0 c
(3-2)
Hohai University
当单位厚度内存在初始长度为2C 的椭圆形裂纹时,在 拉伸应力作用下裂纹扩展准则为:
Hohai University
岩石单轴压缩试验受多因素的影响:(1)加载速 率;(2)试件尺寸(高径比,规定2:1)(见表32)等。 Hohai University
Hohai University
第二节 岩石单轴抗压强度试验
岩石单轴抗压强度是岩石试件在无侧 限条件下受轴向作用破坏时单位面积 所承受的载荷。 某些岩石的干抗压强度、饱和抗压强度及软化系 数见表3-3。
影响岩石抗压强度技术方面的因素较多,有加载 速率、试件尺寸、试件形态、试件高径比等。表34~3-7是试件尺寸对岩石抗压强度的影响。
Hohai University
Hohai University
Hohai University
Hohai University
第三节 岩石三轴压缩试验
岩石三轴抗压试验是指岩石试件在三向应力状态 下受轴向力作用破坏时单位面积所承受的载荷。其试 验仪器见图3-6。
Hohai University
Hohai University
为了使夹式引伸计能方便地安装在试件上,应加 工一对如图3-14(a)所示的刀口,刀口粘贴在试件 切口两侧。引伸计安装方式见图3-14(b)。
——岩土工程科学研究所
岩石力学
(Rock Mechanics)
孔纲强 2011年12月
Hohai University
第3章 岩石的力学性质试验
岩石强度理论(了解)
主 要 内 容
岩石单轴压缩变形试验(重点) 岩石单轴抗压强度试验(重点) 岩石三轴压缩试验(重点) 岩石抗拉强度试验(重点) 岩石直剪试验(重点) 岩石抗拉强度试验(重点) 岩石点荷载强度试验(重点) 岩石断裂韧度试验(重点) Hohai University
Hohai University
Hohai University
第一节 岩石单轴压缩变形试验
岩石具有与金属类弹性材料不同的独特的变形特 性,这种变形特性用变形模量、弹性模量和泊松比等 参数表示。
常见岩石的变形模量和泊松比见表3-1。 岩块变形参数主要采用岩块单轴压缩变形试验方 法取得。岩石应力—应变全过程曲线(见图3-3,图 3-4)是研究本构模型的依据,需要在刚性伺服试验 机上进行试验获得。 Hohai University
Hohai University
根据岩石三轴试验成果,可以确定岩石三轴抗剪 强度参数。见式3-6和3-7。
F 1 f 2 F
(3-6)
R c 2 F
(3-7)
Hohai University
岩石三轴试验根据侧向压力加载方式分为真三轴
1 2 3 )加载两 (1 2 3 )和假三轴( 种。 影响三轴压缩试验成果的主要影响因素有:
相关文档
最新文档