【最新】人教版七年级数学下册第六章《实数》优质公开课课件2
合集下载
人教版《实数》优秀课件初中数学ppt

品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
人教版七年级数学下册 (平方根)实数课件教学(第2课时)

(2)因为6>4,所以 6 > 2,所以
61 >
21 =1.5.
2
2
归纳 比较数的大小,先估计其算术平方根的近似值
例3 小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁出一块面积 为300cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正 在发愁.你能帮小丽算出她能用这块纸片裁出符合要求的纸片吗?
能否用两个面积为 1 dm2 的小正方形拼成一个面积为 2 dm2 的 大正方形?
如图,把两个小正方形分别沿对角线剪开,将所得的 4 个直角 三角形拼在一起,就得到一个面积为 2 dm2 的大正方形.
你知道这个大正方形的边长是多少吗?
解:设大正方形的边长为 x dm,则 x2 = 2.
由算术平方根的意义可知
直线平行.
3.互如相果平两行 条直线都与第三条直线平行,那么这两 条直线也
.
[检测]
1.在同一平面内,不是重合( 的两)条直线的位置关C系
A.平行或垂直
B.相交或垂直
C.平行或相交
D.不能确定
2.下列说法正确D的是 ( ) A.不相交的两条线段是平行线
B.不相交的两条直线是平行线
C.不相交的两条射线是平行线
按键顺序:
a=
注意:不同的计算器的按键方式可能有所差别
例4 用计算器求下列各式的值: 3136=
2=
利用计算器计算下表中的算术平方根,并将计算结果填在表中,你 发现了什么规律?你能说出其中的道理吗?
… 0.062 5 0.625 6.25
62.5
… 0.25 0 6 2.5
7.906
625
第 五
相交线与平行线
【新】人教版七年级数学下册第六章《实数》公开课课件2 (2)

写成_有__限_ 小数或者 无限循环小数的形式.
三、细读课文
认真阅读课本第53页至第54页的内容,完成下 面练习并体验知识点的形成过程.
知
识
点 一 :
1、任何一个有理数都可以写成__有__限__小数或者 无限循环小数的形式.反过来,任何有限小数或
有 理
无限循环小数也都是___有__理__数.
数
、
无
滚动一周,圆上的一点由原点到达点O 可以看出
知
OO的长是这个圆的周长,所以O 点对应的数是 .
识
点
三
:
实 数
O 1 2 3O 4
与
数
轴
上
结论:每一个有理数和无理数都可以用_数__轴___上
的 点
的一个点表示出来.实数与数轴上的点就是 一一对应 的,即每一个实数都可以用__数_轴___上的点来表示;
三、细读课文
1、实数可以这样
分类:
正___有___理__数
知 识 点 二
实 _有__理___数
数
_无__理___数
0 负___有___理__数 _正___无___理__数 _负__无___理__数
有限小数或无限循环小数
___________________________________________
知 识 点 二
(1) _有__理___数
实数
_无__理___数
0 负___有___理__数 _正___无___理__数 _负__无___理__数
有限小数或无限循环小数
___________________________________________
无限不循环小数
_______________________________________
七年级数学下册:第六章实数6.3实数第2课时实数的运算教学课件(新版新人教版)

18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
D. 8
11.计算: (1)3 3-5 3; (2)1- 2+ 3- 2; (3)2 3+3 2-5 3-3 2; (4)| 3-2|+| 3-1|.
人教版七年级数学下册第六章实数PPT教学课件

0.16 ,
11 1 25
36 6 = 25 5
2 , ( 3) ,
0.25 .
=0.4
=3
=0.5
二 、师生互动,课堂探究 (二)导入知识,解释疑难 (3)3x-4为25的算术平方根,求x的值.
解:由题意知: (3x-4)2=25,
则 3x-4=±5, 即3x-4=5或3x-4=-5, 所以x=3,或x=
a 是一个无限不循环小数.
三、练习设计
(一)双基练习
1.用计算器求出下列各式的值.
260 , 0.005 37 8 955 , 12 345 ,
解: 8 955 94.630 861
260 16.124 515
12 345 111.108 055 0.005 37 0.073 280
PowerPoint
Template
6.1 平方根
第6章 实数
第2课时 用计算器求算术平方根
一、创设情境,导入新课
某同学想用一张正方形纸片折小船,但他手头上没有现 成的正方形纸片,于是他撕下一张作业本上的纸,如图,沿AE 对折使点B落在点F的位置上,再把多余部分FECD剪下,如果 他事先量得长方形ABCD的面积为90 cm2,又测量剪下的多余 的矩形纸片的面积为40 cm2.请根据上述条件算出剪出的正
把这个数的取值说出来吗?
1 1 4 25,0,4, , , ,1.69. 4 25 144
二 、师生互动,课堂探究
1 1 4 ,1.69. 25,0,4, , , 4 25 144
4 2 25 5 1 1 12 144
2 2
4 2 25 5
二、师生互动,课堂探究
11 1 25
36 6 = 25 5
2 , ( 3) ,
0.25 .
=0.4
=3
=0.5
二 、师生互动,课堂探究 (二)导入知识,解释疑难 (3)3x-4为25的算术平方根,求x的值.
解:由题意知: (3x-4)2=25,
则 3x-4=±5, 即3x-4=5或3x-4=-5, 所以x=3,或x=
a 是一个无限不循环小数.
三、练习设计
(一)双基练习
1.用计算器求出下列各式的值.
260 , 0.005 37 8 955 , 12 345 ,
解: 8 955 94.630 861
260 16.124 515
12 345 111.108 055 0.005 37 0.073 280
PowerPoint
Template
6.1 平方根
第6章 实数
第2课时 用计算器求算术平方根
一、创设情境,导入新课
某同学想用一张正方形纸片折小船,但他手头上没有现 成的正方形纸片,于是他撕下一张作业本上的纸,如图,沿AE 对折使点B落在点F的位置上,再把多余部分FECD剪下,如果 他事先量得长方形ABCD的面积为90 cm2,又测量剪下的多余 的矩形纸片的面积为40 cm2.请根据上述条件算出剪出的正
把这个数的取值说出来吗?
1 1 4 25,0,4, , , ,1.69. 4 25 144
二 、师生互动,课堂探究
1 1 4 ,1.69. 25,0,4, , , 4 25 144
4 2 25 5 1 1 12 144
2 2
4 2 25 5
二、师生互动,课堂探究
数学七级人教版下册 6.3.2实数(二) 优秀课件

12、你们要学习思考,然后再来写作。——布瓦罗 13、在寻求真理的长河中,唯有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山跨峻岭。——华罗庚
14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
3.实数的分类 (1)按定义分类:
实数
有理数:有限小数或无限循环小数 无理数:无限不循环小数
(2)按性质分类:
正实数
正有理数 正无理数
ቤተ መጻሕፍቲ ባይዱ实数
0
负实数
负有理数 负无理数
4.实数与数轴上的点的对应关系
(1)实数与数轴上的点是_一__一__对__应_的. 即每个实数都可以用数轴上的一个__点__来表示; 反过来,数轴上的每一个点都表示一个__实__数__. (2)在数轴上的两个点,右边的点表示的实数总比左边的点 表示的实数大.
6.两个无理数之积不一定是无理数。( ) 7.两个无理数之和一定是无理数。( ×)
课堂小结
14、许多年轻人在学习音乐时学会了爱。——莱杰 15、学习是劳动,是充满思想的劳动。——乌申斯基 16、我们一定要给自己提出这样的任务:第一,学习,第二是学习,第三还是学习。——列宁 17、学习的敌人是自己的满足,要认真学习一点东西,必须从不自满开始。对自己,“学而不厌”,对人家,“诲人不倦”,我们应取这种态度。——毛泽东
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
3.实数的分类 (1)按定义分类:
实数
有理数:有限小数或无限循环小数 无理数:无限不循环小数
(2)按性质分类:
正实数
正有理数 正无理数
ቤተ መጻሕፍቲ ባይዱ实数
0
负实数
负有理数 负无理数
4.实数与数轴上的点的对应关系
(1)实数与数轴上的点是_一__一__对__应_的. 即每个实数都可以用数轴上的一个__点__来表示; 反过来,数轴上的每一个点都表示一个__实__数__. (2)在数轴上的两个点,右边的点表示的实数总比左边的点 表示的实数大.
6.两个无理数之积不一定是无理数。( ) 7.两个无理数之和一定是无理数。( ×)
课堂小结
实数课件人教版数学七年级下册[2]
![实数课件人教版数学七年级下册[2]](https://img.taocdn.com/s3/m/ef4457ee6bd97f192379e947.png)
12.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动), 圆上的一点由原点到达点O′,点O′所对应的数值是__π__.
13.有一个数值转换器,原理如下:当输入的 x 为 64 时,输出的 y 是 ___8______.
14.请将图中数轴上标有字母的各点与下列实数对应起来. 2 ,-0.5,- 3 , 5 ,π,3.
有限小数或无限循环小数
正无理数
无理数
无限不循环小数
负无理数
(2)按大小分:
正实数 实数 0
负实数
正有理数 正无理数
负有理数 负无理数
实数的分类有不同 的方法,但不论用 哪一种分类方法, 都要做到不重不漏.
(1)对实数进行分类时,某些数应先进行计算或化简, 然后根据最后结果进行分类,不能看到带根号的数, 就认为是无理数,不能看到有分数线的数,就认为 是有理数. (2)在实数范围内,一个数不是有理数, 那么它一定是无理数,反之亦成立.
④无理数一定都是实数.其中正确的有________.
有理数和无理数统称为实数.
整数、小数、分数、百分数. 12.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点O′,点O′所对应的数值是____.
无理数都是无限小数,但无限小数不一定是无理数,只有无限不循环小数才是无理数. 事实上,如果把整数看成小数点后是 0 的小数,那么任何一个有理数都可以写成有限小数或无限循环小数的形式.
巩固新知
把下列各数填在相应的大括号内.
非负整数:{ 整数:{ 负分数:{
…}; …}; …};
把下列各数填在相应的大括号内.
|a|>4
B.
(1)对实数进行分类时,某些数应先进行计算或化简,然后根据最后结果进行分类,不能看到带根号的数,就认为是无理数,不能看到有分数线的数,就认为是有理数.
【最新】人教版七年级数学下册第六章《实数》优质公开课课件

1 2 3 4
有理数都可以用数轴上的点表示
探究
直径为1个单位长度的圆从原点沿 数轴向右滚动一周,圆上的一点由原点 到达O′,点O′对应的数多少?
0
1
2
3 O′
4
0
1
2
3 O′
4
你有什么发现? 无理数π可以用数轴上的点表示
以单位长度为边长画一个正方 形,以原点为圆心,正方形对角线 为半径画弧,与正半轴的交点表示 什么?
1、下列各数中,互为相反数的是(
A C
课后 补充
)
2
1 3与 3
3 与 1 (1)
2
B D
2 与 (2)
5 与 5
2、 A C
5 3 2 5 的值是(
)
5
52 5
B D
1
2 5 5
3、求下列各数的相反数:
3
2,
3 , 4
3 2,
5 2.
4、求下列各数的绝对值:
练习2 1、请将数轴上的各点与下列实数对应 起来:
2
1.5
A
5
B C DE
3
-3 -2 -1
0
1
23Leabharlann 4想一想 事实上,有理数关于相反数和绝对 值的意义同样适合于实数
a是一个实数,它的相反数为 a; 绝对值为 | a | .
练习3
2 的相反数是
;
的相反数是
0 的相反数是
2 -2 -1
1.一个数的绝对值是π,这个数是
;
2. 2 3的相反数是
3. 3.14
;
;
小结 1、本节课你学了什么知识? 实数的定义 实数的分类 (定义、正负)
有理数都可以用数轴上的点表示
探究
直径为1个单位长度的圆从原点沿 数轴向右滚动一周,圆上的一点由原点 到达O′,点O′对应的数多少?
0
1
2
3 O′
4
0
1
2
3 O′
4
你有什么发现? 无理数π可以用数轴上的点表示
以单位长度为边长画一个正方 形,以原点为圆心,正方形对角线 为半径画弧,与正半轴的交点表示 什么?
1、下列各数中,互为相反数的是(
A C
课后 补充
)
2
1 3与 3
3 与 1 (1)
2
B D
2 与 (2)
5 与 5
2、 A C
5 3 2 5 的值是(
)
5
52 5
B D
1
2 5 5
3、求下列各数的相反数:
3
2,
3 , 4
3 2,
5 2.
4、求下列各数的绝对值:
练习2 1、请将数轴上的各点与下列实数对应 起来:
2
1.5
A
5
B C DE
3
-3 -2 -1
0
1
23Leabharlann 4想一想 事实上,有理数关于相反数和绝对 值的意义同样适合于实数
a是一个实数,它的相反数为 a; 绝对值为 | a | .
练习3
2 的相反数是
;
的相反数是
0 的相反数是
2 -2 -1
1.一个数的绝对值是π,这个数是
;
2. 2 3的相反数是
3. 3.14
;
;
小结 1、本节课你学了什么知识? 实数的定义 实数的分类 (定义、正负)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.3实数(2)
检测: 课本57页1、2题
问题1.无理数能在数轴上表示出来吗?
如图,直径为1个单位长度的圆从原点沿数轴向右滚 动一周,圆上一点从原点到达A点,则点A的坐标为多少?
-4
-3
-2
-1
0
1
2
3A
4
无理数 可以用数轴上的点来表示.
问题2.你能在数轴上表示出
2
吗?
2
-2
1
1
- 2 -1
0
2
2
每一个实数都可以用数轴上的一个点来表示; 反过来,数轴上的每一点都表示一个实数。
实数和数轴上的点是一一对应的.
实数范围内的简单计算
(2)
例2:计算下列各式的值.
(1)( 3
(1)( 3
2 ) 2;
2) 3; 2 2)
3 ( 2 3 0
实数范围内的简单计算
(2)Βιβλιοθήκη 例2:计算下列各式的值.(2) 3 3 2 3.
(2)3 3 2 3 (3 2) 3 5 3.
实数范围内的简单计算
(2)
练习题: 计算:
(1)2 2 3 2;
(2) 2 3 2 2.
2;
3 2.
实数范围内的简单计算
(2)
例3:计算.(结果保留小数点后两位)
(1) 5 π ;
(2) 3 2.
5 π 2.236 3.142 5.38;
3 2 1.732 1.414 2.45.
检测:
判断:
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( ) 3.无理数都是无限小数。( ) 4.开方开不尽的数是无理数。( ) 5.无理数开方开不尽的数( × )
6.两个无理数之积不一定是无理数。( ) 7.两个无理数之和一定是无理数。( × )
课本57页5
• 练习册33页14、15、18、22
检测: 课本57页1、2题
问题1.无理数能在数轴上表示出来吗?
如图,直径为1个单位长度的圆从原点沿数轴向右滚 动一周,圆上一点从原点到达A点,则点A的坐标为多少?
-4
-3
-2
-1
0
1
2
3A
4
无理数 可以用数轴上的点来表示.
问题2.你能在数轴上表示出
2
吗?
2
-2
1
1
- 2 -1
0
2
2
每一个实数都可以用数轴上的一个点来表示; 反过来,数轴上的每一点都表示一个实数。
实数和数轴上的点是一一对应的.
实数范围内的简单计算
(2)
例2:计算下列各式的值.
(1)( 3
(1)( 3
2 ) 2;
2) 3; 2 2)
3 ( 2 3 0
实数范围内的简单计算
(2)Βιβλιοθήκη 例2:计算下列各式的值.(2) 3 3 2 3.
(2)3 3 2 3 (3 2) 3 5 3.
实数范围内的简单计算
(2)
练习题: 计算:
(1)2 2 3 2;
(2) 2 3 2 2.
2;
3 2.
实数范围内的简单计算
(2)
例3:计算.(结果保留小数点后两位)
(1) 5 π ;
(2) 3 2.
5 π 2.236 3.142 5.38;
3 2 1.732 1.414 2.45.
检测:
判断:
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( ) 3.无理数都是无限小数。( ) 4.开方开不尽的数是无理数。( ) 5.无理数开方开不尽的数( × )
6.两个无理数之积不一定是无理数。( ) 7.两个无理数之和一定是无理数。( × )
课本57页5
• 练习册33页14、15、18、22