金属箔式应变片单臂电桥性能实验
一金属箔式应变片性能—单臂电桥

目录CSY传感器实验仪简介 (1)实验一金属应变片传感器 (4)实验二电容式传感器、压电式传感器实验 (7)实验三热电偶、热电阻、PN温度传感器实验 (10)实验四电感式、磁电式传感器实验 (16)实验五光纤位移式传感器实验 (27)实验六气敏、湿敏传感器实验 (31)CSY传感器实验仪简介实验仪主要由四部分组成:传感器安装台、显示与激励源、传感器符号及引线单元、处理电路单元。
传感器安装台部分:装有双平行振动梁(应变片、热电偶、PN结、热敏电阻、加热器、压电传感器、梁自由端的磁钢)、激振线圈、双平行梁测微头、光纤传感器的光电变换座、光纤及探头小机电、电涡流传感器及支座、电涡流传感器引线Φ3.5插孔、霍尔传感器的二个半圆磁钢、振动平台(圆盘)测微头及支架、振动圆盘(圆盘磁钢、激振线圈、霍尔片、电涡流检测片、差动变压器的可动芯子、电容传感器的动片组、磁电传感器的可动芯子)、扩散硅压阻式传感器、气敏传感器及湿敏元件安装盒,显示及激励源部分:电机控制单元、主电源、直流稳压电源(±2V-±10V档位调节)、F/V数字显示表(可作为电压表和频率表)、动圈毫伏表(5mV-500mV)及调零、音频振荡器、低频振荡器、±15V不可调稳压电源。
实验主面板上传感器符号单元:所有传感器(包括激振线圈)的引线都从内部引到这个单元上的相应符号中,实验时传感器的输出信号(包括激励线圈引入低频激振器信号)按符号从这个单元插孔引线。
处理电路单元:电桥单元、差动放大器、电容放大器、电压放大器、移相器、相敏检波器、电荷放大器、低通滤波器、涡流变换器等单元组成。
主要技术参数、性能及说明<一>传感器安装台部分:双平行振动梁的自由端及振动圆盘下面各装有磁钢,通过各自测微头或激振线圈接入低频激振器VO可做静态或动态测量。
应变梁:应变梁采用不锈钢片,双梁结构端部有较好的线性位移。
传感器:1、差动变压器量程:≥5mm 直流电阻:5Ω-10Ω由一个初级、二个次级线圈绕制而成的透明空心线圈,铁芯为软磁铁氧体.2、电涡流位移传感器量程:≥1mm 直流电阻:1Ω-2Ω多股漆包线绕制的扁平线圈与金属涡流片组成。
金属箔式应变片单臂、半桥、全桥性能比较实验

金属箔式应变片单臂、半桥、全桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应工作原理和性能, 比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R 为电阻丝电阻相对变化,K 为应变灵敏系数,ε=ΔL/L 为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压Uo= EKε/4。
半桥测量电路中,不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U o=EKε/2。
全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
其桥路输出电压U o=KE ε。
三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、托盘砝码。
四、实验步骤:应变传感器实验模板简介:实验模板中的R1、R2、R3、R4 为应变片,没有文字标记的5 个电阻符号下面是空的,其中4 个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
应变式传感器(电子秤传感器)已装于应变传感器模板上。
传感器中的4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4 和加热器上。
传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。
当传感器托盘支点受压时,R1、R3 阻值增加,R2、R4 阻值减小,可用四位半数显万用表2K 电阻档进行测量判别。
金属箔式应变片单臂电桥性能实验

实验一金属箔式应变片单臂电桥性能实验一、实验目的了解金属箔式应变片的应变效应,掌握单臂电桥工作原理和性能。
二、实验原理电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε;式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。
金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。
(E为供桥电压)。
三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源数、±5V电源、数字万用表。
四、实验步骤:1、根据图1-1,应变式传感器已装于应变传感器模板上。
传感器中各应变片已接入模板左上方的R1、R2、R3、R4标志端。
加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。
图1-1 应变片传感器安装示意图2、实验模板差动放大器调零,方法为:(1)接入模板电源±15V,检查无误后,合上主控台电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置;(2)将差放的正、负输入端与地短接,V o1输出端与数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕后关闭主控台电源。
3、参考图1-2接入传感器,将应变式传感器的其中一个应变片R1接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、R6、R7在模块内已连接好),检查接线无误后,合上主控台电源开关,用数字万用表测量主控台到应变式传感器模块上的±5V、±15V电压值是否稳定?若电压波动值大于10mV,应反复拔插相应的电源连接线,直至电压稳定,不再波动为止,然后粗调节Rw1,再细调RW4使数显表显示为零。
实验三十六 金属箔式应变实验

150实验三十六 金属箔式应变实验练习一 金属箔式应变片——单臂电桥性能实验一、 实验目的了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、 基本原理:金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。
金属的电阻表达式为: SlR ρ= (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。
对式(1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S l l R R (2) 式中的ll ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×m mm m610-)。
若径向应变为r r∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为)(l l rr∆-=∆μ,因为SS ∆=2(rr ∆),则(2)式可以写成:llk l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。
0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。
对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。
实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。
通常金属丝的灵敏系数0k =2左右。
用应变片测量受力时,将应变片粘贴于被测对象表面上。
在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。
通过转换电路转换为相应的电压或电流的变化,根据(3)式,可以得到被测对象的应变值ε,而根据应力应变关系εσE = (4)式中 ζ——测试的应力; E ——材料弹性模量。
可以测得应力值ζ。
金属应变片-电桥实验资料

实验一 金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:εK R R =∆/式中R R /∆为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /∆=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
单臂电桥输出电压UO14/εEK =。
三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。
四、实验步骤:1、根据图1-1应变式传感器已装于应变传感器模块上。
传感器中各应变片已接入模块的左上方的R 1、R2、R3、R 4。
加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。
2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。
关闭主控箱电源。
图1-1 应变式传感器安装示意图3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。
检查接线无误后,合上主控箱电源开关。
调节Rw 1,使数显表显示为零。
金属箔式应变片性能实验报告

1 实验报告姓名: 学号: 班级:实验项目名称:实验一 金属箔式应变片性能——单臂电桥,半桥实验目的:了解金属箔式应变片,单臂单桥的工作原理和工作情况;:验证单臂、半桥性能及相互之间关系。
实验原理:单臂、半桥、全桥是指在电桥组成工作时,有一个桥臂、二个桥臂、全部四个桥臂(用应变片)阻值都随被测物理量而变化。
电桥的灵敏度:电桥的输出电压(或输出电流)与被测应变在电桥的一个桥臂上引起的电阻变化率之间的比值,称为电桥的灵敏度。
如图是直流电桥,它的四个桥臂由电阻R1、R2、R3、R4组成,U 。
是供桥电压,输出电压为:当R1×R3=R2×R4则输出电压U 为零,电桥处于平衡状态。
如果将R4换成贴在试件上的应变片,应变片随试件的受力变形而变形,引起应变片电阻R4的变化,平衡被破坏,输出电压U 发生变化。
当臂工作时,电桥只有R4桥臂为应变片,电阻变为R +R ,其余各臂仍为固定阻值R,代入上式 有组桥时,R1和R3,R2和R4受力方向一致。
实验步骤(电路图):(1)了解所需单元、部件在实验仪上的所在位置,观察梁上的应变片,测微头在双平行梁前面的支座上,可以上、下、前、后、左、右调节。
(2)将差动放大器调零:用连线将差动放大器的正(+)、负(-)、地短接。
将差动放大器的输出端与F /V 表的输入插口Vi 相连;开启主、副电源;调节差动放大器的增益到最大位置,然后调整差动放大器的调零旋钮使F /V 表显示为零,关闭主、副电源。
(3)根据图1接线R1、R2、R3为电桥单元的固定电阻。
R4为应变片;将稳压电源的切换开关置±4V 档,F /V 表置20V 档。
调节测微头脱离双平行梁,开启主、副电源,调节电桥平衡网络中的W1,使F /V 表显示为零,然后将F /V 表置2V 档,再调电桥W1(慢慢地调),使F /V 表显示为零。
图1金属箔式应变片性能—单臂电桥电路(4)将测微头转动到10mm刻度附近,安装到双平等梁的自由端(与自由端磁钢吸合),调节测微头支柱的高度(梁的自由端跟随变化)使F/V表显示最小,再旋动测微头,使F/V 表显示为零(细调零),这时的测微头刻度为零位的相应刻度。
金属箔式应变片性能单臂电桥实验报告

金属箔式应变片性能单臂电桥实验报告一、实验目的1. 通过金属箔式应变片单臂电桥实验,学习如何使用应变片进行测量;2. 掌握单臂电桥测量电阻的方法;3. 分析电桥测量误差,为提高测量精度提供基础。
二、实验原理1. 金属箔式应变片金属箔式应变片是一种材料表面加贴细小金属箔片的应变测量元件。
其基本原理是应变预应力引起的电阻变化,即金属箔在受力后,电阻随着应变量的改变而产生变化。
金属箔式应变片常用于测量应变和受力。
2. 单臂电桥单臂电桥是一种测量电阻的电桥,由电源、电桥电阻、待测电阻和检流计组成。
其基本原理是利用电流经过电桥时,经过待测电阻后在检流计处产生的电压大小来间接测量电阻的大小。
三、实验步骤1. 准备工作:将金属箔式应变片加载到机械压力测试平台上,调整相应参数并进行预热;2. 将电桥电路组装好,确保电源、检流计的连接正确无误;3. 调整电桥电阻使电路达到平衡状态;4. 施加一定的荷载,通过对应变不同的金属箔电阻值变化的测量,计算应变值;5. 多次重复测量,获得稳定可靠的数据。
四、实验结果及分析1. 多次测量获得的应变数据分别如下:0.0012,0.0013,0.0011;2. 将上述测量数据平均后计算得到平均应变值为0.0012;3. 分析误差:在实际测量中,应变片到载荷的变形以及电器元件的误差都会对测量产生一定的影响。
若误差过大,将会对测量结果产生较大的影响,因此在实验中应尽力减小误差。
五、实验结论与思考通过金属箔式应变片单臂电桥实验,我们掌握了应变片的应用技能以及单臂电桥的测量原理,学习了如何通过电桥实验获得待测电阻的精确值,同时深入了解了误差分析和优化的相关原理方法。
通过这次实验,我们加深了对电子电路基础知识的理解和应用,并提高了实验操作和数据分析的能力水平。
金属箔式应变片――单臂电桥性能实验

实验1 金属箔式应变片――单臂电桥性能实验一、实验目的:1、了解金属箔式应变片的应变效应2、单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
,对单臂电桥输出电压U o1= EKε/4。
三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V 电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
加热丝也接于模板上,可用万用表进行测量判别,R 1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V 档)。
关闭主控箱电源(注意:当R w3、R w4的位置一旦确定,就不能改变。
一直到做完实验为止)。
3、将应变式传感器的其中一个电阻应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥(R5、R6、R7模块内已接好),接好电桥调零电位器R W1,接上桥路电源±4V(从主控台引入)如图1-2所示。
检查接线无误后,合上主控台电源开关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属箔式应变片单臂电桥性能实验
实验说明
本实验旨在通过金属箔式应变片单臂电桥性能实验,研究电桥电路中各元件间的关系,探究电阻的特性,进一步探究应变片的工作原理并且熟悉应变测量方法。
此外,本实验还
将研究如何使用电桥进行精密测量。
实验原理
单臂电桥,也被称为无支艺电桥,由一个已知阻值的电阻R和一个未知电阻R1构成。
它的基本原理是,将一个电阻R分配给两个不同的分支,使得其分配到有外力作用的应变
片分支的反向热电信号和环境温度变化的电动势的影响相互抵消,从而产生一个感到应变
片的应变反应信号。
为了使电桥的输出接近于0,可以通过调节电阻R的数值来确定电桥失配电阻R1未知数的大小。
因此,单臂电桥通常用于测量很小的电阻值和形状不规则的物体的应变值。
在本实验中,我们使用金属箔式应变片作为测量对象。
金属箔式应变片是一种能够反
映物体应变状态的材料。
在物体发生形变时,应变片会随之发生微小的变形,从而改变电阻。
这种特性可以被用来制作应变检测器,如应变计。
应变计的应用范围非常广泛,比如
用于测量建筑物的位移和金属结构的应力变化等。
实验材料和仪器
1. 金属箔式应变片
2. 八个10kΩ电阻
3. 成品提供电桥电路板
4. 万用表
5. 直流电源单元
实验步骤
1. 根据电桥电路板上的布置图连接电桥电路。
接线过程如下所示:
a. 将电阻1-4固定在电路板上
b. 在电路板的中央位置放置Msp(金属箔式应变片)。
c. 用导线连接电路板上的两个端点,将万用表设置为电阻测试模式,在电路板上测量电桥的失配电阻R1。
d. 调整电阻R的数值使得万用表的读数最小。
如果万用表的读数仍然不为0,则通过调整电源电压的数值进行微调。
2. 在电路板上记录测量结果,并记录Msp上施加的应变值。
3. 重复步骤1和步骤2,至少连续测量10组数据。
结果分析
在本实验中,通过分析电桥电路板上的布置图,我们成功地搭建了金属箔式应变片单臂电桥电路,并使用万用表和直流电源单元来测试电桥的响应情况。
实验结果表明,在Msp应变值从0%到100%的范围内,电桥测量的失配电阻R1(Ω)随着Msp应变值的增加而减小。
这进一步验证了应变片的性质可以用于测量物体的应变状态,从而推动应变检测技术的发展。
除此之外,本实验还使我们更加熟悉了电桥电路的工作原理,以及如何使用电桥进行精密测量。