(完整版)九年级数学二次函数与反比例函数综合测试
九年级上册数学单元测试卷-第21章 二次函数与反比例函数-沪科版(含答案)

九年级上册数学单元测试卷-第21章二次函数与反比例函数-沪科版(含答案)一、单选题(共15题,共计45分)1、小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc<0;③a-b+c>0;④2a-3b=0;⑤4a+2b+c>0.你认为其中正确的是()A.①②④B.①③⑤C.②③⑤D.①③④⑤2、已知函数y1=x2与函数y2=x+3的图象大致如图所示,若y1<y2,则自变量x的取值范围是( )A. <x<2B. x>2或x<C. x<-2 或x>D.-2<x<3、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴正半轴交于点C,它的对称轴为直线x=-1.则下列选项中正确的是( )A. abc<0B.4 ac-b2>0C. c-a>0 D.当x=-n2-2( n为实数)时,y≥c4、如图,在直角坐标系中,点是x轴正半轴上的一个定点,点是双曲线()上的一个动点,当点的横坐标逐渐增大时,的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小5、若,则二次函数的图象可能是()A. B. C. D.6、已知函数y=x-5,令x=, 1,, 2,, 3,, 4,, 5,可得函数图象上的十个点.在这十个点中随机取两个点P(x1, y1),Q(x2,y2),则P,Q两点在同一反比例函数图象上的概率是()A. B. C. D.7、若反比例函数的图象经过点(-5,2),则的值为().A.10B.-10C.-7D.78、如图,抛物线( 为常数)的图象交轴的正半轴于A,B两点,交轴的正半轴于C点.如果当时,,那么直线的图象可能是()A. B. C. D.9、一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示.设小矩形的长、宽分别为,剪去部分的面积为,若,则与的函数图像是()A. B. C.D.10、在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A.y=2(x-1) 2-3B.y=2(x-1) 2+3C.y=2(x+1) 2-3 D.y=2(x+1) 2+311、二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:⑴ac<0;⑵当x>1时,y的值随x值的增大而减小.⑶3是方程ax2+(b﹣1)x+c=0的一个根;⑷当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个12、如图,一次函数与二次函数为的图象相交于点M,N,则关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根13、二次函数y=x2+px+q中,由于二次项系数为1>0,所以在对称轴左侧,y随x增大而减小,从而得到y越大则x越小,在对称轴右侧,y随x增大而减大,从而得到y越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x的方程x2+px+q+1=0的两个实数根是m、n(m<n),关于x的方程x2+px+q﹣5=0的两个实数根是d、e(d<e),则m、n、d、e的大小关系是()A.m<d<e<nB.d<m<n<eC.d<m<e<nD.m<d<n<e14、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:其中正确的结论有()①abc>0;②8a+2b=-1;③4a+3b+c>0;④4ac+24c<b2.A.1B.2C.3D.415、抛物线y=ax2+bx和直线y=ax+b在同一坐标系的图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、把抛物线向左平移2个单位,再向上平移2个单位得到的抛物线解析式为________;17、如图,点A是反比例函数y=(x>0)图象上一点,过点A作AB⊥x轴于点B,连接OA,OB,tan∠OAB=.点C是反比例函数y=(x>0)图象上一动点,连接AC,OC,若△AOC的面积为,则点C的坐标为________.18、直线y=x+2与抛物线y=x2的交点坐标是________.19、如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为________.20、在平面直角坐标系xoy中,直线(k为常数)与抛物线交于A,B两点,且A点在y轴右侧,P点的坐标为(0,4)连接PA,PB.(1)△PAB的面积的最小值为________;(2)当时,=________21、如图,一次函数y=kx+b 的图象l与坐标轴分别交于点E、F,与双曲线y=- (x<0)(x<0)交于点P(﹣1,n),且F 是PE 的中点,直线x=a与l交于点A,与双曲线交于点B(不同于A),PA=PB,则a=________。
(完整版)九年级二次函数综合测试题及答案,推荐文档

2、4. 抛物线
的对称轴是( )
A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论中,正确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
21.已知:如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,其中 A 点坐标为(-1,0),点 C(0,5),另抛物线经过点(1,8),M 为它的顶点.
我去 人 (1也)求就抛物有线的人解!析式为; UR扼腕入站内信不存在向你偶同意调剖沙
(2)求△MCB 的面积 S△MCB.
6. 二次函数 y=ax2+bx+c 的图象如图所示,则点
A. 一 B. 二 C. 三 D. 四
在第___象限( )
7. 如图所示,已知二次函数 y=ax2+bx+c(a≠0)的图象
的顶
点 P 的横坐标是 4,图象交 x 轴于点 A(m,0)和点 B,且
m>4,那么 AB 的长是( )
10.把抛物线
的图象向左平移 2 个单位,再向上
平移 3 个单位,所得的抛物线的函数关系式是( )
A.
B.
C.
D.
二、填空题(每题 4 分,共 32 分) 11. 二次函数 y=x2-2x+1 的对称轴方程是______________.
12. 若将二次函数 y=x2-2x+3 配方为 y=(x-h)2+k 的形式,则 y=________.
沪科版九年级上册数学第21章 二次函数与反比例函数含答案(含解析)

沪科版九年级上册数学第21章二次函数与反比例函数含答案一、单选题(共15题,共计45分)1、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴相交于C点,图中虚线为抛物线的对称轴,则下列正确的是( )A.a<0B.b<0C.c>0D.b 2-4ac<02、若A(1,y1),B(2,y2)两点都在反比例函数y= 的图象上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定3、直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是()A. B. C. D.4、如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y= (k>0,x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2=10,则k 的值是()A.5B.10C.15D.205、若是反比例函数,则必须满足()A. B. C. 或 D. 且6、小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个7、若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣4的值为()A.0B.-2C.2D.-68、二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A. B. C.D.9、一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B. C.D.10、将抛物线y=2x2平移,得到抛物线y=2(x+4)2+1,下列平移正确的是()A.先向左平移4个单位,再向上平移1个单位B.先向左平移4个单位,再向下平移1个单位C.先向右平移4个单位,再向上平移1个单位 D.先向右平移4个单位,再向下平移1个单位11、将抛物线y=(x﹣2)2+2向左平移2个单位,得到的新抛物线为()A.y=(x﹣2)B.y=(x﹣2)+4C.y=x +2D.y=(x﹣4)+212、已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0B.b>0,c<0C.b<0,c<0D.b<0,c>013、如图,△ABC.的三个顶点分别为A(1,2),B(5,2),C(5,5).若反比例函数在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤25B.2≤k≤10C.1≤k≤5D.10≤k≤2514、将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x-1)2+2B.y=(x+1)2+2C.y=(x-1)2-2D.y=(x+1)2-215、如图,在平面直角坐标系中,点A、B的坐标分别为(-2,3)、(0,1),将线段AB沿x轴的正方向平移m(m>0)个单位,得到线段A' B'。
二次函数与反比例函数测试题

O A B C Dxy P (kPa ) V (m 3) O 60 1.6 九年级二次函数与反比例函数数学测试题姓名 得分一、选择题(本大题共10小题,每小题4分,满分40分) 1.二次函数y =x 2+2x -5有( )A .最大值-5B .最小值-5C .最大值-6D .最小值-62.下列二次函数中,图象以直线x =2为对称轴、且经过点(0,1)的是( )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-3 3.在下列图象对应的函数中,当x >0时,y 随x 的增大而增大的是( )4.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表,则下列判断中正确的是 ( )x … -1 0 1 3 … y … -3 1 3 1 …A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程ax 2+bx +c =0的正根在3与4之间5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于 5 4m 3B .小于 5 4m 3C .不小于 4 5m 3D .小于 4 5m 36.将抛物线y =-2x 2+1向左平移2个单位,再向下平移2个单位得抛物线( ) A .y =-2x 2-8x -9 B .y =-2x 2+8x -9 C .y =-2x 2-8x -5 D .y =-2x 2+8x -57.二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y = ax与一次函数y =bx +c在同一坐标系中的大致图象是( )8.如图,正方形ABOC 的边长为2,反比例函数ky x=过点A ,则k 的值是( ) A .2 B .2- C .4 D .4- 9.若二次函数y =(x -m )2-1,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =1 B .m >1 C .m ≥1 D .m ≤110.如图,在□ABCD 中,AC =4,BD =6,P 是BD 上的任一点,过P 作EF ∥AC ,与平行四边形的两条边分别交于点E 、F .设BP =x ,EF =y ,则能反映y 与x 之间关系的图象为( )二、填空题(本大题共5小题,每小题4分,满分20分)11.把二次函数y =- 1 4x 2-x +3用配方法化成y =a (x -h )2+k 的形式是____________12.一个y 关于x 的函数同时满足两个条件:①图象经过点(2,1);②当x >0时,y 随x 的增大而减小.这个函数解析式可以是 (写出一个即可). 13.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 、D 在反比例函数y = 6x(x >0)的图象上,则点C 的坐标为 . 14.已知y 与x+1成反比例,当x=2时,y=﹣1,求函数解析式___________ 15.若M (,y 1)、N (,y 2)、P (,y 3)三点都在函数(k >0)的图象上,则y 1、y 2、y 3的大小关系是__________________三、解答题(本大题共9小题,满分90分) 16.(8分)已知二次函数y=x 2-5x-6.(1)求此函数图象的顶点A 和其与x 轴的交点B 和C 的坐标; (2)求△ABC 的面积.17.(8分)求证:m 取任何实数时,抛物线y=2x 2-(m+5)x+(m+1)的图象与x 轴必有两个交点.O y x1 1 O yx1 1 C .O y x1 1 D .O yx1 1 Oyx 4 3 6 A .O yx 43 6 B .O yx 42 6 C .O yx 43 6 D .P A BCDEFOO O O O xx xxA .B .C .D . y y y y yxy C OA B第8题yxB COA y 1=k 1xy 2= k 2x18.(8分)如图,某学生推铅球,铅球出手(点A 处)的高度是0.6m ,出手后的铅球沿一段抛物线运行,当运行到最高3m 时,水平距离X =4m.(1)求这个二次函数的解析式; (2)该男同学把铅球推出去多远?19.(10分)如图,曲线是反比例函数y =n +7x的图象的一支.(1)这个反比例函数的另一支位于哪个象限?n 的取值范围是什么?(2)若直线y =- 2 3x + 43的图象与反比例函数图象交于点A ,与x 轴交于点B ,△AOB的面积为2,求n 的值.20.(10分)如图,正比例函数y 1=k 1x 与反比例函数y 2= k 2x的图象相交于点A (4,t )和B ,BC ⊥x 轴于点C ,且S △BOC =4.(1)求正比例函数y 1和反比例函数y 2的解析式; (2)结合图象,指出当y 2>y 1时x 的取值范围.21.(8分)如图,反比例函数y=的图象与一次函数y=kx+b 的图象交于点A (m ,2),点B (﹣2,n ),一次函数图象与y 轴的交点为C .(1)求一次函数解析式;(2)求△AOB 的面积.22.(12分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式.(3分)(2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.(3分)(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?(6分)23.(14分)如图,抛物线y=21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0).⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论;⑶点M(m ,0)是x 轴上的一个动点,当CM+DM 的值最小时,求m 的值.24.(12分)心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想状态,随后学生的注意力开始分散,经过试验分析可知,学生的注意力y 随时间t 的变化规律有如下关系式:y =⎩⎪⎨⎪⎧-t 2+24t +100(0<t ≤10),240(10<t ≤20),-7t +380(20<t ≤40).(1)讲课开始后第5分钟时与讲课开始后第25分钟比较,何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中,能持续多少分钟?(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?O B A y x。
第21章 二次函数与反比例函数 沪科版数学九年级上册综合素质评价(含解析)

第21章综合素质评价一、选择题(本大题共10小题,每小题4分,满分40分)1.【2023·合肥48中月考】下列各式中,y 是x 的二次函数的是( )A .y =3xB .y =x 2+(3-x )xC .y =(x -1)2D .y =ax 2+bx +c2.【2023·合肥45中期中】对于二次函数y =-(x -1)2的图象的特征,下列描述正确的是( )A .开口向上B .经过原点C .对称轴是y 轴D .顶点在x 轴上3.已知反比例函数y =k +1x的图象经过点(2,-6),则k 的值为( )A .-11 B .-12 C .-13 D .114.【母题:教材P 21练习T 4】如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的“玲珑变换”.已知抛物线经过两次“玲珑变换”后的一条抛物线是 y =x 2+1,则原抛物线的函数表达式不可能是( )A .y =x 2-1B .y =(x +3)2-4C .y =(x +2)2D .y =(x +4)2+15.下列关于反比例函数y =5x的说法中,正确的是( )A .图象在第二、四象限B .当x <0时,y 随x 的增大而减小C .点(-1,5)在该函数的图象上D .当x <1时,y >56.定义:在同一平面直角坐标系中,两个不相交的函数图象在竖直方向上的最短距离为这两个函数图象的“和谐值”.抛物线 y =x 2-2x +3与直线y =x -2的“和谐值”为( )A .3B .114C .52D .27.【母题:教材P 49习题T 8】一次函数y =ax +b 的图象与反比例函数y =c x的图象如图所示,则二次函数y =ax 2+bx +c 的大致图象是( )8.【2022·合肥模拟】如图,四边形OABC 和四边形BDEF 都是正方形,反比例函数y =k x在第一象限的图象经过点E ,若两正方形的面积差为12,则k 的值为( )A .12B .6C .-12D .89.【2023·合肥45中月考】如图,已知抛物线y =x 2+bx +c 与直线y=x 交于(1,1)和(3,3)两点,有以下结论:①b 2-4c >0;②3b +c +6=0;③当1<x <3时,x 2+(b -1)x +c <0;④当0<x <2时,x 2+bx +c <2x .其中正确结论的个数是( )A .1B .2C .3D .410.【2022·合肥45中模拟】如图,等边三角形ABC 、等边三角形DEF 的边长分别为3和2.开始时点A 与点D 重合,DE 在AB 上,DF 在AC 上,△DEF 沿AB 向右平移,当点D 到达点B 时停止.在此过程中,设△ABC 、△DEF 重合部分(阴影部分)的面积为y ,△DEF 移动的距离为x ,则y 与x 的函数图象大致为( )二、填空题(本大题共4小题,每小题5分,满分20分) 11.【2022·蚌埠模拟改编】已知抛物线y=x2-x-1与x轴的一个交点为(t,0),则代数式-t2+t+2 023的值为________.12.【母题:教材P60B组复习题T5】在反比例函数y=a2+1x的图象上有A(-4,y1),B(-3,y2),C(2,y3)三个点,则y1,y2,y3的大小关系为______________.13.【母题:教材P34习题T5】在平面直角坐标系xOy中,若函数y =kx2+2x+1的图象与x轴只有一个交点,则k=________.14.【2023·合肥48中月考】已知,点A(1,m)和点B(3,n)在二次函数y=ax2+bx+1(a≠0)的图象上,若点C(x0,y0)是该二次函数图象上任意一点,且满足y0≥m.(1)用含a的代数式表示b为________;(2)mn的最大值为________.三、(本大题共2小题,每小题8分,满分16分) 15.【2022·合肥45中模拟】已知某二次函数的图象经过点(-12,1),且顶点坐标是(1,-2),求这个二次函数的表达式.16.已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y与x之间的函数表达式;(2)当x=4时,求y的值.四、(本大题共2小题,每小题8分,满分16分)17.【2022·合肥50中东校模拟】(1)将二次函数y=12x2+x-32配方成顶点式为________;(2)在下面的网格图中建立平面直角坐标系并画出(1)中二次函数的图象,根据图象回答问题:当-3<x≤3时,y的取值范围是________.18.某研究团队测得成人注射一针某种疫苗后体内抗体浓度y(微克/mL)与注射时间x(天)之间的函数关系如图所示(当x<20时,y与x是正比例函数关系;当x≥20时,y与x是反比例函数关系).(1)求当x≥20时,y与x之间的函数表达式;(2)当注射疫苗多少天时,体内抗体浓度不高于140微克/mL?五、(本大题共2小题,每小题10分,满分20分)19.小明同学是一位足球爱好者,在操场进行罚球射门练习.如图,把球看作点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-12)2+h,小明罚任意球时防守队员站在小明正前方9 m处组成人墙,防守队员的身高为2.1 m,对手球门与小明的水平距离为18 m,已知足球球门高为2.43 m.假定小明罚出的任意球恰好正射对手球门.(1)当h=3时,求y与x之间的函数表达式;(2)当h=3时,足球能否越过人墙?足球会不会踢飞?请说明理由.20.如图,直线y=kx+b与双曲线y=mx(x>0)相交于A(1,3),B两点,与x轴相交于点C(4,0).(1)分别求直线AC和双曲线对应的函数表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x>0时,关于x的不等式kx+b>mx的解集.六、(本题满分12分)21.【2022·合肥包河区模拟】已知抛物线y=-x2+(b+1)x+c经过点P(-1,-2b).(1)若b=-3,求这条抛物线的顶点坐标;(2)若b<-3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=3AP,求这条抛物线所对应的二次函数表达式.七、(本题满分12分)22.【2023·合肥45中月考】某公司生产的某种时令商品每件成本为20元,经过市场调研发现:①这种商品在未来40天内的日销售量q(件)与时间t(天)(t为整数)的关系为q=-2t+96.②未来40天内,该商品每天的单价y(元/件)与时间t(天)(t为整数)之间关系的函数图象如图所示.请结合上述信息解决下列问题:(1)当0<t≤20时,y关于t的函数表达式为________;当20<t≤40时,y关于t的函数表达式为________.(2)请预测未来40天内哪一天的单价是27元/件?(3)请预测未来40天内哪一天的日销售利润最大,最大日销售利润是多少?八、(本题满分14分)23.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,-3),点A的坐标为(-1,0).(1)求二次函数的表达式;(2)若点P是抛物线在第四象限上的一个动点,当四边形ABPC的面积最大时,求点P的坐标,并求出四边形ABPC的最大面积;(3)若点Q为抛物线对称轴上一动点,当点Q在什么位置时QA+QC最小,求出点Q的坐标,并求出此时△QAC的周长.答案一、1.C 点拨:A.y是x的一次函数,不是二次函数,故本选项不符合题意;B.y=x2+(3-x)x=x2+3x-x2=3x,y是x的一次函数,不是二次函数,故本选项不符合题意;C.y是x的二次函数,故本选项符合题意;D.当a=0时,y不是x的二次函数,故本选项不符合题意.故选C.2.D 点拨:∵y=-(x-1)2,∴抛物线开口向下,顶点为(1,0),对称轴为直线x=1.3.C 点拨:∵反比例函数y =k +1x的图象经过点(2,-6),∴k +1=2×(-6)=-12,解得k =-13.4.B 点拨:A.y =x 2-1,先向上平移1个单位得到y =x 2,再向上平移1个单位可以得到y =x 2+1,故本选项不符合题意;B.y =(x +3)2-4,无法经两次“玲珑变换”得到y =x 2+1,故本选项符合题意;C.y =(x +2)2,先向右平移2个单位得到y = (x +2-2)2=x 2,再向上平移1个单位得到y =x 2+1,故本选项不符合题意;D.y =(x +4)2+1,先向右平移2个单位得到y = (x +4-2)2+1=(x +2)++1,再向右平移2个单位得到y =x 2+1,故本选项不符合题意.故选B.5.B6.B 点拨:如图,在抛物线y =x 2-2x +3上取一点P ,作PQ∥y 轴交直线y =x -2于点Q ,设P (t ,t 2-2t +3),则Q (t ,t -2),∴PQ =t 2-2t +3-(t -2)=t 2-3t +5=(t -32)2 +114,∴当t =32时,PQ 有最小值,最小值为114,∴抛物线y =x 2-2x +3与直线y =x -2的“和谐值”为114.7.A 点拨:∵一次函数y =ax +b 的图象经过第一、二、四象限,∴a <0,b >0,∴x =-b2a>0,∴二次函数y =ax 2+bx +c 的图象开口向下,对称轴在y 轴右侧.∵反比例函数y =c x的图象在第二、四象限,∴c <0,∴二次函数y =ax 2+bx +c 的图象与y 轴交点在x 轴下方.满足上述条件的函数图象只有选项A.故选A.8.A 点拨:设正方形OABC 、正方形BDEF 的边长分别为a 和b ,则D (a ,a -b ),F (a +b ,a ),E (a +b ,a -b ),∵E 在反比例函数y =k x的图象上,∴(a +b )(a -b )=k ,∴a 2-b 2=k ,∵两正方形的面积差为12,∴k =12.9.C 点拨:∵抛物线y =x 2+bx +c 与x 轴无交点,∴b 2-4c <0,故①不正确;∵当x =3时,y =9+3b +c =3,∴3b +c +6=0,故②正确;∵当1<x <3时,二次函数值小于一次函数值,∴x 2+bx +c <x ,∴x 2+(b -1)x +c <0.故③正确;当x =2时,y =4+2b +c =1,抛物线y =x 2+bx +c 过(2,1).画出函数y =2x 在第一象限内的图象,如图所示:由图象可知,当0<x <2时,x 2+bx +c <2x ,故④正确.10.C 点拨:如图①所示,当E 和B 重合时,AD =AB -DB = 3-2=1,∴当△DEF 移动的距离x 满足0≤x ≤1时,△DEF 在△ABC 内,易知重叠部分的面积y =S △DEF =12×2×3=3;当E在B的右边时,如图②所示,设移动过程中DF与CB交于点N,过点N作NM⊥AE,垂足为M,根据题意得AD=x,AB=3,∴DB=AB-AD=3-x.∵∠NDB=60°,∠NBD=60°,∴△NDB是等边三角形,∴DN=DB=3-x.∵NM⊥DB,∴DM=MB=12(3-x).∵NM2+DM2=DN2,∴NM=32(3-x),∴S△DBN=12DB·NM=12(3-x)×32(3-x)=34(3-x)2,∴y=34(3-x)2=34x2-332x+934,∴当1<x≤3时,y是一个关于x的二次函数,且图象的开口向上,故选C.二、11.2 02212.y 3>y 1>y 213.0或114.(1)b =-2a (2)43 点拨:(1)∵点C (x 0,y 0)是二次函数y =ax 2+bx +1(a ≠0)图象上的任意一点,且满足y 0≥m ,点A (1,m )在该二次函数图象上,∴该二次函数图象开口向上,即a >0,顶点坐标为(1,m ),∴对称轴为x =-b 2a=1,即b =-2a .(2)∵mn =(a +b +1)(9a +3b +1)=(-a +1)(3a +1)=-3(a -13)2 +43,∵-3<0,∴mn 的最大值为43.三、15.解:设所求二次函数的表达式为y =a (x -1)2-2,把(-12,1)代入得a (-12-1)2 -2=1,解得a =43,所以所求二次函数的表达式为y =43(x -1)2-2.16.解:(1)设y 1=kx ,y 2=b x,∴y =y 1+y 2=kx +b x.∵当x =1时,y =4;当x =2时,y =5,∴{k +b =4,2k +b 2=5,解得{k =2,b =2.∴y 与x 之间的函数表达式为y =2x +2x.(2)当x =4时,y =2×4+24=172.四、17. 解:(1)y =12(x +1)2-2(2)如图所示:-2≤y ≤618.解:(1)当x ≥20时,设y 与x 之间的函数表达式是y =k 1x,将(20,280)代入,得280=k 120,解得k 1=5 600,∴当x ≥20时,y 与x 之间的函数表达式是y =5 600x .(2)当x <20时,设y =k 2x ,将(20,280)代入,得280=20k 2,解得k 2=14,∴y =14x .若y ≤140,则14x ≤140,∴x ≤10.由(1)知,当x ≥20时,y =5 600x,若y =140,则140=5 600x,解得x =40.∵5 600>0,∴当x ≥20时,y 随x 的增大而减小.∴当x ≥40时,y ≤140.∴当注射疫苗10天及以下,40天及以上时,体内抗体浓度不高于140微克/mL.五、19.解:(1)当h =3时,y =a (x -12)2+3,∵抛物线y =a (x -12)2+3经过点(0,0),∴0=a (0-12)2+3,解得a =-148,∴y 与x 之间的函数表达式为y =-148(x -12)2+3.(2)当h =3时,足球能越过人墙,足球不会踢飞,理由如下:当h =3时,由(1)得y =-148(x -12)2+3,当x =9时,y =-148×(9-12)2+3≈2.81>2.1,∴足球能越过人墙;当x =18时,y =-148×(18-12)2+3=2.25<2.43,∴足球不会踢飞.20.解:(1)将A (1,3),C (4,0)代入y =kx +b 得{k +b =3,4k +b =0,解得{k =-1,b =4,∴直线AC 的函数表达式为y =-x +4.将(1,3)代入y =m x (x >0)得m =3,∴双曲线的函数表达式为y =3x (x >0).(2)由{y =-x +4,y =3x ,解得{x =1,y =3或{x =3,y =1,∴点B 的坐标为(3,1),∴S △AOB =S △AOC -S △BOC =12×4×3-12×4×1=4.(3)当x >0时,关于x 的不等式kx +b >m x的解集是1<x <3.六、21.解:(1)∵b =-3,∴y =-x 2-2x +c ,点P 的坐标为(-1,6),将(-1,6)代入y =-x 2-2x +c ,得6=-1+2+c ,解得c =5,∴y =-x 2-2x +5=-(x +1)2+6,∴抛物线的顶点坐标为(-1,6).(2)∵y =-x 2+(b +1)x +c ,∴抛物线的对称轴为直线x =b +12.∵b <-3,∴b +12<-1,∴抛物线的对称轴在点P 左侧,∴B 点也在点P 左侧.∵PA ⊥y 轴,∴AP =1,∴BP =3AP =3,∴AB =AP +BP =4,∴点B 的横坐标为-4,∴抛物线的对称轴为直线x =b +12=-4-12=-52,∴b =-6,∴y =-x 2-5x +c ,点P 的坐标为(-1,12),将(-1,12)代入y =-x 2-5x +c ,得12=-1+5+c ,解得c =8,∴y =-x 2-5x +8.七、22.解:(1)y =14t +25;y =-12t +40点拨:当0<t ≤20时,设y 关于t 的函数表达式为y =mt+n ,将(0,25)和(20,30)代入得{n =25,20m +n =30,解得{m =14,n =25,∴当0<t ≤20时,y 关于t 的函数表达式为y =14t +25;当20<t ≤40时,设y 关于t 的函数表达式为y =at +b ,将(20,30)和(40,20)代入得{20a +b =30,40a +b =20,解得{a =-12,b =40,∴当20<t ≤40时,y 关于t 的函数表达式为y =-12t +40.(2)①当0<t ≤20时,令14t +25=27,解得t =8;②当20<t ≤40时,令-12t +40=27,解得t =26.∴预测未来40天内第8天和第26天的单价是27元/件.(3)设当0<t ≤20时,日销售利润为P 1元;当20<t ≤40时,日销售利润为P 2元,则P 1=(-2t +96)(14t +25-20)=-12(t -14)2+578,∵-12<0,∴当t =14时,P 1有最大值,为578;P 2=(-2t +96)(-12t +40-20)=(t -44)2-16,∵1>0,∴当20<t ≤40时,P 2随t 的增大而减小,又∵t 为整数,∴当t =21时,P 2最大,为513.综上所述,第14天的日销售利润最大,最大日销售利润为578元.八、23.解:(1)将A (-1,0),C (0,-3)的坐标分别代入y =x 2+bx+c ,得{1-b +c =0,c =-3,解得{b=-2,c =-3,∴二次函数的表达式为y =x 2-2x -3.(2)如图①,连接AC ,PC ,PB ,BC ,过点P 作PD ⊥x轴,垂足为D ,与直线BC 交于点E ,∵y =x 2-2x -3,令y =0,得x =3或x =-1,∴B (3,0).设经过点B ,C 的直线表达式为y =kx +m ,将B (3,0),C (0,-3)的坐标分别代入y =kx +m ,得{m=-3,3k+m=0,解得{m=-3,k=1,∴经过点B,C的直线表达式为y=x-3.设点P的坐标为(x,x2-2x-3),则E(x,x-3),PE=x-3-(x2-2x-3)=3x-x2.∵S四边形ABPC=S△ABC+S△BCP=12×4×3+12(3x-x2)×3=-3 2(x-3 2)2+758,∴当x=32时,四边形ABPC的面积最大,为758,此时点P的坐标为(32,-154).(3)易知对称轴为直线x=1,点A关于二次函数图象对称轴对称的点为点B,如图②,连接BC交二次函数图象的对称轴于点Q,连接AQ和AC,则QA=QB,∴QA+QC=QB+QC.∵两点之间线段最短,∴此时QB+QC最小,即QA+QC最小,∴此时△QAC的周长=AC+AQ+QC=BC+AC.由(2)知BC所在直线的表达式为y=x-3,∴当x=1时,y=1-3=-2,∴Q(1,-2),由勾股定理得AC=OA2+OC2=10,AQ+CQ=CB=OC2+OB2=3 2,∴此时△QAC的周长为10+3 2.。
2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)

2022-2023学年沪科版九年级数学上册《第21章二次函数与反比例函数》期末综合复习题(附答案)一、选择题1.下列函数是二次函数的是()A.y=2x2﹣3B.y=ax2C.y=2(x+3)2﹣2x2D.2.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)3.已知二次函数y=mx2+x+m(m﹣2)的图象经过原点,则m的值为()A.0或2B.0C.2D.无法确定4.函数y=2x2﹣3x+4经过的象限是()A.一,二,三象限B.一,二象限C.三,四象限D.一,二,四象限5.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2B.﹣2C.4D.﹣46.如图,正△AOB顶点A在反比例函数y=(x>0)的图象上,则点B的坐标为()A.(2,0)B.(,0)C.(,0)D.(,0)7.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.28.函数y=ax+b和y=ax2+bx+c在同一平面直角坐标系内的图象大致是()A.B.C.D.9.如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y=(x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为()A.(,0)B.(,0)C.(3,0)D.(,0)10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题11.抛物线y=x2﹣(b﹣2)x+3b的顶点在y轴上,则b的值为.12.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上的图象上,顶点B在反比例函数y=的图象上,点C在x轴的正半轴上,则平行四边形OABC的面积是.13.抛物线y=x2+bx+3的对称轴为直线x=1,若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.14.二次函数y=x2﹣2x﹣3,当m﹣2≤x≤m时函数有最大值5,则m的值可能为.三、解答题15.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.16.抛物线y=﹣2x2+8x﹣6.(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.17.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?18.已知:函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=﹣1;当x =3时,y=5.求y关于x的函数关系式.19.关于x的函数y=(m2﹣1)x2﹣(2m+2)x+2的图象与x轴只有一个公共点,求m的值.20.在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图,连接AC,P A,PC,若S△P AC=,求点P的坐标.21.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y1=k1x+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线与x轴的交点的坐标及△AOB的面积;(3)当x取何值时,y1=y2;当x取何值时,y1>y2.22.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)23.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y 轴交点纵坐标的最大值.参考答案一、选择题1.解:A、y=2x2﹣3,是二次函数,故此选项符合题意;B、当a=0时,y=ax2不是二次函数,故此选项不符合题意;C、y=2(x+3)2﹣2x2,是一次函数,故此选项不符合题意;D、y=+2,不是二次函数,故此选项不符合题意;故选:A.2.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.3.解:根据题意得:m(m﹣2)=0,∴m=0或m=2,∵二次函数的二次项系数不为零,所以m=2.故选:C.4.解:∵y=ax2+bx+c的顶点坐标公式为(,),∴y=2x2﹣3x+4的顶点坐标为(,),而a=2>0,所以抛物线过第一,二象限.故选:B.5.解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选:D.6.解:如图,过点A作AC⊥y轴于C,∵△OAB是正三角形,∴∠AOB=60°,∴∠AOC=30°,∴设AC=a,则OC=a,∴点A的坐标是(a,a),把这点代入反比例函数的解析式就得到a=,∴a=±1,∵x>0,∴a=1,则OA=2,∴OB=2,则点B的坐标为(2,0).故选:A.7.解:因为对称轴是直线x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.8.解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.9.解:∵△OAP是等腰直角三角形∴P A=OA∴设P点的坐标是(a,a)把(a,a)代入解析式得到a=2∴P的坐标是(2,2)则OA=2∵△ABQ是等腰直角三角形∴BQ=AB∴设Q的纵坐标是b∴横坐标是b+2把Q的坐标代入解析式y=∴b=∴b=﹣1b+2=﹣1+2=+1∴点B的坐标为(+1,0).故选:B.10.解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题11.解:根据题意,把解析式转化为顶点形式为:y=x2﹣(b﹣2)x+3b=(x﹣)2+3b﹣()2,顶点坐标为(,3b﹣()2),∵顶点在y轴上,∴=0,∴b=2.12.解:延长BA交y轴于点D,作BE⊥x轴于点E,则四边形ODBE是矩形,∠ADO=∠CEB=90°,∴S△ADO==,S矩形ODBE=|5|=5,∵AB∥OC,OA∥BC,∴∠DAO=∠DBC=∠ECB,又∵AO=BC,∴△DAO≌△ECB(AAS),∴S△ADO=S△ECB=,∴S▱ABCO=S矩形ODBE﹣S△ADO﹣S△ECB=5﹣﹣=.故答案为:.13.解:∵抛物线y=x2+bx+3的对称轴为直线x=1,∴﹣=1,得b=﹣2,∴y=x2﹣2x+3=(x﹣1)2+2,∴当﹣1<x<4时,y的取值范围是2≤y<11,当y=t时,t=x2﹣2x+3,即x2+bx+3﹣t=0,∵关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,∴t的取值范围是2≤t<11,故答案为:2≤t<11.14.解:∵二次函数y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该函数的对称轴是直线x=1,∵当m﹣2≤x≤m时函数有最大值5,∴当m=2时,m﹣2,m距离对称轴的距离相等,即当m=2时取得最大值,此时y=(2﹣1)2﹣4=﹣3≠5;当m>2时,在x=m处取得最大值,即m2﹣2m﹣3=5,解得m=4或m=﹣2(舍去);当m<2时,在x=m﹣2处取得最大值,即(m﹣2)2﹣2(m﹣2)﹣3=5,解得m=0或m=6(舍去);由上可得,m的值可能是0或4,故答案为:0或4.三、解答题15.解:设抛物线解析式为y=a(x﹣1)2+4,把(﹣2,﹣5)代入得a(﹣2﹣1)2+4=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x﹣1)2+4.16.解:(1)∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2;(2)∵a=﹣2<0,抛物线开口向下,对称轴为直线x=2,∴当x>2时,y随x的增大而减小;(3)令y=0,即﹣2x2+8x﹣6=0,解得x=1或3,抛物线开口向下,∴当x=1或x=3时,y=0;当1<x<3时,y>0;当x<1或x>3时,y<0.17.解:(1)已知一边长为xcm,则另一边长为(10﹣x)cm.则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.18.解:∵y1与x成正比例,y2与x成反比例,∴设y1=k1x,y2=,∴y=k1x+,∵x=1时,y=﹣1;当x=3时,y=5.∴,解得:,∴y关于x的函数关系式为:y=2x﹣.19.解:①当m2﹣1=0,且2m+2≠0,即m=1时,该函数是一次函数,则其图象与x轴只有一个公共点;②当m2﹣1≠0,即m≠±1时,该函数是二次函数,则△=(2m+2)2﹣8(m2﹣1)=0,解得m=3,m=﹣1(舍去).综上所述,m的值是1或3.20.解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(4,0)两点,∴该二次函数的解析式为y=(x+2)(x﹣4),即y=x2﹣x﹣4.(2)如图,连接OP,设P(m,m2﹣m﹣4),由题意可知:A(﹣2,0)、C(0,﹣4);∵S△P AC=S△AOC+S△OPC﹣S△AOP,∴×2×4+×4×m﹣×2×(﹣m2+m+4)=;整理得:m2+2m﹣15=0,解得m=3或m=﹣5(舍弃),∴P(3,﹣).21.解:(1)∵B(2,﹣4)在反比例函数的图象上,∴k2=﹣8.∴反比例函数的解析式为y2=﹣.∵点A(﹣4,n)在y2=﹣上,∴n=2.∴A(﹣4,2).∵y1=k1x+b经过A(﹣4,2),B(2,﹣4),∴.解得.∴一次函数的解析式为y1=﹣x﹣2.(2)∴C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6.(3)由图象,得,当x=﹣4或x=2时,y1=y2;当x<﹣4或0<x<2时,y1>y2.22.解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣7)2+2.88;当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,当x=18时,y=﹣(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6≈8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.23.解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1经过点B(2,3),直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),点(0,1),A(1,2),B(2,3)在直线上,点(0,1),A(1,2)在抛物线上,直线与抛物线不可能有三个交点,∵B(2,3),C(2,1)两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线的解析式为y=﹣x2+2x+1,设平移后的抛物线的解析式为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.(3)另解∵平移抛物线y=﹣x2+2x+1,其顶点仍在直线为y=x+1上,设平移后的抛物线的解析式为y=﹣(x﹣h)2+h+1,∴y=﹣x2+2hx﹣h2+h+1,设平移后所得抛物线与y轴交点的纵坐标为c,则c=﹣h2+h+1=﹣(h﹣)2+∴当h=时,平移后所得抛物线与y轴交点纵坐标的最大值为.。
初三二次函数与反比例函数测试卷

x二次函数与反比例函数测试卷(考试时间100分钟,满分120分)姓名:……………成绩:…………指导老师:张老师 总指导:段老师、徐老师一、 填空题(每题2分,共20分)1、抛物线y =-2x 2-1的对称轴是 ,顶点坐标是2、把二次函数y=-2x 2+4x+3化成y=a (x+m )2+k 的形式是 ,其开口方向向 3.如果函数22(1)m y m x-=-是反比例函数,那么m 的值是.4、抛物线y =-2x 2-x+3与y 轴交点的坐标是 ,与x 轴的交点坐标是 5.在平面直角坐标系中,如果双曲线(0)ky k x=≠经过点(21)-,,那么k = . 6、函数y=2x 2的图象向左平移2个单位,再向上平移3个单位得到的函数关系式是 7.反比例函数k y x=图象上一点(P a 、)b ,且a 、b 是方程2430m m -+=的两个根,则k = . 8.已知(-2,y 1),(-1,y 2),(3,y 3)是二次函数y=x 2-4x+m 上的点,则y 1,y 2,y 3从小到大用 “<”排列是 . 9、若反比例函数1y x=-的图象上有两点1(1)A y ,,2(2)B y ,,则1y ______2y (填“>”或“=”或“<”).10、已知抛物线c bx ax y ++=2与抛物线1272+--=x x y 的形状相同,顶点在直线1=x ,且顶点到x 轴的距离为3,则此抛物线的解析式为 。
二、 选择题(每题3分,共36分)1、已知点(a ,8)在抛物线y=ax 2上,则a 的值为( ) A 、±2 B 、±22 C 、2 D 、-2 2.已知(1)ay a x =-是反比例函数,则它的图象在()A.第一,三象限; B.第二,四象限; C.第一,二象限; D.第三,四象限 3、二次函数c bx ax y ++=2的图象如图(1)所示,则下列结论中正确的是:( ) A a>0 b<0 c>0 B a<0 b<0 c>0 C a<0 b>0 c<0 D a<0 b>0 c>04、形状与抛物线22--=x y 相同,对称轴是2-=x ,且过点(0,3)的抛物线是( )图(1)A 、342++=x x y B 、342+--=x x yC 、342++-=x x y D 、342++=x x y 或342+--=x x y 5.某反比例函数的图象经过点(23)-,,则此函数图象也经过点( ) A .(23)-,B .(33)--,C .(23),D .(46)-,6.已知反比例函数y=2x,下列结论中,不正确...的是( ) A .图象必经过点(1,2) B .y 随x 的增大而减少 C .图象在第一、三象限内D .若1x >,则2y <7、下列四个函数:① (0);y kx k k =>为常数, ② (,0);y kx b k b k =+>为常数, ③ (0);ky k k x=>为常数, ④)2,0(2)2(2<<+-=x a a x a y 为常数, 其中,函数y 的值随着x 值得增大而减少的是( ) A 、 ① B 、② C 、③ D 、④8.如图,四个二次函数的图像中,分别对应的是①y = ax2;②y = bx2;③y = cx2; ④y =dx2.则a 、b 、c 、d 的大小关系为( )A.a>b>c>dB. a>b>d> cC.b > a >c>dD.b>a>d> c9.在同一坐标系中,作22y x =+2、22y x =--1、212y x =的图象,则它们 ( )A .都是关于y 轴对称B .顶点都在原点C .都是抛物线开口向上D .以上都不对10.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( )11.如图(2),过反比例函数2(0)y x x=>的图象上任意两点A ,B 分别作x 轴的垂线,垂足为A ',B ',连接OA ,OB ,设AA '与OB 的交点为P ,AOP △与梯形PA B B ''的面积分别为1S,2S ,比较它们的大小,可有( ) A.12S S >B.12S S = C.12S S <D.大小关系不能确定图(2)12.二次函数c bx x y ++=2的图像向右平移3个单位,再向下平移2个单位,得到函数图像的解析式为122+-=x x y ,则b 与c 分别等于( )A 、6、4B 、-8、14C 、4、6D 、-8、-14yxOB ' A 'A BP三、解答题1、(3×5=15分)求满足下列条件的对应的函数的关系式。
沪科版九年级数学上册试题 第21章二次函数与反比例函数章节测试卷(含解析)

第21章《二次函数与反比例函数》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.反比例函数y=k−2x过点(1,2),则关于一次函数y=kx+k−5说法正确的是( )A.不过第一象限 B.y随x的增大而增大C.一次函数过点(2,9) D.一次函数与坐标轴围成的三角形的面积是4 2.一次函数y=cx−b与二次函数y=a x2+bx+c在同一平面直角坐标系中的图象可能是( )A.B.C.D.3.已知抛物线y=x2+(m+1)x−14m2−1(m为整数)与x轴交于点A,与y轴交于点B,且OA=OB,则m等于( )A.2+5B.2−5C.2D.−24.已知点A(a,y1),B(a+2,y2),在反比例函数y=|k|+1x的图像上,若y1−y2>0,则a的取值范围为()A.a<0B.a<−2C.−2<a<0D.a<−2或a>05.已知二次函数y=m x2−2mx+2(m≠0)在−2≤x<2时有最小值−2,则m=( )A.−4或−12B.4或−12C.−4或12D.4或126.已知二次函数y=−(x+m−1)(x−m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是图象上两点,下列说法正确的是( )A.若x1+x2>1,则y1>y2B.若x1+x2<1,则y1>y2C.若x1+x2>−1,则y1>y2D.若x1+x2<−1,则y1<y27.如图,点A是反比例函数y=4x图像上的一动点,连接AO并延长交图像的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足()A.mn=−2B.mn=−4C.n=−2m D.n=−4m8.已知抛物线y=a x2+bx+c(a、b、c是常数,a≠0)经过点A(1,0)和点B(0,−3),若该抛物线的顶点在第三象限,记m=2a−b+c,则m的取值范围是( )A.0<m<3B.−6<m<3C.−3<m<6D.−3<m<09.如图是抛物线y=a x2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c−a=n;③抛物线另一个交点(m,0)在−2到−1之间;④当x<0时,a x2+(b+2)x≥0;⑤一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根;其中正确的是()A.①②③B.①④⑤C.②④⑤D.②③⑤10.如图,在平面直角坐标系中,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴正半轴上,反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C、D,若点C的横坐标为6,BE=2DE,则k的值为( )A .372B .725C .965D .18二.填空题(共6小题,满分18分,每小题3分)11.如图,抛物线y =a x 2+bx +c 与直线y =kx +ℎ交于A 、B 两点,则关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为 .12.将二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,则该二次函数图像的顶点的纵坐标为 .13.抛物线y =−12x 2+x +4与x 轴交于A ,B 两点(点A 在点B 的左侧),点C(2,y)在在这条抛物线上.(1)则点C 的坐标为 ;(2)若点P 为y 轴的正半轴上的一点,且△BCP 为等腰三角形,则点P 的坐标为 .14.如图,抛物线y =x 2−2x −3与x 轴交于A 、B 两点,与y 轴交于C 点.点D 是抛物线上的一个点,作DE ∥AB 交抛物线于D 、E 两点,以线段DE 为对角线作菱形DPEQ ,点P 在x 轴上,若PQ =12DE 时,则菱形对角线DE 的长为 .15.如图,点A 1,A 2,A 3…在反比例函数y =1x(x >0)的图象上,点B 1,B 2,B 3,…B n 在y 轴上,且∠B 1O A 1=∠B 2B 1A 2=∠B 3B 2A 3=⋅⋅⋅⋅⋅⋅,直线y =x 与双曲线y =1x交于点A 1,B 1A 1⊥OA 1,B 2A 2⊥B 1A 2,B 3A 3⊥B 2A 3…,则B n (n 为正整数)的坐标是 .16.如图,在平面直角坐标系中,O 为坐标原点,△OAB 是等边三角形,且点B 的坐标为(4,0),点A 在反比例函数y =kx (k >0)的图象上.(1)反比例函数y =kx的表达式为 ;(2)把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1.①若此时另一个反比例函数y =k 1x的图象经过点A 1,则k 和k 1的大小关系是:k k 1(填“<”、“>”或“=”);②当函数y =kx的图象经△O 1A 1B 1一边的中点时,则a = .三.解答题(共7小题,满分52分)17.(6分)如图,一次函数y=x−2与反比例函数y=k(k>0)相交于点A(3,n),与x轴交于x点B,(1)求反比例函数解析式(2)点P是y轴上一动点,连接PA,PB,当PA+PB的值最小时,求P点坐标;(3)在(2)的条件下,C为直线y=x−2的动点,连接PC,将点C绕点P逆时针旋转90°得到点D,在C运动过程中,求PD的最小值.18.(6分)在平面直角坐标系中,已知二次函数y=−x2+bx+c(b,c是常数).(1)当b=−2,c=3时,求该函数图象的顶点坐标.(2)设该二次函数图象的顶点坐标是(m,n),当该函数图象经过点(1,−3)时,求n关于m的函数解析式.(3)已知b=2c+1,当0≤x≤2时,该函数有最大值8,求c的值.19.(8分)如图,抛物线y=a x2+bx−5经过A(−1,0),B(5,0)两点.2(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC值最小,求最小值;(3)点M为x轴上一动点,在拋物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.20.(8分)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为(−3,−10).运2动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,),正常情况下,运动员在距水面高度5米以前,必须运动员在空中最高处A点的坐标为(1,54完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.(1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;(2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且EM=212,EN=272,该运动员入水后运动路线对应的抛物线解析式为y=a(x−ℎ)2+k,且顶点C距水面4米,若该运动员出水点D在MN 之间(包括M,N两点),请直接写出a的取值范围.21.(8分)如图,二次函数y1=x2+mx+1的图象与y轴相交于点A,与反比例函数y2=kx(x<0)的图象相交于点B(−3,1).(1)求这两个函数的表达式;(2)当y 1随x 的增大而增大,且y 1<y 2时,直接写出x 的取值范围;(3)平行于x 轴的直线l 与函数y 1的图象相交于点C 、D (点C 在点D 的右边),与函数y 2的图象相交于点E .若△ACE 与△BDE 的面积相等,求点E 的坐标.22.(8分)如图,在平面直角坐标系中,二次函数y =a x 2+bx −4(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC =4OB .(1)求直线CA 的表达式;(2)求该二次函数的解析式,并写出函数值y 随x 的增大而减小时x 的取值范围;(3)点P是抛物线上的一个动点,设点P的横坐标为n(0<n<4).当△PCA的面积取最大值时,求点P的坐标;(4)当−1≤x≤m时,二次函数的最大值与最小值的差是一个定值,请直接写出m的取值范围.23.(8分)如图,一次函数的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象交于点C(4,m),D(−2,−4).(1)求一次函数和反比例函数表达式;(2)点E为y轴正半轴上一点,当△CDE的面积为9时,求点E的坐标;(3)在(2)的条件下,将直线AB向上平移,平移后的直线交反比例函数图象于点F(2,n),交y 轴于点G,点H为平面直角坐标系内一点,若以点E、F、G、H为顶点的四边形是平行四边形,写出所有符合条件的点H的坐标;并写出求解点H的坐标的其中一种情况的过程.答案解析一.选择题1.B【分析】把点(1,2)代入反比例函数y=k−2x,求出k的值,再把k的值代入一次函数y=kx+k−5,再根据一次函数的性质即可解答.【详解】解:∵反比例函数y=k−2x过点(1,2),∴2=k−2,解得k=4,∴一次函数y=kx+k−5的解析式为y=4x−1,∴函数图像过一三四象限,不过第二象限,故A错误,不符合题意;∵4>0,∴y随x的增大而增大,故B正确,符合题意;∵当x=2时,y=4×2−1=7,∴一次函数不过点(2,9),故C错误,不符合题意;∵y=4x−1与坐标轴的交点为(0,−1),(14,0),∴一次函数与坐标轴围成的三角形的面积为12×1×14=18,故D错误,不符合题意.故选:B.2.D【分析】先假设c<0,根据二次函数y=a x2+bx+c图象与y轴交点的位置可判断A,C是否成立;再假设c>0,b<0,判断一次函数y=cx−b的图象位置及增减性,再根据二次函数y=a x2 +bx+c的开口方向及对称轴位置确定B,D是否成立.【详解】解:若c<0,则一次函数y=cx−b图象y随x的增大而减小,此时二次函数y=a x2 +bx+c的图象与y轴的交点在y轴负半轴,故A,C错;若c>0,b<0,则一次函数y=cx−b图象y随x的增大而增大,且图象与y的交点在y轴正半轴上,此时二次函数y=a x2+bx+c的图象与y轴的交点也在y轴正半轴,若a>0,则对称轴x=−b2a >0,故B错;若a<0,则对称轴x=−b2a<0,则D可能成立.故选:D.3.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.4.D【分析】根据反比例函数的性质分两种情况进行讨论,①当点(a,y1)、(a+2,y2)在图象的同一分支上时;②当点(a,y1)、(a+2,y2)在图象的两支上时,分别求解即可.【详解】解:∵|k|+1>0,∴图像在一、三象限,在反比例函数图像的每一支上,y随x的增大而减小,∵y1−y2>0,∴ y1>y2,①当点(a,y1)、(a+2,y2)在同一象限时,∵y1>y2,i.当在第一象限时,∴0<a<a+2,解得a>0;ii.当在第三象限时,∴a<a+2<0,解得a<−2;综上所述:a<−2或a>0;②当点(a,y1)、(a+2,y2)不在同一象限时,∵y1>y2,∴a>0,a+2<0,此不等式组无解,因此,本题a的取值范围为a<−2或a>0,故选:D.5.B【分析】先求出二次函数对称轴为直线x=1,再分m>0和m<0两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数y=m x2−2mx+2=m(x−1)2−m+2,∴对称轴为直线x=1,①当m>0,抛物线开口向上,x=1时,有最小值y=−m+2=−2,解得:m=4;②当m<0,抛物线开口向下,∵对称轴为直线x=1,在−2≤x<2时有最小值−2,∴x=−2时,有最小值y=9m−m+2=−2,解得:m=−12.故选:B.6.A【分析】将函数化为二次函数的一般形式,可以求得对称轴为x=12,然后根据函数图像上点的坐标与对称轴的关系即可得到答案;【详解】解:∵y=−(x+m−1)(x−m)+1=−x2+x+m2−m+1∴函数图像开口向下,对称轴为x=12当x1+x2=1时,A、B两点关于对称轴对称,此时y1=y2;当x1+x2>1时,A、B在对称轴右侧或分别在对称轴两侧且A到对称轴的距离小于B到对称轴的距离,此时y1>y2;当x1+x2<1时,A、B在对称轴左侧或分别在对称轴两侧,且A到对称轴的距离大于B到对称轴的距离,此时y1<y2;由此可判断选项,只有A选项符合,故选A;7.B【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,根据等腰直角三角形的性质得出OC=OA,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出ΔAOE≅ΔCOF,根据全等三角形的性质,可得出A(−m,n),进而得到−mn=4,进一步得到mn=−4.【详解】解:连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,如图所示:∵由直线AB与反比例函数y=4x的对称性可知A、B点关于O点对称,∴AO=BO,又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=12AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴ΔAOE≅ΔCOF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=−m,OF=n,∴AE=−m,OE=n,∴A(n,−m),图像上,∵点A是反比例函数y=4x∴−mn=4,即mn=−4,故选:B.8.B【分析】由顶点在第三象限,经过点A(1,0)和点B(0,−3),可得出:a>0,−b<0,即可2a得出0<a<3,又由于m=2a−b+c=2a−(3−a)+(−3)=3a−6,求出3a−6的范围即可.【详解】∵抛物线y=a x2+bx+c过点(1,0)和点(0,−3),∴c=−3,a+b+c=0,即b=3−a,∵顶点在第三象限,经过点A(1,0)和点B(0,−3),∴a>0,−b<0,2a∴b>0,∴b=3−a>0,∴a<3,∴0<a<3∵m=2a−b+c=2a−(3−a)+(−3)=3a−6,∵0<a<3,∴0<3a<9∴−6<3a−6<3,∴−6<m<3.故选:B.9.D【分析】①根据抛物线的对称轴公式即可求解;②当x等于1时,y等于n,再利用对称轴公式即可求解;③根据抛物线的对称性即可求解;④根据抛物线的平移即可求解;⑤根据一元二次方程的判别式即可求解.【详解】解:①因为抛物线的顶点坐标为(1,n),则其对称轴为x=1,即−b2a=1,所以b=−2a,所以①错误;②当x=1时,y=n,所以a+b+c=n,因为b=−2a,所以c−a=n,所以②正确;③因为抛物线的对称轴为x=1,且与x轴的一个交点在点(3,0)和(4,0)之间,所以抛物线另一个交点(m,0)在−2到−1之间;所以③正确;④因为a x2+(b+2)x≥0,即a x2+bx≥−2x,根据图象可知:把抛物线y=a x2+bx+c(a≠0)图象向下平移c个单位后图象过原点,即可得抛物线y=a x2+bx(a≠0)的图象,所以当x<0时,a x2+bx<−2x,即a x2+(b+2)x<0.所以④错误;⑤一元二次方程a x2+(b−12)x+c=0,Δ=(b−12)2−4ac,因为根据图象可知:a<0,c>0,所以−4ac>0,所以Δ=(b−12)2−4ac>0,所以一元二次方程a x2+(b−12)x+c=0有两个不相等的实数根.所以⑤正确.综上,正确的有②③⑤,故选:D.10.C【分析】过点D作DF⊥BC于点F,由勾股定理构造方程求出DE=125,BE=DF=245,再根据反比例函数图像同时经过顶点C、D,即可解答.【详解】解:过点D作DF⊥BC于点F,∵点C的横坐标为6,,∴BC=6.∵四边形ABCD是菱形,∴CD=BC=6.C∵BE=2DE,∴设DE=x,则BE=2x.∴DF=BE=2x,BF=DE=x,FC=BC−BF=6−x.在Rt△DCF中,∵D F2+C F2=C D2,∴(2x)2+(6−x)2=62.解得:x1=0(不合题意,舍去),x2=125,∴DE=125,BE=DF=245.设OB=a,则D(125,a+245),C(6,a)∵反比例函数y=kx(k≠0,x>0)的图像同时经过顶点C,D,∴k=125×(a+245)=6a.解得:a=165.∴k=6a=965.故选C.二.填空题11.x <2或x >4【分析】根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,进而结合函数图象得出x 的取值范围.【详解】解:根据题意得出:当a x 2+bx +c >kx +ℎ时,则a x 2+(b −k )x +c >ℎ,由图象可得:关于x 的不等式a x 2+(b −k )x +c >ℎ的解集为:x <2或x >4,故答案为:x <2或x >4.12.−8【分析】设设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n 4,再进行变形得出(x 1+x 2)2−4x 1x 2=8,再代入可得m 2−1616=8,进而可得出该二次函数图像的顶点的纵坐标【详解】∵二次函数y =4x 2+mx +n (m ,n 为常数)的图像沿与x 轴平行的直线翻折,若翻折后的图像将x 轴截出长为22的线段,∴翻折前两交点间的距离不变,设翻折后图像与x 轴的两个交点的横坐标分别为x 1,x 2,则x 1+x 2=−m4,x 1x 2=n4,∴|x 1−x 2|=22,∴(x 1−x 2)2=8,∴(x 1+x 2)2−4x 1x 2=8,∴(−m4)2−4×n 4=8,∴m 2−1616=8,又∵y =4x 2+mx +n 的纵坐标为4×4n −m 24×4=16n −m 216,∴16−m 216=−8,即该二次函数图像顶点纵坐标为−8故答案为:−813.(2,4)(0,2),(0,1)2【分析】(1)将点C(2,y)代入函数解析式即可得出结论;(2)令y=0,求得点B的坐标,依据分类讨论的思想方法,利用△BCP为等腰三角形和等腰三角形的解答即可得出结论.【详解】解:(1)∵点C(2,y)在抛物线y=−1x2+x+4上,2∴y=4,∴C(2,4),故答案为:(2,4);(2)令y=0,则−1x2+x+4=0,2解得:x=4或x=−2.∵抛物线y=−1x2+x+4与x轴交于A,B两点,点A在点B的左侧,2∴B(4,0).∵点P为y轴的正半轴上的一点,①当BP=BC时,如图,过点C作CD⊥OB于点D,∵C(2,4),B(4,0),∴CD=4,OB=4,OD=2,∴CD=OB.在Rt△BPO和Rt△BCD中,{BP=BCOB=DC,∴Rt△BPO≌Rt△BCD(HL),∴OP=BD.∵OB=4,OD=2,∴BD=OB−OD=2,∴OP=BD=2,∴P(0,2);②当BP=PC时,如图,过点C作CE⊥y轴于点E,∵C(2,4),B(4,0),∴CE=2,OE=4,OB=4,设点P(0,a),∵点P为y轴的正半轴上的一点,∴OP=a,EP=4−a,∵BP=PC,∴B P2=P C2,∴E P2+C E2=O P2+O B2,∴(4−a)2+22=a2+42,,解得:a=12).∴P(0,12综上,当△BCP为等腰三角形,则点P的坐标为(0,2)或(0,1).2故答案为:(0,2)或(0,1).214.1+652或−1+652【分析】设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM= 12PQ ,设点D 的横坐标为t ,由此表示出DE 的长,PM 的长,进而可得PQ 的长,根据PQ = 12DE 建立方程,求解即可.【详解】解:如图,由抛物线的解析式可知,抛物线y =x 2−2x −3的对称轴为直线x =1,设菱形DPEQ 对角线的交点为M ,则PQ ⊥DE ,PM = 12PQ ,∵点D 是抛物线上的一个点,且DE ∥AB ,设点D 的横坐标为t ,∴D (t ,t 2−2t −3),∵DE ∥AB ,∴点D ,点E 关于对称轴对称,∴点P 和点Q 在对称轴上,∴E(2−t ,t 2−2t −3),∴DE =(2−2t),PM=|t 2−2t −3|,∴PQ =2PM =2|t 2−2t −3|,∵PQ =12DE ,∴2|t 2−2t −3|=12(2−2t ),解得t 1= 5−654,t 2= 5+654(舍去),t 3= 3−654,t 4= 3+654(舍去),∴DE =2−2t = 1+652或−1+652.故答案为:1+652或−1+652.15.(0,2n )【分析】如图,过A1作A1H⊥y轴于H,求解A1(1,1),结合题意,△O A1B1,△B1A2B2,△B2A3B3,…,都是等腰直角三角形,想办法求出O B1,O B2,O B3,O B4,…,探究规律,利用规律解决问题即可得出结论.【详解】解:如图,过A1作A1H⊥y轴于H,∵{y=1x y=x,其中x>0,解得:{x=1y=1,即A1(1,1),∴OH=A1H=1,∴∠A1OH=45°,∵B1A1⊥O A1,∴△O A1B1是等腰直角三角形,∴O B1=2;同理可得:△B1A2B2,△B2A3B3,…,都是等腰直角三角形,同理设A2(m,m+2),∴m(2+m)=1,解得m=2−1,(负根舍去)∴O B2=2+22−2=22,同理可得:O B3=23,⋅⋅⋅⋅⋅⋅∴O Bn=2n,∴Bn(0,2n).故答案为:(0,2n).16.y=43x<1或3【分析】(1)如图所示,过点A作AC⊥OB于C,利用等边三角形的性质和勾股定理求出A (2,23),再利用待定系数法求解即可;(2)求出A1(2+a,23),由a>0,得到2+a>2,则k1>43=k;(3)分当函数y=kx 的图象经过O1A1的中点时,当函数y=kx的图象经过A1B1的中点时,两种情况利用两点中点坐标公式和待定系数法求解即可.【详解】解:(1)如图所示,过点A作AC⊥OB于C,∵(4,0),∴OB=4,∵△AOB是等边三角形,∴OC=BC=12OB=2,OA=OB=4,∴AC=O A2−O C2=23,∴A(2,23),∵点A在反比例函数y=kx(k>0)的图象上,∴23=k2,∴k=43,∴反比例函数y=kx 的表达式为y=43x,故答案为:y=43x;(2)①∵把△OAB 向右平移a 个单位长度,对应得到△O 1A 1B 1,∴A 1(2+a ,23),∵反比例函数y =k 1x的图象经过点A 1,∴23=k 12+a,∴k 1=23(2+a ),∵a >0,∴2+a >2,∴k 1>43=k ,故答案为:<;(3)当函数y =kx 的图象经过O 1A 1的中点时,∵O 1(a ,0),A 1(a +2,23),∴函数y =kx 的图象经过点(a +a +22,232),∴3=43a +1,∴a =3;当函数y =kx 的图象经过A 1B 1的中点时,∵B 1(a +4,0),A 1(a +2,23),∴函数y =k x 的图象经过点(a +4+a +22,232),∴3=43a +3,∴a =1,故答案为:1或3.三.解答题17.(1)解:∵点A (3,n )在一次函数y =x −2的图象上,∴n =3−2=1,∴点A (3,1),∵点A (3,1)在反比例函数y =kx (k >0)的图象上,∴k =3×1=3,∴反比例函数解析式为y =3x ;(2)解:作点B 关于y 轴的对称点B ',连接A B '交y 轴于点P ,此时PA +PB 的值最小,令y =0,则0=x −2,解得x =2,∴点B (2,0),点B '(−2,0),设直线A B '的解析式为y =kx +b ,∴{3k +b =1−2k +b =0,解得{k =15b =25,∴直线A B '的解析式为y =15x +25,令x =0,则y =25,∴P 点坐标为(0,25);(3)解:由旋转的性质知PC =PD ,当PC ⊥AB 时,PC 有最小值,此时PD的值最小,设直线AB交y轴于点E,令x=0,则y=0−2=−2,,点E(0,−2),∴OE=2,OB=2,∴BE=22+22=22,∵S△PBE =12PE×OB=12BE×PC,∴PC=(25+2)×222=625,∴PD的最小值为625.18.(1)解:当b=−2,c=3时,y=−x2−2x+3=−(x+1)2+4,∴此时该函数图象的顶点坐标为(−1,4);(2)解:∵该函数图象经过点(1,−3),∴−1+b+c=−3,则c=−2−b,∵该二次函数图象的顶点坐标是(m,n),∴m=−b2×(−1)=b2,n=4×(−1)×c−b24×(−1)=4c+b24=c+b24,∴b=2m,c=−2−2m,∴n=−2−2m+4m24,即n=m2−2m−2;(3)解:当b=2c+1时,二次函数y=−x2+(2c+1)x+c的对称轴为直线x=2c+12=c+12,开口向下,∵0≤x≤2,∴当0≤c +12≤2即−12≤c ≤32时,该函数的最大值为4×(−1)×c −(2c +1)24×(−1)=c +(2c +1)24=8,即4c 2+8c −31=0,解得c 1=−1+352(不合题意,舍去),c 2=−1−352(不合题意,舍去);当c +12<0即c <−12时,0≤x ≤2时,y 随x 的增大而减小,∴当x =0时,y 有最大值为c =8,不合题意,舍去;当c +12>2即c >32时,0≤x ≤2时,y 随x 的增大而增大,∴当x =2时,y 有最大值为−22+2(2c +1)+c =8,解得c =2,符合题意,综上,满足条件的c 的值为2.19.(1)解:∵抛物线y =a x 2+bx −52经过A (−1,0),B (5,0)两点,∴{a −b −52=025a +5b −52=0,解得:a =12,b =−2,∴此拋物线的解析式为y =12x 2−2x −52;(2)如图,连接BC ,交对称轴于点P ,∵拋物线的解析式为y =12x 2−2x −52,∴其对称轴为直线x =−b2a =−−22×12=2,当x =0时,y =−52,∴C (0,−52),又∵B (5,0),∴设BC 的解析式为y =kx +b (k ≠0),∴{5k +b =0b =−52,解得:k =12,b =−52,∴ BC 的解析式为y =12x −52,当x =2时,y =2×12−52=−32,∴P (2,−32),∴PA +PC =(−1−2)2+(32+0)2+(0−2)2+(−52+32)2=552;(3)存在,如图所示:①当点N 在x 轴下方时,∵抛物线的对称轴为x =2,C (0,−52),∴N 1(4,−52),②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△A N 2D 和△M 2CO 中,{∠N 2AD =∠C M 2OA N 2=C M 2∠N 2DA =∠CO M 2,∴△A N 2D ≌△M 2CO (ASA ), ∴N 2D =OC =52,即N 2点的纵坐标为52∴12x 2−2x −52=52,解得:x =2+14或x =2−14,∴N 2(2+14,52),N 3(2−14,52),综上所述符合条件的N 的坐标有(4,−52),(2+14,52),(2−14,52).20.(1)解:设抛物线的解析式为y =a 0(x −1)2+54将(0,0)代入解析式得:a 0=−54∴抛物线的解析式为y =−54(x −1)2+54令y =−10,则−10=−54(x −1)2+54解得:x 1=−2(舍去),x 2=4∴入水处B 点的坐标(4,−10)(2)解:距点E 的水平距离为5米,对应的横坐标为:x =5−32=72将x =72代入解析式得:y =−54×(72−1)2+54=−10516∵−10516−(−10)=5516<5∴该运动员此次跳水失误了(3)解:∵EM=212,EN =272,点E 的坐标为(−32,−10)∴点M 、N 的坐标分别为:(9,−10),(12,−10)∵该运动员入水后运动路线对应的抛物线解析式为y =a (x −ℎ)2+k ,顶点C 距水面4米y =a (x −132)2−14,∴当抛物线经过点M时,把点M(9,−10)代入得:a=1625同理,当抛物线经过点N(12,−10)时,a=14由点D在MN之间可得:14≤a≤162521.(1)解:∵二次函数y1=x2+mx+1的图像与反比例函数y2=kx(x>0)的图像相交于点B(−3,1),∴(−3)2−3m+1=1,k−3=1,解得m=3,k=−3,∴二次函数的解析式为y1=x2+3x+1,反比例函数的解析式为y2=−3x(x>0).(2)∵二次函数的解析式为y1=x2+3x+1,∴对称轴为直线x=−32,由图象知,当y1随x的增大而增大,且y1<y2时,−32≤x<0(3)由题意作图如下:∵当x=0时,y1=1,∴A(0,1),∵B(−3,1),∴△ACE的CE边上的高与△BDE的DE边上的高相等,∵△ACE与△BDE的面积相等,∴CE=DE,即E点是二次函数的对称轴与反比例函数的交点,当x=−32时,y2=2,∴E(−32,2).22.(1)解:令x=0,则y=−4,∴C(0,−4),∴OC=4,∵OA=OC,∴AO=4,∴A(4,0),设直线AC的解析式为y=kx+b,∴{4k+b=0b=−4,解得{k=1b=−4,∴y=x−4;(2)解:∵OC=4OB,∴OB=1,∴B(−1,0),将A(4,0),B(−1,0)代入y=a x2+bx−4,∴{16a+4b−4=0a−b−4=0,解得{a=1b=−3,∴y=x2−3x−4,∵y=x2−3x−4=(x−32)2−254,a=1>0,∴抛物线开口向上,对称轴为直线x=32,∴函数值y随x的增大而减小时x的取值范围为x<32;(3)解:过点P作PQ∥y轴交AC于点Q,∵点P 的横坐标为n ,∴ P (n ,n 2−3n −4),则Q (n ,n −4),∴ PQ =n −4−(n 2−3n −4)=−n 2+4n ,由(1)得A (4,0),C (0,−4),∴ S △PCA =S △PCQ +S △PAQ=12QP (x P −x C )+12QP (x A −x P )=12QP (x P −x C +x A −x P )=12QP (x A −x C )=12×4×(−n 2+4n )=−2(n −2)2+8,∵ 0<n <4,∴当n =2时,△PCA 的面积有最大值,此时P (2,−6);(4)解:当32≤m ≤4时,二次函数的最大值与最小值的差是一个定值,∵ y =x 2−3x −4=(x −32)2−254,∴抛物线的对称轴为直线x =32,①当−1<m <32时,x =−1,y 有最大值0,x =m ,y 有最小值m 2−3m −4,∴ 0−(m 2−3m −4)=−m 2+3m+4,此时二次函数的最大值与最小值的差随m 的变化而变化;②当32≤m ≤4时,x =32,y 有最小值−254,x =−1,y 有最大值0,∴0−(−254)=254,此时二次函数的最大值与最小值的差是一个定值;③当m>4时,x=32,y有最小值−254,x=m,y有最大值m2−3m−4,∴m2−4m−4+254=m2−3m+94,此时二次函数的最大值与最小值的差随m的变化而变化;综上所述:32≤m≤4时,二次函数的最大值与最小值的差是一个定值.23.(1)∵点C(4,m),D(−2,−4)在反比例函数图象上,∴4m=(−2)×(−4),解得m=2,∴C(4,2),∴反比例函数的解析式为y=8x;设一次函数的解析式为y=kx+b,∴{−2k+b=−44k+b=2,解得{k=1b=−2,∴一次函数的解析式为y=x−2;(2)直线y=x−2与y轴的交点B(0,−2),设E(0,t),t>0,∴EB=t+2,∴SΔCDE =12×BE×(4+2)=9,∴3(t+2)=9,解得t=1,∴E(0,1);(3)设直线AB向上平移后的函数解析式为y=x−2+ℎ,∵F(2,n)在反比例函数图象上,∴n=4,∴F(2,4),将F点代入y=x−2+ℎ,则ℎ=4,∴平移后的直线解析式为y=x+2,∴G(0,2),设H(x,y),①当HE为平行四边形的对角线时,x=2,y+1=6,∴H(2,5);②当HF为平行四边形的对角线时,x+2=0,y+4=3,∴H(−2,−1);③当HG为平行四边形的对角线时,x=2,y+2=5,∴H(2,3);综上所述:H点坐标为(2,5)或(−2,−1)或(2,3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学二次函数与反比例函数综合测试
一.选择题(共10小题,满分40分,每小题4分)
1.下列函数关系式中,是二次函数的是()
A.y=x3﹣2x2﹣1 B.y=x2C.D.y=x+1
2.在下列关系式中,y是x的二次函数的关系式是()
A.2xy+x2=1 B.y2﹣ax+2=0 C.y+x2﹣2=0 D.x2﹣y2+4=0
3.已知反比例函数y=,当x>0时,y随x的增大而增大,则关于x的方程ax2﹣2x+b=0的根的情况是()
A.有两个正根B.有两个负根
C.有一个正根一个负根D.没有实数根
4.如下图,等腰直角三角形ABC(∠C=90°)的直角边长与正方形MNPQ的边长均为4cm,CA 与MN在同一直线上,开始时A点与M点重合,让△ABC向右平移,直到C点与N点重合时为止,设△ABC与正方形MNPQ的重叠部分(图中阴影部分)的面积为ycm2,MA的长度为xcm,则y与x之间的函数关系大致为()
A、 B C D
5.如图,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°,动点P、Q同时以每秒1cm 的速度从点B出发,点P沿BA、AD、DC运动,点Q沿BC、CD运动,P点与Q点相遇时停止,设P、Q同时从点B出发x秒时,P、Q经过的路径与线段PQ围成的图形的面积为y(cm2),则y与x之间的函数关系的大致图象为()
6.函数(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()
A.B.C.D.
7.已知反比例函数y=(a ≠0)的图象,在每一象限内,y 的值随x 值的增大而减少,则一次函数y=﹣ax+a 的图象不经过( )
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
8.设反比例函数y=﹣(k ≠0)中,y 随x 的增大而增大,则一次函数y=kx ﹣k 的图象不经过( )
9.二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=bx+a 的图象不经过( )
10.二次函数y=ax 2+bx+c 的图象如图所示,则直线y=bx+c 的图象不经过( )
二.填空题(共5小题,满分25分,每小题5分)
11.关于x 的函数y=(m+1)x 2+(m ﹣1)x+m ,当m=0时,它是 _________ 函数;当m=﹣1时,它是 _________ 函数. 12.当m= _________ 时,函数是二次函数.
13.已知抛物线y=ax 2+bx+c 的部分图象如下图1,若y >0,则x 的取值范围是 ______. A .
B .
C .
D .
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
14.已知二次函数y
1=ax2+bx+c(a≠0)与一次函数y
2
=kx+b(k≠0)的图象相交于点
A(﹣2,4),B(8,2)(如下图2所示),则能使y
1>y
2
成立的x的取值范围是____ .
15.如上图3所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是______.三.解答题(共8小题,满分65分)
16.已知反比例函数的图象经过点,若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m),求平移后的一次函数图象与x轴的交点坐标.
17.如图,已知A(﹣4,0),B(﹣1,4),将线段AB绕点O,顺时针旋转90°,
得到线段A′B′.(1)求直线BB′的解析式;(2)抛物线y
1
=ax2﹣19cx+16c经过A′,B′两点,求抛物线的解析式并画出它的图象;(3)在(2)的条件下,若直线A′B′的函数解析式
为y
2=mx+n,观察图象,当y
1
≥y
2
时,写出x的取值范围.
18.如图,一次函数y=kx+b的图象与反比例函数的图象交于A(﹣2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积.
19.如图,A、B两点在函数y=m/x(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.
20.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=12cm.点P从点C处出发以1cm/s向A匀速运动,同时点Q从B点出发以2cm/s向C点匀速移动,若一个点到达目的停止运动时,另一点也随之停止运动.运动时间为t秒;(1)用含有t的代数式表示BQ、CP的长;
(2)写出t的取值范围;(3)用含有t的代数式表示Rt△PCQ和四边形APQB的面积;(4)当P、Q处在什么位置时,四边形PQBA的面积最小,并求这个最小值.
21.为了预防“甲型H
1N
1
”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内
每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1)药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?
(2)研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?
(3)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?
22.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交
y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.
23.我们知道:根据二次函数的图象,可以直接确定二次函数的最大(小)值;根据“两点之间,线段最短”,并运用轴对称的性质,可以在一条直线上找到一点,使得此点到这条直线同侧两定点之间的距离之和最短.
这种数形结合的思想方法,非常有利于解决一些数学和实际问题中的最大(小)值问题.请你尝试解决一下问题:(1)在图1中,抛物线所对应的二次函数的最大值是_________ ;(2)在图2中,相距4km的A、B两镇位于河岸(近似看做直线l)的同侧,且到河岸的距离AC=1千米,BD=2千米,现要在岸边建一座水塔,分别直接给两镇送水,为使所用水管的长度最短,请你:①作图确定水塔的位置;②求出所需水管的长度.
(3)已知x+y=6,求+的最小值;此问题可以通过数形结合的方法加以解决,具体步骤如下:①如图3中,作线段AB=6,分别过点A、B,作CA⊥AB,DB⊥AB,
使得CA= _________ ,DB= _________ ;
②在AB上取一点P,可设AP= _________ ,BP= _________ ;
③+的最小值即为线段_________ 和线段_________ 长度之和的最小值,最小值为_________ .。