大数据平台规划部署
合集下载
大数据云平台项目规划建设方案

大数据云平台项目规划建设 方案
汇报人: 2024-01-05
目录
• 项目背景与目标 • 大数据云平台概述 • 建设内容与方案 • 实施计划与时间表 • 资源需求与预算 • 风险评估与应对策略 • 效益评估与预期成果 • 总结与展望
01
项目背景与目标
项目背景
1
随着信息化和数字化的快速发展,企业、政府和 各类组织的数据量呈爆炸式增长,对数据处理和 分析的需求日益迫切。
系统设计与开发
2023年11月-2024年3月,负责人:李四
系统集成与测试
2024年4月-6月,负责人:王五
05
资源需求与预算
人员需求
数据分析师
负责数据清洗、整合、分析和建模,需 要具备统计学、数学和编程知识。
项目经理
负责整体项目的管理和协调,需要有 PMP或类似认证。
系统工程师
负责云平台的搭建、维护和优化,需 要有丰富的系统集成和运维经验。
目标受众
企业和组织的数据处理和分析人员。 业务和管理层决策者。 需要进行数据驱动决策的各类组织和机构。
02
大数据云平台概述
大数据云平台定义
01
大数据云平台是一种基于云计算 的大数据处理和分析平台,它能 够提供大规模数据存储、处理、 分析和可视化等功能。
02
它通过云计算的弹性可扩展性, 实现了对海量数据的快速处理和 实时分析,为企业和组织提供了 高效、可靠的大数据解决方案。
竞争分析
对竞争对手进行深入分析,了解其产品、技术和服务等方面的优劣 势,制定相应的竞争策略。
客户需求
深入了解客户需求,持续优化产品和服务,提高客户满意度和忠诚度 。
07
效益评估与预期成果
经济效益评估
汇报人: 2024-01-05
目录
• 项目背景与目标 • 大数据云平台概述 • 建设内容与方案 • 实施计划与时间表 • 资源需求与预算 • 风险评估与应对策略 • 效益评估与预期成果 • 总结与展望
01
项目背景与目标
项目背景
1
随着信息化和数字化的快速发展,企业、政府和 各类组织的数据量呈爆炸式增长,对数据处理和 分析的需求日益迫切。
系统设计与开发
2023年11月-2024年3月,负责人:李四
系统集成与测试
2024年4月-6月,负责人:王五
05
资源需求与预算
人员需求
数据分析师
负责数据清洗、整合、分析和建模,需 要具备统计学、数学和编程知识。
项目经理
负责整体项目的管理和协调,需要有 PMP或类似认证。
系统工程师
负责云平台的搭建、维护和优化,需 要有丰富的系统集成和运维经验。
目标受众
企业和组织的数据处理和分析人员。 业务和管理层决策者。 需要进行数据驱动决策的各类组织和机构。
02
大数据云平台概述
大数据云平台定义
01
大数据云平台是一种基于云计算 的大数据处理和分析平台,它能 够提供大规模数据存储、处理、 分析和可视化等功能。
02
它通过云计算的弹性可扩展性, 实现了对海量数据的快速处理和 实时分析,为企业和组织提供了 高效、可靠的大数据解决方案。
竞争分析
对竞争对手进行深入分析,了解其产品、技术和服务等方面的优劣 势,制定相应的竞争策略。
客户需求
深入了解客户需求,持续优化产品和服务,提高客户满意度和忠诚度 。
07
效益评估与预期成果
经济效益评估
大数据云平台项目规划建设方案

需求分析与评估
总结词
需求细化、优先级排序、风险评估
详细描述
将业务需求和技术需求进行细化,明确各项需求的优先级和实现路径,同时对项目需求进行风险评估,包括资源 、技术、市场等方面的风险,为后续项目计划制定提供依据。
03
项目总体规划
项目整体架构设计
架构设计原则
基于模块化、松耦合、可扩展等原则进行设计,同时考虑高可用性 、安全性、稳定性以及可扩展性等因素。
根据项目需求和实际情况,选择合适 的云平台,如阿里云、腾讯云等。
02
资源规划
根据系统规模和性能要求,规划云平 台所需资源搭建
在选定的云平台上创建部署环境,包 括操作系统、网络环境、数据库等。
性能测试
对部署好的系统进行性能测试,确保 系统能够满足项目需求。
05
运维管理体系建设方案
运维管理策略
制定运维管理策略,包括监控、部署、安全、备份等方 面的策略,以确保系统稳定运行和数据安全。
运维管理流程
明确运维管理流程,包括问题管理、变更管理、配置管 理等方面的流程,以确保运维工作的规范化和高效化。
监控预警与应急响应方案
监控预警
通过建立完善的监控预警系统,实现对系统运行状态 的实时监控和预警,及时发现和解决问题,避免故障 的发生。
项目进度管理与风险管理计划
项目进度管理
制定详细的项目时间表,包括各阶段的时间节点和里程碑,并采用甘特图等工具进行进度监控。
风险管理计划
识别项目中可能出现的风险及影响,制定相应的应对措施和备选方案,确保项目顺利进行。
项目验收与转交方案
项目验收方案
制定详细的验收标准和流程,包括功能测试、性能测试、安 全测试等,确保项目满足预期目标。
大数据集群部署方案

7.运维支持:持续优化运维体系,保障集群稳定运行。
八、风险与应对措施
1.技术风险:关注技术动态,及时更新和升级相关软件。
2.数据安全风险:加强数据安全防护措施,定期进行合规性检查。
3.人才短缺:加强团队培训,提高技能水平。
4.成本控制:合理规划项目预算,控制成本。
九、总结
本方案为企业提供了一套完整、科学的大数据集群部署方案,旨在实现高效、稳定的数据处理和分析。通过严谨的技术选型和部署架构设计,确保数据安全、合规性。同时,注重运维保障和人才培养,提高大数据应用能力。在项目实施过程中,积极应对各类风险,确保项目顺利推进,为企业创造持续的业务价值。
二、项目目标
1.搭建一套完整的大数据集群环境,满足业务部门对数据处理、分析、挖掘的需求。
2.确保集群系统的高可用性、高性能、易扩展性,降低运维成本。
3.遵循国家相关法律法规,确保数据安全与合规性。
三、技术选型
1.分布式存储:采用Hadoop分布式文件系统(HDFS)进行数据存储,确保数据的高可靠性和高可用性。
- Kafka集群:用于收集和传输实时数据,支持实时数据处理。
五、数据安全与合规性
1.数据加密:对存储在HDFS上的数据进行加密,防止数据泄露。
2.访问控制:采用Kerberos进行身份认证,结合HDFS权限管理,实现数据访问控制。
3.数据脱敏:对敏感数据进行脱敏处理,确保数据合规使用。
4.审计日志:开启Hadoop审计日志,记录用户操作行为,便于审计和监控。
- ZooKeeper集群:负责集群的分布式协调服务,确保集群的高可用性。
- Kafka集群:用于收集和传输实时数据,为实时数据处理提供支持。
五、数据安全与合规性
1.数据加密:对存储在HDFS上的数据进行加密处理,防止数据泄露。
八、风险与应对措施
1.技术风险:关注技术动态,及时更新和升级相关软件。
2.数据安全风险:加强数据安全防护措施,定期进行合规性检查。
3.人才短缺:加强团队培训,提高技能水平。
4.成本控制:合理规划项目预算,控制成本。
九、总结
本方案为企业提供了一套完整、科学的大数据集群部署方案,旨在实现高效、稳定的数据处理和分析。通过严谨的技术选型和部署架构设计,确保数据安全、合规性。同时,注重运维保障和人才培养,提高大数据应用能力。在项目实施过程中,积极应对各类风险,确保项目顺利推进,为企业创造持续的业务价值。
二、项目目标
1.搭建一套完整的大数据集群环境,满足业务部门对数据处理、分析、挖掘的需求。
2.确保集群系统的高可用性、高性能、易扩展性,降低运维成本。
3.遵循国家相关法律法规,确保数据安全与合规性。
三、技术选型
1.分布式存储:采用Hadoop分布式文件系统(HDFS)进行数据存储,确保数据的高可靠性和高可用性。
- Kafka集群:用于收集和传输实时数据,支持实时数据处理。
五、数据安全与合规性
1.数据加密:对存储在HDFS上的数据进行加密,防止数据泄露。
2.访问控制:采用Kerberos进行身份认证,结合HDFS权限管理,实现数据访问控制。
3.数据脱敏:对敏感数据进行脱敏处理,确保数据合规使用。
4.审计日志:开启Hadoop审计日志,记录用户操作行为,便于审计和监控。
- ZooKeeper集群:负责集群的分布式协调服务,确保集群的高可用性。
- Kafka集群:用于收集和传输实时数据,为实时数据处理提供支持。
五、数据安全与合规性
1.数据加密:对存储在HDFS上的数据进行加密处理,防止数据泄露。
联通大数据平台规划方案

联通大数据平台规划方案
2023-11-04
目录
• 引言 • 大数据平台需求分析 • 大数据平台架构设计 • 大数据平台关键技术选型 • 大数据平台实施方案 • 大数据平台效益评估 • 结论与展望
01
引言
项目背景
当前社会已经进入大数据时代,大数据技术广泛应用于各个领域,为企业和社会 带来了巨大的价值和潜力。
感谢您的观看
THANKS
降低运营成本
通过大数据分析,可以更精确地预 测市场需求,减少库存和物流成本 ,提高运营效率。
提高运营效率
大数据平台可以实时监测网络状况 ,优化网络资源配置,提高网络运 行效率。
增加收益
通过大数据分析,可以更精准地定 位目标客户,提高营销效果,增加 收益。
社会效益评估
总结词
联通大数据平台的社会效益主要体现 在改善公共服务、促进社会公平、推
系统架构设计
计算系统架构
采用分布式计算框架如 Hadoop、Spark,利用多台 服务器集群进行大规模数据处
理,提高计算效率。
数据存储架构
采用分布式文件系统如HDFS、S3 ,实现海量数据存储和快速访问 。
资源管理架构
采用资源调度系统如YARN、 Mesos,实现资源统一管理和动态 分配,提高资源利用率。
详细描述
分布式文件系统,如Hadoop的HDFS,可以提供大规模数据的可靠存储,并 且具有高吞吐量和低成本的特点。它能够处理大量数据,同时保证了数据的 安全性和完整性。
数据处理技术选型
总结词
MapReduce编程模型,适用于大规模数据的并行处理。
详细描述
MapReduce是一种适用于大规模数据处理的编程模型,它将 任务分解成多个小任务,并在集群中并行执行。这种方法可 以处理大量数据,同时保证了处理效率和准确性。
2023-11-04
目录
• 引言 • 大数据平台需求分析 • 大数据平台架构设计 • 大数据平台关键技术选型 • 大数据平台实施方案 • 大数据平台效益评估 • 结论与展望
01
引言
项目背景
当前社会已经进入大数据时代,大数据技术广泛应用于各个领域,为企业和社会 带来了巨大的价值和潜力。
感谢您的观看
THANKS
降低运营成本
通过大数据分析,可以更精确地预 测市场需求,减少库存和物流成本 ,提高运营效率。
提高运营效率
大数据平台可以实时监测网络状况 ,优化网络资源配置,提高网络运 行效率。
增加收益
通过大数据分析,可以更精准地定 位目标客户,提高营销效果,增加 收益。
社会效益评估
总结词
联通大数据平台的社会效益主要体现 在改善公共服务、促进社会公平、推
系统架构设计
计算系统架构
采用分布式计算框架如 Hadoop、Spark,利用多台 服务器集群进行大规模数据处
理,提高计算效率。
数据存储架构
采用分布式文件系统如HDFS、S3 ,实现海量数据存储和快速访问 。
资源管理架构
采用资源调度系统如YARN、 Mesos,实现资源统一管理和动态 分配,提高资源利用率。
详细描述
分布式文件系统,如Hadoop的HDFS,可以提供大规模数据的可靠存储,并 且具有高吞吐量和低成本的特点。它能够处理大量数据,同时保证了数据的 安全性和完整性。
数据处理技术选型
总结词
MapReduce编程模型,适用于大规模数据的并行处理。
详细描述
MapReduce是一种适用于大规模数据处理的编程模型,它将 任务分解成多个小任务,并在集群中并行执行。这种方法可 以处理大量数据,同时保证了处理效率和准确性。
联通大数据平台规划方案

推进AI与大数据深度融合
通过统一的云管理平台,实现多云环境之 间的资源调度、数据共享和业务协同。
引入AI技术,为大数据平台提供智能化的 数据处理、分析和决策支持能力。
02
数据架构设计与优化
数据存储层建设方案
01
02
03
分布式存储系统
采用Hadoop HDFS、 Ceph等分布式存储系统 ,实现PB级数据存储和容 灾备份。
数据安全与隐私保护
随着数据量的不断增长,如何保障数 据的安全性和隐私性成为亟待解决的 问题。
实时数据处理需求
业务需求对实时数据处理的要求越来 越高,需要平台具备更强的实时数据 处理能力。
多云管理与跨云协同
企业多云环境日益普遍,如何实现多 云之间的统一管理和跨云协同成为重 要挑战。
AI与大数据深度融合
安全保障
加强了数据安全管理和隐私保护机 制,降低了数据泄露风险。
04
经验教训分享
数据质量问题
在项目初期,部分数据存在质量 问题,影响了分析结果的准确性 。未来应提前进行数据清洗和治 理工作。
技术选型风险
在项目实施过程中,部分技术选 型未达到预期效果,导致资源浪 费。未来需充分调研和评估技术 方案的成熟度和适用性。
云原生架构
云原生架构将成为大数据平台的主流技术方向。联通大数 据平台可逐步向云原生架构迁移,提高平台的可扩展性和 灵活性。
THANKS
谢谢您的观看
采用Apache Kafka、 Storm等实时计算引擎, 满足实时数据处理和分析 需求。
机器学习平台
集成TensorFlow、 PyTorch等机器学习平台 ,支持数据挖掘和智能应 用。
数据治理与安全保障措施
大数据平台规划方案

大数据平台规划方案
一、整体规划。
在构建大数据平台之前,首先需要明确整体规划。
企业需要明确大数据平台的
定位和目标,明确数据的来源和去向,明确数据的存储和计算需求,以及数据的分析和挖掘目标。
同时,需要考虑到未来的扩展和升级需求,确保大数据平台具有良好的可扩展性和灵活性。
二、技术架构。
在选择技术架构时,需要根据企业的实际需求和现有技术基础进行选择。
可以
考虑采用分布式存储和计算技术,如Hadoop、Spark等,以及实时流处理技术,如Kafka、Flink等。
同时,需要考虑到数据的采集、清洗、存储、计算和展现等环节,选择合适的技术和工具进行支撑。
三、数据治理。
数据治理是大数据平台建设中至关重要的一环。
需要建立完善的数据管理体系,包括数据的采集、存储、清洗、加工、分析和展现等环节。
同时,需要建立数据质量管理机制,确保数据的准确性和完整性。
此外,还需要建立数据安全和隐私保护机制,保障数据的安全和合规性。
四、安全保障。
在大数据平台建设过程中,安全保障是不可忽视的一环。
需要建立完善的安全
策略和机制,包括数据的加密、访问控制、安全审计等方面。
同时,需要建立灾备和容灾机制,确保数据的持久性和可靠性。
此外,还需要建立监控和预警机制,及时发现和应对安全威胁。
综上所述,构建一套完善的大数据平台需要从整体规划、技术架构、数据治理
和安全保障等方面进行综合考虑。
只有在这些方面都做到位,才能确保大数据平台
的稳定运行和持续发展。
希望本文的内容能够为企业构建大数据平台提供一些参考和帮助。
大数据平台规划方案汇报(PPT 22张)

10TB每月近万亿条存放6个月查询速度不高于1秒,并发查询数1000请求/秒
6T/年
300T/年
272T/年
新增
新增
评估中
大数据使得现有的数据处理方法面临新问题
面对海量的数据压力,需要大数据平台提供可供线性扩容的存储能力。
大数据使得现有的数据处理方法面临新问题
DW&MK
ODS层
应用层
■
■
1
2
3
4
大数据平台目标架构及定位
批量采集 准实时采集
数据挖掘能力
√ √ √
√ √ √
√ √ √
√
大数据平台: Hadoop主要功能
快速的数据读取
大数据存储统计
复杂计算并行处理
大数据平台: 分布式数据库
√ √ √ √ √ √
数据融合与分级存储实施将核心模型(即中度汇总的模型)通过改造融入到现有主数据仓库的核心模型中,减少数据冗余,提升数据质量。将主数据仓库中的历史数据和清单数据迁移到低成本分布式数据库,减轻主数据仓库的计算与存储压力并支撑深度数据分析。数据 数据 数据
谢谢观赏
大数据平台规划方案汇报
一、大数据应用发展趋势
大数据处理技术代表了新一代的技术架构,这种架构通过高速获取数据并对其进行分析和挖掘,从海量形式各异的数据源中更有效地抽取出富含价值的信息。从大量数据中挖掘高价值知识是各界对于大数据的一个共识。
大数据对电信运营商的应用价值体现
3
1
5
4
2
提升业务效率
增强管理水平
创新商业模式
提升客户体验
技术高效、低成本
数据平台现状
最大、内容最丰富数据量的增长挖掘数据价值
6T/年
300T/年
272T/年
新增
新增
评估中
大数据使得现有的数据处理方法面临新问题
面对海量的数据压力,需要大数据平台提供可供线性扩容的存储能力。
大数据使得现有的数据处理方法面临新问题
DW&MK
ODS层
应用层
■
■
1
2
3
4
大数据平台目标架构及定位
批量采集 准实时采集
数据挖掘能力
√ √ √
√ √ √
√ √ √
√
大数据平台: Hadoop主要功能
快速的数据读取
大数据存储统计
复杂计算并行处理
大数据平台: 分布式数据库
√ √ √ √ √ √
数据融合与分级存储实施将核心模型(即中度汇总的模型)通过改造融入到现有主数据仓库的核心模型中,减少数据冗余,提升数据质量。将主数据仓库中的历史数据和清单数据迁移到低成本分布式数据库,减轻主数据仓库的计算与存储压力并支撑深度数据分析。数据 数据 数据
谢谢观赏
大数据平台规划方案汇报
一、大数据应用发展趋势
大数据处理技术代表了新一代的技术架构,这种架构通过高速获取数据并对其进行分析和挖掘,从海量形式各异的数据源中更有效地抽取出富含价值的信息。从大量数据中挖掘高价值知识是各界对于大数据的一个共识。
大数据对电信运营商的应用价值体现
3
1
5
4
2
提升业务效率
增强管理水平
创新商业模式
提升客户体验
技术高效、低成本
数据平台现状
最大、内容最丰富数据量的增长挖掘数据价值
大数据规划方案

2.设备选型与采购:根据需求,选择合适的大数据硬件设备;
3.系统设计与开发:设计大数据平台架构,开发相关功能模块;
4.数据整合与治理:梳理数据来源,整合数据资源,提高数据质量;
5.数据安全与合规性保障:制定数据安全策略,确保合规性;
6.系统部署与调试:部署大数据平台,进行系统调试;
7.培训与验收:对相关人员进行培训,确保系统顺利投入使用;
-结合业务需求,定制化展示关键数据指标。
(2)数据分析
-深入挖掘业务数据,为决策层提供有力支持;
-结合行业特点,构建数据分析模型,助力业务发展。
(3)决策支持
-基于数据分析结果,为决策层提供有针对性的建议;
-建立决策支持系统,实现业务与数据的紧密结合。
五、实施步骤
1.调研与分析:了解企业现状,明确需求,制定实施计划;
大数据规划方案
第1篇
大数据规划方案
一、概述
随着信息化建设的不断深入,大数据作为一种新型战略资源,对于企业及组织的发展具有重要意义。本方案旨在制定一套合法合规的大数据规划方案,以充分发挥数据价值,提升企业运营效率,为决策层提供有力支持。
二、现状分析
1.数据来源丰富,但缺乏有效整合;
2.数据存储及处理能力不足,制约了数据价值的发挥;
3.数据安全与合规性存在隐患;
4.数据分析及应用能力不足,影响了决策效率。
三、目标定位
1.构建统一的大数据平台,实现数据资源的整合与共享;
2.提升数据存储、处理和分析能力,满足业务发展需求;
3.确保数据安全与合规性,降低企业风险;
4.提高数据分析及应用能力,为决策层提供有力支持。
四、规划内容
1.大数据基础设施建设
(1)数据采集与整合
3.系统设计与开发:设计大数据平台架构,开发相关功能模块;
4.数据整合与治理:梳理数据来源,整合数据资源,提高数据质量;
5.数据安全与合规性保障:制定数据安全策略,确保合规性;
6.系统部署与调试:部署大数据平台,进行系统调试;
7.培训与验收:对相关人员进行培训,确保系统顺利投入使用;
-结合业务需求,定制化展示关键数据指标。
(2)数据分析
-深入挖掘业务数据,为决策层提供有力支持;
-结合行业特点,构建数据分析模型,助力业务发展。
(3)决策支持
-基于数据分析结果,为决策层提供有针对性的建议;
-建立决策支持系统,实现业务与数据的紧密结合。
五、实施步骤
1.调研与分析:了解企业现状,明确需求,制定实施计划;
大数据规划方案
第1篇
大数据规划方案
一、概述
随着信息化建设的不断深入,大数据作为一种新型战略资源,对于企业及组织的发展具有重要意义。本方案旨在制定一套合法合规的大数据规划方案,以充分发挥数据价值,提升企业运营效率,为决策层提供有力支持。
二、现状分析
1.数据来源丰富,但缺乏有效整合;
2.数据存储及处理能力不足,制约了数据价值的发挥;
3.数据安全与合规性存在隐患;
4.数据分析及应用能力不足,影响了决策效率。
三、目标定位
1.构建统一的大数据平台,实现数据资源的整合与共享;
2.提升数据存储、处理和分析能力,满足业务发展需求;
3.确保数据安全与合规性,降低企业风险;
4.提高数据分析及应用能力,为决策层提供有力支持。
四、规划内容
1.大数据基础设施建设
(1)数据采集与整合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hadoop1 Hadoop2
交换机高可用
–
Hadoop3
Hadoop4
MPP SG1-1 MPP SG1-2
节点高可用
– –
MPP SG2-1
MPP SG2-2
服务器机柜
服务器机柜
11
Hadoop组件部署规划
支持高可用性的服务建议开启HA,如NameNode、ResourceManager,防止单点故障造成的 影响 绿色 必装 ,黄色为选装, 红色为不装
16
DataEngine 大数据平台部署流程
2
配置要求
硬盘RAID
集群类型 HDP MPP 操作系统配置 2块硬盘做RAID1 2块硬盘做RAID1 数据存储配置 剩余部分每块做一个RAID0 剩余部分做成一个RAID5
注意:共享存储系统不适用于集群数据存储,单点存储是大数据集群的运算 性能瓶颈。
3
配置要求
硬盘RAID(HDP集群)
版本
26.0+ 18+ 5+ 10+
7
配置要求
集群软件环境
环境
Java Байду номын сангаасython SSL
版本
Oracle JDK 1.7.0_79 for Linux Python 2.6.6 openssl-1.0.1e-30
注意:DataEngine 会自动安装以上软件环境。
8
服务器网络规划
业务交换机采用堆叠 服务器网卡配置聚合
服务器
服务器
–
Hadoop集群 MPP集群
MPP集群
–
–
IRF
业务网交换机
10
设备机柜规划
万兆交换机1 万兆交换机1
硬件物理部署和网络规划
电源高可用
–
万兆交换机2
万兆交换机2
两个机柜的电源是独立的,互不影响的 每个机柜上各包含2台交换机,并且这两台交 换机之间是互备的关系,当其中一台交换机 发生故障,另一台交换机立即提供服务 对于HDP,把HA服务所在的两个服务器放在 不同的机架上 对于MPP,把一个safegroup的不同成员放 在不同的机架上
对数据安全性要求较低,选择2个节点为1个safegroup
13
提纲
DataEngine 大数据平台集群规划
DataEngine 大数据平台部署
14
DataEngine 大数据平台部署
原生Hadoop集群的开通和 管理会是一个超复杂的工 作,尤其是涉及成百上千台 主机时。
15
DataEngine 大数据平台部署方案
系统盘建议使用两块盘做成一个RAID1,保证系统运行安全可靠。
HDFS天然支持复本冗余存储策略,数据盘无需做RAID,在必须配置RAID的 情况下,每个数据盘单独设置为RAID0。
多块盘做一个RAID0,会将HDFS并行流式读写操作变成随机读写,降低性能。 多块盘做一个RAID0,其读写性能受制于阵列中速度最慢的磁盘。
应用场景
定制部署:
对于需要利用现有集群中的服务器和定制化需求多样 的客户,建议采用定制部署方式,这种方式可以满足 客户对系统安全、组网环境、节点复用等方面的特殊 需求。
Zero部署:
对于需要创建全新大数据集群的客户,建议采用Zero 部署方式,这种方式可以快速实现服务器操作系统的 批量安装、网段统一分配和DataEngine Manager的 安装。
从磁盘损坏率考虑,多块盘做一个RAID0会带来更大的数据损失,造成大量
数据需要复制重建。
4
配置要求
硬盘RAID(MPP集群)
系统盘建议使用两块盘做成一个RAID1,保证系统运行安全可靠。
成本综合考虑,建议将数据盘做成一个RAID5 。
受制于MPP数据存储路径只能指定一个,所以从存储性能、数据安全和存储
HDFS
Yarn MapReduce2
App Timeline Server NodeManager HistoryServer
12
MPP组件部署规划
集群高可用方案—safegroup配置
1个节点为1个safegroup的方案不推荐使用
对数据安全性要求高,选择3个节点为1个safegroup
大数据系列培训
大数据平台规划部署
H3C DataEngine
提纲
DataEngine 大数据平台集群规划
DataEngine 大数据平台部署
1
配置要求
硬件配置要求
最低配置要求 处理器
1×2 核 2.0GHz
推荐配置
2×6 核 2.0GHz或更多
内存
硬盘 网卡
32GB
SAS 10k rpm,300GB *4 千兆网卡: 1GE SFP+
128GB 或更多
SAS 10k rpm,1TB及以上,数量建议满配 2块万兆网卡做聚合
不推荐使用虚拟内存 建议使用更多块硬盘,2块1T硬盘性能优于1块2T硬盘。 建议单数据节点容量最大不超过24TB,否则节点失效后造成大量数据复本的复制。 不建议使用SSD,Hadoop的磁盘IO多为顺序读写,不能完全发挥适用于随机读写的SSD的性能优势,同样的采 购投入可以通过多个HDD提高并发量提高性能。
9
组网规划
管理网交换机
推荐集群规划
Hadoop集群
–
低配置:要求3台物理服务器, Hadoop集群管理节点和数据节点共用 物理服务器 高配置:要求5台及以上物理服务器, Hadoop集群管理节点和数据节点使用 不同的物理服务器 若对数据安全性要求较低,选择2个节 点为1个safegroup,推荐配置4台及以 上服务器 若对数据安全性要求高,选择3个节点 为1个safegroup,推荐配置6台及以上 服务器
服务 Metrics ZooKeeper 组件 Metrics Monitor 管理节点 主机一 主机二 主机三 数据节点 主机四 主机五
ZooKeeper Server ZooKeeper Client
NameNode ZKFailoverController DataNode JournalNode ResourceManager
5
配置要求
操作系统要求
操作系统
Red Hat Enterprice Linux Centos
版本
6.4/6.5(minimal最小安装方式)64位 6.4/6.5(minimal最小安装方式)64位
不建议操作系统安装Desktop版。
6
配置要求
支持的游览器
游览器
Google Chorme(推荐) FireFox Safari Internet Expoloer