升压直流斩波电路

合集下载

升压直流斩波电路

升压直流斩波电路

〈〈电力电子技术》课程设计说明书升压直流斩波电路设计院、部:电气与信息工程学院学生姓名: _____________________指导教师:职称专业:电气工程及其白动化班级: ________________________完成时间: _____________________电力电子课程设计课题任务书电力电子电路的基本作用是进行电能的变换与控制,即将一定形式的输入点能变换成另外一种形式的电能输出,从而满足不同负载的要求。

电能的形式可以分为交流和直流两种类型,因此根据输入、输出的不同形式,可将电力电子电路分为四大类型,即AC-DC变换器、DC-AC变换器、DC-DC变换器、AC-AC变换器。

该设计将主要介绍其中的DC-DC变换器。

随着半导体工业的发展,DC/DC^换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。

目前直流变换电路的用途非常广泛,无论是从性能、功率还是节能性上,都处丁不断地发展之中。

其中升压直流斩波电路是输出电压高丁电源电压的一种斩波电路,主要运用丁直流电动机传动、单相功率因数校正以及交直流电源中。

该设计中,运用了单相桥式全控整流电路和升压斩波电路结合,从而实现升压直流斩波。

通过方案选定,电路构造以及电路调试,最终基本实现升压直流斩波电路功能。

由丁知识浅薄,该课程设计说明书里还存在不少批漏和错误,殷切希望老师和同学们的批评指正。

关键词:直流;斩波;升压1绪论 (1)1.1电力电子技术的介绍 (1)1.2电力电子技术的应用 (1)1.3直流直流变流技术 (2)1.4设计要求 (2)2 系统总体方案设计 (2)2.1总体电路设计框图 (2)2.2整流电路选择 (2)3主电路设计 (5)3.1整流电路 (5)3.1.1 整流电路图及工作波形 (5)3.1.2 整流电路工作原理 (6)3.2升压斩波电路 (6)3.2.1升压斩波电路及工作波形 (6)3.2.2升压斩波电路工作原理 (7)3.3元器件参数及选型 (7)3.3.1 晶闸管的选型 (7)3.3.2绝缘栅双极晶体管(IGBD选型 (9)4控制电路及驱动电路 (11)4.1控制电路 (11)4.1.1 SG3525控制芯片介绍 (11)4.1.2 SG3525外部引脚功能 (12)4.2驱动电路 (13)4.3控制和驱动电路原理图 (13)5保护电路设计 (15)5.1过电流保护 (15)5.2过电压保护 (15)6仿真电路图及结果 (16)6.1 MATLAB仿真软件 (16)6.2整流电路仿真及部分参数设置 (16)6.2.1 整流电路仿真模型 (16)6.2.2部分参数设置 (17)6.3升压斩波电路仿真模型 (19)6.4总电路仿真模型 (19)6.5仿真波形及波形分析 (20)7设计总结 (21)参考文献 (22)致谢 (23)附录 (24)附录A升压直流斩波总电路图 (24)附录B元件活单 (25)1绪论1.1电力电子技术的介绍电力电子技术是一门新兴的应用丁电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTQ IGBT等)对电能进行变换和控制的技术。

升压式直流斩波电路

升压式直流斩波电路

升压式直流斩波电路1.电路的结构与工作原理 1.1电路结构U LRU0+-+-图1 升压式直流斩波电路的电路原理图1.2 工作原理假设电路输出端的滤波电容器足够大,以保证输出电压恒定,电感L 的值也很大。

1)当控制开关VT 导通时,电源E 向串联在回路中的电感L 充电储能,电感电压u L 左证右负;而负载电压u 0上正下负,此时在R 于L 之间的续流二极管VD 被反偏,VD 截止。

由于电感L 的横流作用,此充电电流基本为恒定值I1.另外,VD 截止时C 向负载R 放电,由于正常工作C 已经被充电,且C 容量很大,所以负载电压基本保持为一恒定值,记为u 0。

假设VT 的导通时间为t on ,则此阶段电感L 上的储能可以表示为EI 1t on2)在控制开关VT 关断时,储能电感L 两端电势极性变成左负右正,续流二极管VD 转为正偏,储能电感L 与电源E 叠加共同向电容C 充电,向负载R 提供能量。

如果VT 的关断时间为t off ,则此段时间内电感L 释放的能量可以表示为(U 0-E )I 1t off 。

1.3基本数量关系a.一个周期内灯光L 储存的能量与释放的能量相等:即b.输出电流平均值11()ono off EI t U E I t =-Et T E t t t U offoff off on o =+=2.建模在MA TLAB 新建一个Model ,命名为jiangya ,同时模型建立如下图所示:图 1 升压式直流斩波电路的MATLAB 仿真模型2.1模型参数设置a 电源参数,电压100v :b.同步脉冲信号发生器参数 振幅1V ,周期0.001,占空比20%RER U I β1o o ==c.负载电阻参数d.电容参数设置e.二极管参数设置f.电感参数G.IGBT参数f.示波器参数示波器五个通道信号依次是:电源电流、负载电流、IGBT电流电压、负载电压、电源电压。

3 仿真结果与分析a. 占空比α=20,MATLAB仿真波形如下:图 2 α=20升压式直流斩波电路b. 占空比α=50,MATLAB仿真波形如下:图9 α=50升压式直流斩波电路c. 占空比α=80,MATLAB仿真波形如下:图10 α=80升压式直流斩波电路4小结对于升压斩波电路,要输出电压高于输入电源电压应满足两个假设两个条件,即电路中电感的L值很大,电容的C值也很大。

电气工程课程设计MOSFET升压斩波电路设计说明

电气工程课程设计MOSFET升压斩波电路设计说明

目录一、绪论 (1)1.1直流斩波电路简介 (1)1.2 MOSFET简介 (1)1.3 SG3525简介 (1)1.4仿真软件介绍 (1)二、MOSFET升压斩波电路设计要求及方案 (2)2.1设计要求 (2)2.2设计课题总体方案介绍及工作原理说明 (3)2.3设计方案各电路简介 (3)三、MOSFET升压斩波主电路设计 (4)3.1电容滤波单相不可控整流电路 (4)3.2 MOSFET升压斩波电路 (5)四、控制电路与保护电路设计 (7)4.1 MOSFET驱动电路 (7)4.2保护电路 (8)五、总体电路原理图及其说明 (9)5.1总体电路原理图 (9)5.2 MATLAB仿真电路图 (10)5.3仿真波形图 (10)5.4波形分析 (11)六、结论 (11)参考文献 (11)一、绪论1.1直流斩波电路简介直流斩波电路(DC Chopper),也称直接变流电路,它的的功能是将直流电变为另一固定电压或可调电压的直流。

直流斩波的电路的种类较多,包括六种基本电路:降压斩波电路、升压斩波电路、升降压斩波电路、Cuk斩波电路、Sepic斩波电路和Zata斩波电路。

直流斩波电路在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

1.2 MOSFET简介MOSFET是金属-氧化层-半导体-场效晶体管,简称金氧半场效晶体管,是一种可以广泛使用在模拟电路与数字电路的场效晶体管。

MOSFET依照其“通道”的极性不同,可分为N沟道型与P沟道型的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。

1.3 SG3525简介随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司Silicon General)推出SG3525。

直流升压斩波电路仿真实验心得

直流升压斩波电路仿真实验心得

直流升压斩波电路仿真实验心得
本人在进行直流升压斩波电路仿真实验期间,深刻体会到该电路的重要性以及实现过程中需要注意的几个关键点。

首先,该电路是一种非常常见的电路,在实际工程中经常被使用。

其作用是将输入的低电压直流电信号,通过斩波器和升压变压器的作用,将输出电压升高到一定程度,以满足实际工作所需的电压水平。

其次,该电路的实现过程需要注意的几个关键点是:
1.斩波管的正反极性必须正确,否则可能会导致电路无法正常工作。

2.升压变压器的绕组匝数需要根据实际需要计算,否则输出电压可能会偏差较大。

3.在选择升压变压器时需要考虑参数匹配,以确保电路能够稳定工作。

综上所述,直流升压斩波电路具有重要性,其实现过程需要注意几个关键点。

通过实验实践,我对该电路的实现过程及原理有了更深刻的理解,也提高了自己的实验操作能力。

直流斩波电路设计

直流斩波电路设计

一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。

二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。

也称为直流-直流变换器(DC/DCConverter)。

一般指直接将直流电变为另一直流电,不包括直流-交流-直流。

升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。

主要由功率开关、二极管、储能电感、输出滤波电容等组成。

本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。

图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。

第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。

电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。

由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。

第二部分是比较器部分。

比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。

改变输入的电平信号的值,则相应改变了输出方波的占空比。

第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。

将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。

cuk斩波电路、sepic斩波电路和zeta斩波电路。

cuk斩波电路、sepic斩波电路和zeta斩波电路。

cuk斩波电路、sepic斩波电路和zeta斩波电路。

"CUk"、"SEPIC" 和 "Zeta" 都是常见的斩波电路类型,它们用于将直流电源转换为交流电源或调节直流电源的电压。

1. Cuk 斩波电路:Cuk 斩波电路是一种降压-升压斩波电路,它由一个电感、一个电容和两个开关组成。

它的优点是输入电流和输出电流连续,输入电压和输出电压可以独立调节,适用于需要升压或降压的应用。

2. SEPIC 斩波电路:SEPIC 斩波电路是一种升压-降压斩波电路,它由一个电感、两个电容和两个开关组成。

它的优点是输入电流和输出电流连续,输入电压和输出电压可以独立调节,适用于需要升压或降压的应用。

3. Zeta 斩波电路:Zeta 斩波电路是一种降压斩波电路,它由一个电感、一个电容和两个开关组成。

它的优点是输入电流和输出电流连续,输入电压和输出电压可以独立调节,适用于需要降压的应用。

这些斩波电路在电源管理、电动车充电器、太阳能充电器等领域有广泛的应用。

选择哪种斩波电路取决于具体的应用需求,如输入电压、输出电压、功率需求等。

电力电子技术直流斩波电路

电力电子技术直流斩波电路

a) Sepic斩波电路
输入输出关系:
b) Zeta斩波电路
Uo
ton toff
E ton T ton
E 1
E图3-6(S3e-p4ic9斩)波电路和Zeta斩波电路
电源电压与输出电压极性相同
23
3.1.4 Sepic斩波电路和 ZeVt处a斩于波通Z态电期e路间t原a,理斩电源波E经电开关路
i
i
1
2
续旳时间tx,即 ton
tx
1 me ln
1 m
I
20
O
t
onttt1来自x2t
t
off
T
c)
tx<t0ff
图3-3 用于直流电动机回馈能 量旳升压斩波电路及其波形
m
1 e b 1 e
--------电流断续旳条件
16
升降压斩波电路和Cuk斩波电路
1)升降压斩波电路 (buck -boost Chopper)
分V处于通态和处于断态 初始条件分电流连续和断续
7
一样能够从能降量传压递斩关系波出发电进路行旳推导 假定L为无穷大,负载电流Io维持不变(详见P101-102) 电源只在V处于通态时提供能量,为 EIoton 在整个周期T中,负载消耗旳能量为 RIo2T EM IoT
一周期中,忽视损耗,则电源提供旳能量与负载消耗旳能量相等。
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1旳能量转移至C1,
能量全部转移至C1上之后,VD
b) Zeta斩波电路
关断,C1经L2向负载供电。
输入输出关系:
Uo
1
E
图3-6 Sepic斩波电路 和 Zeta斩波电路 (3-50)

500W升压斩波电路设计与仿真

500W升压斩波电路设计与仿真

500W升压斩波电路设计与仿真I.引言在电源设计中,升压斩波电路被广泛应用于需要高电压输出的场景中。

本文将介绍一种500W的升压斩波电路的设计与仿真。

II.设计目标本设计的目标是实现一个满足以下条件的升压斩波电路:1.输入电压:220V交流电2.输出电压:500V直流电3.输出功率:500W4.转换效率:大于90%5.输出电压稳定性:小于1%III.电路结构本设计采用单端反激变压器斩波电路结构,原理图如下所示:(请参考上传的图片)IV.电路参数计算1.变压器参数计算:根据输入电压和输出电压,可以计算出变压器的变比。

假设变压器的变比为N,有N = Vout / Vin = 500 / 220 = 2.27另外,为了保证变压器工作在饱和区以提高转换效率,需要选择一个合适的磁芯材料。

根据输出功率和输出频率,可以计算出变压器的输入电流,然后根据输入电流和工作磁通密度,可以选择合适的磁芯材料。

2.斩波电路参数计算:为了实现稳定的输出电压,可以采用三段滤波电路。

首先是输入电容C1,用于滤去交流电的干扰;然后是输出电容C2,用于平滑直流输出电压;最后是输出电阻R1,用于稳定输出电流。

3.斩波电路元件选取:根据计算结果,选择合适的电容和电阻。

需要注意的是,在高功率输出情况下,应选择能承受大电流的电容和电阻。

V.电路仿真使用仿真软件如LTspice等进行电路仿真。

在仿真中,可以通过改变输入电压和负载来验证电路的性能,并进行优化。

VI.性能评估和优化根据仿真结果评估电路的性能并进行优化。

可以通过调整电路参数、改变电容和电阻的数值等方式来提高电路的转换效率和输出电压稳定性。

VII.结论本文介绍了一种500W的升压斩波电路的设计与仿真。

通过合理的电路结构设计和参数选择,可以实现稳定的输出电压和高转换效率。

通过仿真和优化,可以进一步提高电路性能,满足实际应用需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电力电子技术》课程设计说明书升压直流斩波电路设计院、部:电气与信息工程学院学生姓名:指导教师:职称专业:电气工程及其自动化班级:完成时间:电力电子课程设计课题任务书学院:电气与信息工程学院专业:电气工程及其自动化专业电力电子电路的基本作用是进行电能的变换与控制,即将一定形式的输入点能变换成另外一种形式的电能输出,从而满足不同负载的要求。

电能的形式可以分为交流和直流两种类型,因此根据输入、输出的不同形式,可将电力电子电路分为四大类型,即AC-DC变换器、DC-AC变换器、DC-DC变换器、AC-AC变换器。

该设计将主要介绍其中的DC-DC变换器。

随着半导体工业的发展,DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。

目前直流变换电路的用途非常广泛,无论是从性能、功率还是节能性上,都处于不断地发展之中。

其中升压直流斩波电路是输出电压高于电源电压的一种斩波电路,主要运用于直流电动机传动、单相功率因数校正以及交直流电源中。

该设计中,运用了单相桥式全控整流电路和升压斩波电路结合,从而实现升压直流斩波。

通过方案选定,电路构造以及电路调试,最终基本实现升压直流斩波电路功能。

由于知识浅薄,该课程设计说明书里还存在不少纰漏和错误,殷切希望老师和同学们的批评指正。

关键词:直流;斩波;升压1 绪论 (1)1.1 电力电子技术的介绍 (1)1.2 电力电子技术的应用 (1)1.3 直流直流变流技术 (2)1.4 设计要求 (2)2 系统总体方案设计 (2)2.1 总体电路设计框图 (2)2.2 整流电路选择 (2)3 主电路设计 (5)3.1 整流电路 (5)3.1.1 整流电路图及工作波形 (5)3.1.2 整流电路工作原理 (6)3.2 升压斩波电路 (6)3.2.1 升压斩波电路及工作波形 (6)3.2.2 升压斩波电路工作原理 (7)3.3 元器件参数及选型 (7)3.3.1 晶闸管的选型 (7)3.3.2 绝缘栅双极晶体管(IGBT)选型 (9)4 控制电路及驱动电路 (11)4.1 控制电路 (11)4.1.1 SG3525控制芯片介绍 (11)4.1.2 SG3525外部引脚功能 (12)4.2 驱动电路 (13)4.3 控制和驱动电路原理图 (13)5 保护电路设计 (15)5.1 过电流保护 (15)5.2 过电压保护 (15)6 仿真电路图及结果 (16)6.1 MATLAB仿真软件 (16)6.2 整流电路仿真及部分参数设置 (16)6.2.1 整流电路仿真模型 (16)6.2.2 部分参数设置 (17)6.3 升压斩波电路仿真模型 (19)6.4 总电路仿真模型 (19)6.5 仿真波形及波形分析 (20)7 设计总结 (21)参考文献 (22)致谢 (23)附录 (24)附录A 升压直流斩波总电路图 (24)附录B 元件清单 (25)1 绪论1.1 电力电子技术的介绍电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。

电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。

电力电子技术分为电力电子器件制造技术和变流技术两个分支。

现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。

电力电子学(Power Electronics)这一名称是在上世纪60年代出现的。

1974年,美国的W .Newell用一个倒三角形对电力电子学进行了描述,认为它是由电力学、电子学和控制理论三个学科交叉而形成的。

这一观点被全世界普遍接受。

“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。

1.2 电力电子技术的应用电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。

本课程体现了弱电对强电的控制,又具有很强的实践性。

能够理论联系实际,在培养自动化专业人才中占有重要地位。

它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。

在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。

工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、飞机、船舶、电梯等交通运输工具中也广泛采用整流电力电子技术;各种电子装置如通信设备中的程控交换机所用的直流电源、大型计算机所需的工作电源、微型计算机内部的电源都可以利用整流电路构成直流电源供电,可以说有电源的地方就有电力电子技术的设备。

1.3 直流直流变流技术直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。

直接直流变流电路也称斩波电路,它的功能是将直流电变成为另一固定电压或可调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。

间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称为带隔离的直流-直流变流电路或直-交-直电路。

直流斩波电路的种类较多,包括六种基本斩波电路:降压斩波电路、升压斩波电路、升降压斩波电路、Cuk斩波电路、Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。

直流斩波器在把直流变换成另一电压直流的过程中,依靠的是脉冲宽度调制(PWM)的工作方式,因此直流斩波调速系统也称直流脉宽调速系统。

斩波器的工作方式有:脉宽调制方式(Ts不变,改变ton)和频率调制方式(ton不变,改变Ts)两种。

前者较为通用,后者容易产生干扰。

当今世界软开关技术使得DC/DC变换器发生了质得变化和飞跃。

经济性能:直流电动机V—M调速系统使用的电源是三相交流电源,但是在许多应用场合的电源却是直流电源,例采用直流电网供电的城市公交车(电车)、地铁,由蓄电池供电的电动汽车、电瓶车等,在这种应用场合使用的直流调速系统则必须采用DC/DC变换器,即在这种应用场合不能使用V—M调速系统,而应使用直流斩波调速系统。

1.4 设计要求电路中要求:交流电源为单相220V,前级整流输出电压限制在50V以内,斩波电路所带负载为纯电阻负载,斩波电路输出电流最大值为2A,输出直流电压在50~100V可调。

2 系统总体方案设计该设计中,升压直流斩波电路有前级整流电路和升压斩波主电路构成。

下面将就前级整流电路的选择进行说明。

2.1 总体电路设计框图图1 系统设计框图交流输入、直流输出的开关电源将交流电转换为直流电,再通过升压斩波电路输出直流可调电压,其基本的变换过程如图1所示。

2.2 整流电路选择单相整流电路可分为单相桥式相控整流电路和单相桥式半控整流电路,整流的结构也较多。

因此在做设计之前主要考虑了以下几种方案:方案一:单相桥式半控整流电路电路简图如图2所示。

图2 单相桥式半控整流电路图2电路中,对每个导电回路进行控制,相对于全控桥而言少了一个控制器件,用二极管代替,有利于降低损耗。

如果不加续流二极管,当α突然增大至180°或触发冲丢失时,由于电感储能不经变压器二次绕组释放,只是消耗在负载电阻上,会发生一个晶闸管导通而两个二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud为正弦,另外半周期为ud为零,其平均值保持稳定,相当于单相半波不可控整流电路时的波形,即为失控。

所以必须加续流二极管,以免发生失控现象。

方案二:单相桥式全控整流电路电路简图如图3所示。

图3 单相桥式全控整流电路图3电路中,对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。

方案三:单相半波可控整流电路电路简图如图4所示。

图4 单相半波可控整流电路图4电路中,只需要一个可控器件,电路比较简单,VT的a移相范围为180。

但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。

为使变压器铁心不饱和,需增大铁心截面积,增大了设备的容量。

实际上很少应用此电路。

方案四:单相全波可控整流电路电路简图如图5所示。

图5 单相全波可控整流电路图5电路中,变压器是带中心抽头的,结构比较复杂,只要用2个可控器件,单相全波只用2个晶闸管,比单相全控桥少2个,因此少了一个管压降,相应地,门极驱动电路也少2个,但是晶闸管承受的最大电压是单相全控桥的2倍。

不存在直流磁化的问题,适用于输出低压的场合作电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。

而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。

相同的负载下流过晶闸管的平单相全控式整流电路其输出平均电压是半波整流电路2倍,在均电流减小一半;且功率因数提高了一半。

在以上不同单相整流电路中,单相桥式全控整流电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。

变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高,因此,在整流电路选择单相桥式全控整流电路, 即采用方案二。

3 主电路设计主电路由前级整流电路与升压斩波电路构成,下面就整流电路与升压斩波电路进行说明。

3.1 整流电路整流电路的任务是将交流电变换成直流电。

完成这一任务主要是靠晶闸管的单向导电作用,因此晶闸管是构成整流电路的关键元件。

3.1.1 整流电路图及工作波形该电路中电源变压器的作用是将交流电网电压V变成整流电路要求的交流1电压tVωVsin=,电阻R是要求直流供电的负载电阻,四只晶闸管接成电桥222的形式,故有桥式整流电路之称。

前级整流电路图如图6所示,工作波形图如图7 所示。

图6 单相桥式全控整流电路图图7 单相桥式全控整流电路工作波形图3.1.2 整流电路工作原理在电源电压正半周期间,VT1、VT2承受正向电压,若在时触发,VT1、VT2导通,电流经VT1、负载、VT2和T 二次侧形成回路,但由于大电感的存在,过零变负时,电感上的感应电动势使VT1、VT2继续导通,直到VT3、VT4被触发导通时,VT1、VT2承受反相电压而截止。

相关文档
最新文档