2018届湖南省雅礼中学高三第一次月考理科数学 PDF版
湖南省长沙市雅礼中学2017-2018学年高三上学期第一次月考试题 数学(理) Word版无答案

炎德 英才大联考雅礼中学2017-2018学年高三月考试卷(一)数 学 理科第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、“000(0,),l n 1x x x ∃∈+∞=-”的否定是A .000(0,),ln 1x x x ∃∈+∞≠-B .000(0,),ln =1x x x ∃∉+∞-C .(0,),ln 1x x x ∀∈+∞≠-D .000(0,),ln 1x x x ∀∉+∞=- 2、设集合1{|3},{|0}4x A x x B x x -=>=≤-,则A B = A .φ B .(]3,4 C .()3,4 D .(4,)+∞ 3、1,,,,4a b c 构成等比数列,则a b c ++=A.2-.2+ C.2±.(2±- 4、l 为空间直线,αβ为不同平面,则下列推导正确的是A .,//l l αβαβ⊥⇒⊥B .,//l l αβαβ⊥⊥⇒C .//,////l l αβαβ⇒D .//,l l αβαβ⊥⇒⊥5、已知,,0a b c >,则“ln ,ln ,ln a b c 成等差数列”是“2,2,2abc成等比数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6、ABC ∆中,3,2,AB BC AB BC BC CA ==⋅=⋅,则CA AB ⋅的值为 A .7 B .-7 C .11 D .-117、若变量,x y 满足约束条件02143y x y x y ≤⎧⎪-≥⎨⎪-≤⎩,则35z x y =+的取值范围是A .[3,)+∞B .[]8,3-C .(,9]-∞D .[]8,9- 8、正四棱锥S ABC -的外接球半径为2,底面边长AB=3,则此棱锥的体积为A .4 B .4或4 C .4 D .4或49、函数()sin()cos()(0)f x a wx b wx w =+>的图象如图所示,则,a b 的取值范围分别为A B . C 1- D .3,1--10、某电商新售A 产品,售价每件50元,年销售量为11.8万件,为支持新品发售,第一年免征营业税,第二年需征收销售额%x 的营业税(即每销售100元征税x 元),第二年电商决定将A 产品的售价提高50%1%x x ⋅-元,预计年销售量减少x 万件,要使第二年A 产品上交的营业税不少于10万元,则x 的最大值是 A .2 B .5 C .8 D .1011、已知某几何体的三视图如图所示,则该几何体的体积是A .3B .4C .4.5D .612、已知定义在R 山的函数()y f x =满足()()1f x f x +=,当01x ≤<时,()2f x x =-,若函数()()2(0,1)xg x f x a a a =->≠,恰有2个零点,则a 的取值范围是A .31((,222 B .[2,)+∞ C .1([2,)2+∞ D .31((,)[2,)222+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
湖南省长沙市雅礼中学2024届高三上学期月考(一)数学试题及答案

大联考雅礼中学2024届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2|log 4Mx x =<,{}|21N x x =≥,则M N ∩=()A.{}08x x ≤< B. 182xx≤<C.{}216x x ≤< D. 1162xx≤<2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( )A.3B.2C.-2D.-33.已知1z ,2z 是关于x 的方程2220x x +=−的两个根.若11i z =+,则2z =( )A.B.1C.D.24.函数sin exx xy =的图象大致为()A. B.C. D.5.已知220x kx m +−<的解集为()(),11t t −<−,则k m +的值为( )A 1B.2C.-1D.-2.6. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为( )(cos10°≈0.985)A. 45.25mB. 50.76mC. 56.74mD. 58.60m7. 已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++−=,()1f x +为偶函数,()11f =,则()2023f =( )A. 1B. -1C. 2D. -38. 如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD棱长为,则模型中九个球的表面积和为( )A 6πB. 9πC.31π4D. 21π二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( ) A. 若2sin 23α=,则21cos 46πα +=B. 函数()2sin 23f x x π=+的图象向右平移6π个单位长度得到函数()2sin 26g x x π=+的图象.C. 函数()2sin cos cos 26f x x x x π=+−单调递增区间为(),36k k k Z ππππ−++∈D. ()22tan 1tan xf x x =−的最小正周期为2π 10. 如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A −组成,12AB BC AC AA ====,则下列说法正确的是( )A. 若AD AC ⊥,则1AD A C ⊥B. 若平面11A C D 与平面ACD 的交线为l ,则AC //lC. 三棱柱111ABC A B C -的外接球的表面积为143πD. 当该几何体有外接球时,点D 到平面11ACC A11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b −=+(其中a ,b 是非零常数,无理数e 2.71828⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存极值点.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a −⋅−<,则下列选项正确的是( )的在A. {}n a 为递减数列B. 202220231S S +<C. 2022T 是数列{}Tn 中的最大项D. 40451T >第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 已知(2,),(3,1)a b λ=−=,若()a b b +⊥ ,则a = ______ .14. 已知函数51,2()24,2xx f x x x −≤ =−>,则函数()()g x f x =的零点个数为______. 15. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.16. 如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y ′′,则20n n n y y =′=∑______.(参考数据:取221.18.14=.)四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 如图,在直三棱柱111ABC A B C -中,2CACB ==,AB =13AA =,M 为AB 的中点.(1)证明:1//AC 平面1B CM ; (2)求点A 到平面1B CM 的距离.18. 记锐角ABC 的内角,,A B C 的对边分别为,,a b c �已知sin()sin()cos cos A B A C B C−−=.(1)求证:B C =; (2)若sin 1a C =,求2211a b+的最大值. 19. 甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1−分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响. (1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望; (2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率. 20. 已知数列{}n a 中,10a =,()12n n a a n n N∗+=+∈.(1)令11n n n b a a +=−+,求证:数列{}n b 是等比数列; (2)令3nn n a c =,当n c 取得最大值时,求n 的值.21. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ). (1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.22. 设函数()()2cos 102x f x x x =−+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 图象上有一点列()*11,1,2,...,,22i i i A g i n n =∈N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =−,证明:1217 (6)n k k k n −+++>−.的大联考雅礼中学2024届高三月考试卷(一)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合{}2|log 4Mx x =<,{}|21N x x =≥,则M N ∩=( )A. {}08x x ≤< B. 182xx≤<C. {}216x x ≤<D. 1162xx≤<【答案】D 【解析】【分析】直接解出集合,M N ,再求交集即可.详解】{}{}2|log 4|016Mx x x x =<=<<,1|2N x x=≥ ,则1162M N x x ∩=≤<.故选:D.2. 记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为( ) A. 3 B. 2C. -2D. -3【答案】A 【解析】【分析】由题得a 3=7,设等差数列的公差为d ,解方程组11+27516a d a d = += 即得解.【详解】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7, 设等差数列的公差为d ,所以11+27516a d a d = += ,解之得3d =.故选:A.3. 已知1z ,2z 是关于x 的方程2220x x +=−的两个根.若11i z =+,则2z =( )【A.B. 1C.D. 2【答案】C 【解析】【分析】由1z ,2z 是关于x 的方程2220x x +=−的两个根,由韦达定理求出2z ,再由复数的模长公式求解即可.【详解】法一:由1z ,2z 是关于x 的方程2220x x +=−的两个根,得122z z +=, 所以()21221i 1i z z =−=−+=−,所以21i z =−=法二:由1z ,2z 是关于x 的方程2220x x +=−的两个根,得122z z ⋅=, 所以21221i z z ==+,所以2221i 1i z ===++.故选:C . 4. 函数sin exx xy =的图象大致为( ) A. B.C. D.【答案】D 【解析】【分析】分析函数sin exx xy =的奇偶性及其在()0,π上的函数值符号,结合排除法可得出合适的选项. 【详解】令()sin e x x xf x =,该函数的定义域为R ,()()()sin sin e ex xx x x x f x f x −−−−===,所以,函数sin exx xy =为偶函数,排除AB 选项, 当0πx <<时,sin 0x >,则sin 0exx xy >,排除C 选项. 故选:D.5. 已知220x kx m +−<的解集为()(),11t t −<−,则k m +的值为( ) A. 1 B. 2C. -1D. -2【答案】B 【解析】【分析】由题知=1x −为方程220x kx m +−=的一个根,由韦达定理即可得出答案. 【详解】因为220x kx m +−<的解集为()(),11t t −<−, 所以=1x −为方程220x kx m +−=的一个根, 所以2k m +=. 故选:B .6. 古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为( )(cos10°≈0.985)A. 45.25mB. 50.76mC. 56.74mD. 58.60m【答案】B 【解析】【分析】数形结合,根据三角函数解三角形求解即可;【详解】设球的半径为R ,,tan10R ABAC=,100tan10RBC =−=− , 25250.760.985RR ==, 故选:B.7. 已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++−=,()1f x +为偶函数,()11f =,则()2023f =( )A. 1B. -1C. 2D. -3【答案】B 【解析】【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==−=−. 【详解】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x −,又由()()40f x f x ++−=,得()()4f x f x +=−−,所以()()()846f x f x f x +=−−−=−+,所以()()2f x f x +=−,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==−=−.故选:B .8. 如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为( )A. 6πB. 9πC.31π4D. 21π【答案】B 【解析】【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.【详解】如图,取BC 的中点E ,连接DE ,AE,则CE BE ==,AE DE ==,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF=4AF =,点O 为最大球球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE , 设最大球的半径为R ,则OF OM R ==, 因为Rt AOM △∽Rt AEF ,所以AO OMAE EF==1R =, 即1OM OF ==,则413AO =−=,故1sin 3OM EAF AO ∠== 设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G , 连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =−=−, 又JK a b =+,所以33b a a b −=+,解得2b a =,又33OK R b AO AK b =+=−=−,故432b R =−=,解得12b =, 所以14a =, 模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +×+×=++=.故选:B【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的的半径二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( ) A. 若2sin 23α=,则21cos 46πα +=B. 函数()2sin 23f x x π=+的图象向右平移6π个单位长度得到函数()2sin 26g x x π=+的图象 C. 函数()2sin cos cos 26f x x x x π=+−的单调递增区间为(),36k k k Z ππππ−++∈D. ()22tan 1tan xf x x =−的最小正周期为2π 【答案】ACD 【解析】【分析】利用二倍角公式和诱导公式可求得2cos 4πα+,知A 正确; 根据三角函数平移变换可求得()2sin 2g x x =,知B 错误;利用三角恒等变换公式化简得到()f x 解析式,利用整体对应的方式可求得单调递增区间,知C 正确; 利用二倍角公式化简得到()f x ,由正切型函数的周期性可求得结果知D 正确.【详解】对于A ,21cos 21sin 212cos 4226παπαα++−+===,A 正确; 对于B ,()f x 向右平移6π个单位长度得:2sin 26f x x π−=,即()2sin 2g x x =,B 错误;对于C ,()13sin 22sin 2sin 222226f x x x x x x x π=+=++, 则由222262k x k πππππ−+≤+≤+,Z k ∈得:36k x k ππππ−+≤≤+,Z k ∈,()f x \的单调递增区间为(),36k k k Z ππππ−++∈,C 正确; 对于D ,()22tan tan 21tan xf x x x ==−,tan 2y x ∴=的最小正周期为2π,D 正确.故选:ACD.10. 如图所示,该几何体由一个直三棱柱111ABC A B C -和一个四棱锥11D ACC A −组成,12AB BC AC AA ====,则下列说法正确的是( )A. 若AD AC ⊥,则1AD A C ⊥B. 若平面11A C D 与平面ACD 的交线为l ,则AC //lC. 三棱柱111ABC A B C -的外接球的表面积为143πD. 当该几何体有外接球时,点D 到平面11ACC A【答案】BD 【解析】【分析】根据空间线面关系,结合题中空间几何体,逐项分析判断即可得解. 【详解】对于选项A ,若AD AC ⊥,又因为1AA ⊥平面ABC , 但是D 不一定在平面ABC 上,所以A 不正确;对于选项B ,因为11//A C AC ,所以//AC 平面11A C D , 平面11AC D ∩平面ACD l =,所以//AC l ,所以B 正确; 对于选项C ,取ABC ∆的中心O ,111A B C ∆的中心1O ,1OO中点为该三棱柱外接球的球心,所以外接球的半径R , 所以外接球的表面积为22843R ππ=,所以C 不正确; 对于选项D ,该几何体的外接球即为三棱柱111ABC A B C -的外接球,1OO 的中点为该外接球的球心,该球心到平面11ACC A的点D 到平面11ACC A 的最大距离为R ,所以D 正确. 故选:BD11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b −=+(其中a ,b 是非零常数,无理数e 2.71828⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点. 【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x −−=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x −−,故()()0e e x xa b b a −−+−=, 即()()2e =xa b a b −−,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误; 对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b −+−+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b −+−+++,因为e 0x >,e 0x −>,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确;对于C ,()=e e x xa f xb −−′,因为0ab <,若0,0a b ><,则()e e0=xxa xb f −−>′恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e0=xxa xb f −−<′恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==ex xxxa ba b f x −−−′, 令()=0f x ′得1=ln 2bx a,又0ab >, 若0,0a b >>,当1,ln 2b x a∈−∞,()0f x ′<,函数()f x 为单调递减. 当1ln ,2b x a∈+∞,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值. 若0,0a b <<, 当1ln2b x a∈−∞,,()0f x ¢>,函数()f x 为单调递增. 当1ln ,2b x a∈+∞,()0f x ′<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值. 所以函数存在极值点,故D 正确. 故答案为:BCD.12. 设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202220231a a >⋅,()()20222023110a a −⋅−<,则下列选项正确的是( )A. {}n a 为递减数列B. 202220231S S +<C. 2022T 是数列{}Tn 中的最大项D. 40451T >【答案】AC 【解析】【分析】根据题意先判断出数列{}n a 的前2022项大于1,而从第2023项开始都小于1.再对四个选项一一验证:对于A :利用公比的定义直接判断;对于B :由20231a <及前n 项和的定义即可判断;对于C :前n 项积为n T 的定义即可判断;对于D :先求出4045T 40452023a =,由20231a <即可判断.【详解】由()()20222023110a a −⋅−<可得:20221a −和20231a −异号,即202220231010a a −> −< 或202220231010a a −<−> . 而11a >,202220231a a >⋅,可得2022a 和2023a 同号,且一个大于1,一个小于1.因为11a >,所有20221a >,20231a <,即数列{}n a 的前2022项大于1,而从第2023项开始都小于1. 对于A :公比202320221a q a =<,因为11a >,所以11n n a a q −=为减函数,所以{}n a 为递减数列.故A 正确; 对于B :因为20231a <,所以2023202320221a S S =−<,所以202220231S S +>.故B 错误;对于C :等比数列{}n a 的前n 项积为n T ,且数列{}n a 的前2022项大于1,而从第2023项开始都小于1,所以2022T 是数列{}Tn 中的最大项.故C 正确; 对于D :40451234045T a a a a = ()()()240441111a a q a q a q = 404512340441a q +++= 4045202240451a q ×= ()404520221a q =40452023a =因为20231a <,所以404520231a <,即40451T <.故D 错误.故选:AC第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13. 已知(2,),(3,1)a b λ=−=,若()a b b +⊥ ,则a = ______ .【答案】【解析】【分析】根据题意求得(1,1)a b λ+=+ ,结合向量的数量积的运算公式求得λ的值,得到a的坐标,利用向量模的公式,即可求解.【详解】因为(2,),(3,1)a b λ=−=,可得(1,1)a bλ+=+ , 又因为()a b b +⊥,可得()(1,1)(3,1)310b ba λλ=+⋅=++=⋅+ ,解得4λ=−, 所以(2,4)a =−−,所以a =故答案为:14. 已知函数51,2()24,2xx f x x x −≤ =−>,则函数()()g x f x =零点个数为______. 【答案】3 【解析】【分析】令()0g x =得()f x =,根据分段函数性质可在同一直角坐标系中作出()f x,y =的大致图象,由图象可知,函数()y f x =与y =的图象有3个交点,即可得出答案.【详解】令()0g x =得()f x =可知函数()g x 的零点个数即为函数()f x与y =的交点个数,在同一直角坐标系中作出()f x,y =的大致图象如下:由图象可知,函数()y f x =与y =的图象有3个交点,即函数()g x 有3个零点, 故答案为:3.15. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则平面α截此正方体所得截面面积的最大值为______.【解析】【分析】利用正方体的结构特征,判断平面α所在的位置,然后求得截面面积的最大值即可.的【详解】根据相互平行的直线与平面所成的角是相等的,可知在正方体1111ABCD A B C D −中,平面11AB D 与直线1AA ,11A B ,11A D 所成的角是相等的,所以平面11AB D 与平面α平行,由正方体的对称性:要求截面面积最大,则截面的位置为过棱的中点的正六边形(过正方体的中心),边,所以其面积为26S .16. 如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :1y x =+交于点(),n n n A x y 和(),n n n B x y ′′,则20n n n y y =′=∑______.(参考数据:取221.18.14=.)【答案】914 【解析】【分析】根据题意可得1, 1.1n n n y n y ′=+=,进而利用错位相减法运算求解.【详解】由题意可知:1, 1.1n n n y n y ′=+=,则()20201192000011.111.121.1201.1211.1n n n n n y y n =′=+=×+×++×+×∑∑L , 可得2012202101.111.121.1201.1211.1nn n yy =′×=×+×++×+×∑L ,两式相减可得:2120120212101 1.10.1 1.1 1.1 1.1211.1211.11 1.1n n n y y =−′−×=+++−×=−×−∑L 2121221 1.10.1211.11 1.118.1491.40.10.10.1−+××++====−−−−, 所以20914nn n yy =′=∑.故答案为:914.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17. 如图,在直三棱柱111ABC A B C -中,2CACB ==,AB =13AA =,M 为AB 中点.(1)证明:1//AC 平面1B CM ; (2)求点A 到平面1B CM 的距离. 【答案】(1)证明见解析 (2【解析】【分析】(1)利用线面平行的判定定理证明; (2)利用等体积法求解.的【小问1详解】连接1BC 交1B C 于点N ,连接MN , 则有N 为1BC 的中点,M 为AB 的中点, 所以1//AC MN ,且1AC ⊄平面1B CM ,MN ⊂平面1B CM , 所以1//AC 平面1B CM . 【小问2详解】连接1AB ,因为2CACB ==,所以CM AB ⊥,又因为1AA ⊥平面ABC ,CM ⊂平面ABC ,所以1AA CM ⊥,1AB AA A ∩=,所以CM ⊥平面11ABB A , 又因为1MB ⊂平面11ABB A ,所以1CM MB ⊥,又222CA CB AB +=,所以ABC 是等腰直角三角形,112CM AB MB ====,所以1112CMB S CM MB =⋅=△1111222ACM ACB S S CA CB ==×⋅=△△, 设点A 到平面1B CM 的距离为d , 因为11A B CM B ACM V V −−=,所以111133B CM ACM S d S AA ××=×× ,所以11ACM B CMS AA dS ×= .18. 记锐角ABC 的内角,,A B C 的对边分别为,,a b c �已知sin()sin()cos cos A B A C B C−−=.(1)求证:B C =; (2)若sin 1a C =,求2211a b+的最大值. 【答案】(1)见解析; (2)2516. 【解析】【分析】(1)运用两角和与差正弦进行化简即可;(2)根据(1)中结论运用正弦定理得sin 2sin sin 12ba C R Ab A R === ,然后等量代换出2211a b +,再运用降次公式化简,结合内角取值范围即可求解. 【小问1详解】 证明:由题知sin()sin()cos cos A B A C B C−−=,所以sin()cos sin()cos A B C A C B −=−, 所以sin cos cos cos sin cos sin cos cos cos sin cos A B C A B C A C B A C B −=−, 所以cos sin cos cos sin cos A B C A C B = 因为A 为锐角,即cos 0A ≠ , 所以sin cos sin cos B C C B =, 所以tan tan =B C , 所以B C =. 【小问2详解】 由(1)知:B C =, 所以sin sin B C =, 因为sin 1a C =, 所以1sin C a=, 因为由正弦定理得:2sin ,sin 2b aR A B R=, 所以sin 2sin sin 12b a C R A b A R=== ,所以1sin A b =, 因为2A B C C ππ=−−=− ,所以1sin sin 2A C b==, 所以222211sin sin 2a bC C++ 221cos 2(1cos 2)213cos 2cos 222CC C C −+−=−−+因为ABC 是锐角三角形,且B C =, 所以42C ππ<<,所以22C ππ<<,所以1cos 20C −<<, 当1cos 24C =−时,2211a b +取最大值为2516, 所以2211a b +最大值为:2516. 19. 甲、乙足球爱好者为了提高球技,两人轮流进行点球训练(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,一人踢球另一人扑球,甲先踢,每人踢一次球,两人有1人进球另一人不进球,进球者得1分,不进球者得1−分;两人都进球或都不进球,两人均得0分,设甲、乙每次踢球命中的概率均为12,甲扑到乙踢出球的概率为12,乙扑到甲踢出球的概率13,且各次踢球互不影响. (1)经过1轮踢球,记甲的得分为X ,求X 的分布列及数学期望; (2)求经过3轮踢球累计得分后,甲得分高于乙得分的概率. 【答案】(1)分布列见解析;期望为112(2)79192【解析】【分析】(1)先分别求甲、乙进球的概率,进而求甲得分的分布列和期望;(2)根据题意得出甲得分高于乙得分的所有可能情况,结合(1)中的数据分析运算. 【小问1详解】记一轮踢球,甲进球为事件A ,乙进球为事件B ,A ,B 相互独立, 由题意得:()1111233P A =×−= ,()1111224P B =×−= , 甲的得分X 的可能取值为1,0,1−,()()()()11111346P X P AB P A P B =−===−×= ,()()()()()()()11117011343412P X P AB P AB P A P B P A P B ==+=+=×+−×−=()()()()11111344P X P AB P A P B ====×−= ,所以X 的分布列为:()1711101612412E X =−×+×+×=.【小问2详解】经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有2轮各得1分,1轮得1−分;甲3轮中有1轮得1分,2轮各得0分,甲3轮各得1分的概率为3111464P ==, 甲3轮中有2轮各得1分,1轮得0分的概率为2223177C 41264P =×=, 甲3轮中有2轮各得1分,1轮得1−分的概率为2233111C 4632P =×= , 甲3轮中有1轮得1分,2轮各得0分的概率为21431749C 412192P =××=, 所以经过三轮踢球,甲累计得分高于乙的概率1714979646432192192P =+++=.20. 已知数列{}n a 中,10a =,()12n n a a n n N∗+=+∈.(1)令11n n n b a a +=−+,求证:数列{}n b 是等比数列; (2)令3nn n a c =,当n c 取得最大值时,求n 的值. 【答案】(1)证明见解析;(2)3n =. 【解析】 【分析】(1)求得21a =,12b =,利用递推公式计算得出12n n b b +=,由此可证得结论成立;(2)由(1)可知112nn n a a +−+=,利用累加法可求出数列{}n a 的通项公式,可得出213n n nn c −−=,利用定义法判断数列{}n c 的单调性,进而可得出结论.【详解】(1)在数列{}n a 中,10a =,12n n a a n +=+,则21211a a =+=, 11n n n b a a +=−+ ,则12112b a a −+,则()()()111112211212n n n n n n n n b a a a n a n a a b ++−−=−+=+−+−+=−+=,所以,数列{}n b 为等比数列,且首项为2,所以,1222n n n b −=×=;(2)由(1)可知,2n n b =即121nn n a a +−=−,可得2123211212121n n n a a a a a a −−−=− −=−−=− , 累加得()()()()1211212222112112n n n n a a n n n −−−−=+++−−=−−=−−− ,21n n a n ∴=−−.213n n n n c −−∴=,()111112112233n n n n n n n c +++++−+−−−==, 11112221212333n n nn n n n n n n n c c ++++−−−−+−∴−=−=, 令()212nf n n =+−,则()11232n f n n ++=+−,所以,()()122nf n f n +−=−.()()()()1234f f f f ∴=>>> ,()()1210f f ==> ,()310f =−<,所以,当3n ≥时,()0f n <.所以,123c c c <<,345c c c >>> . 所以,数列{}n c 中,3c 最大,故3n =.【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +−=或11n n a a q −=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n −= = −≥ 进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S −与1n a −的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n −−=,即第n 项与第n 1−项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a −=,即第n 项与第n 1−项的商是个有规律的数列,就可以利用这种方法;(6)构造法:�一次函数法:在数列{}n a 中,1n n a ka b −=+(k 、b 均为常数,且1k ≠,0k ≠). 一般化方法:设()1n n a m k a m −+=+,得到()1b k m =−,1b m k =−,可得出数列1n b a k+ −是以k的等比数列,可求出n a ;�取倒数法:这种方法适用于()112,n n n ka a n n N ma p∗−−=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b −=+的式子; �1nn n a ba c +=+(b 、c 为常数且不为零,n N ∗∈)型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用�中的方法求解即可. 21. 已知双曲线2222:1(0,0)x y E a b a b−=>>的焦距为10,且经过点M .A ,B 为双曲线E 的左、右顶点,P 为直线2x =上的动点,连接P A ,PB 交双曲线E 于点C ,D (不同于A ,B ). (1)求双曲线E 的标准方程.(2)直线CD 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由. 【答案】(1)221169x y −= (2)直线CD 过定点,定点坐标为(8,0). 【解析】【分析】(1)方法一:将M 代入方程,结合222+=a b c 求得,a b 得双曲线方程;方法二:根据双曲线定义求得a 得双曲线方程.(2)方法一:设CD 的方程为x my t =+,与双曲线联立,由A 点与C 点写出AC 方程,求出p y ,由B 点与D 点写出BD 方程,求出p y ,利用两个p y 相等建立关系式,代入韦达定理可求得t 为定值.方法二:设CD 的方程为,(2,)x my t P n =+,与双曲线联立,由P 点与A 点写出AC 方程,由P 点与B 点写出BD 方程,将()()1122,,,C x y D x y 代入以上两方程,两式相比消去n 建立关系式,代入韦达定理可求得t 为定值. 【小问1详解】法一.由222225,64271,a b ab += −=解得2216,9a b ==,�双曲线E 的标准方程为221169x y −=. 法二.左右焦点为()()125,0,5,0F F −,125,28c a MF MF ∴==−=,22294,a b c a ∴===−,�双曲线E 的标准方程为221169x y −=.【小问2详解】直线CD 不可能水平,故设CD 的方程为()()1122,,,,x my t C x y D x y =+, 联立221169x my t x y =+−= 消去x 得()()2222916189144=0,9160m y mty t m −++−−≠, 12218916mt y y m −∴+=−,21229144916t y y m −=−,12y y −±,AC 的方程为11(4)4y yx x ++,令2x =,得1164p y y x =+, BD 的方程为22(4)4y yx x −−,令2x =,得2224p y y x −=−,1221112212623124044y y x y y x y y x x −∴=⇔−++=+− ()()21112231240my t y y my t y y ⇔+−+++=()()1212431240my y t y t y ⇔+−++= ()()()()12121242480my y t y y t y y ⇔+−++−−=()22249144(24)180916916m t t mt m m −−⇔−±=−−3(8)(0m t t ⇔−±−=(8)30t m ⇔−= ,解得8t =3m =±,即8t =或4t =(舍去)或4t =−(舍去), �CD 的方程为8x my =+,�直线CD 过定点,定点坐标为(8,0). 方法二.直线CD 不可能水平,设CD 的方程为()()1122,,,,,(2,)x my t C x y D x y P n =+, 联立22,1,169x my t x y =+ −= ,消去x 得()2229161891440m y mty t −++−=, 2121222189144,916916mt t y y y y m m −−∴+==−−, AC 的方程为(4)6nyx =+,BD 的方程为(4)2ny x −−, ,C D 分别在AC 和BD 上,()()11224,462n ny x y x ∴=+=−−, 两式相除消去n 得()211211223462444x y y y x x x y −−−=⇔+=+−, 又22111169x y −=,()()211194416x x y ∴+−=.将()2112344x y x y −−+=代入上式,得()()1212274416x x y y −−−=⇔()()1212274416my t my t y y −+−+−=()()221212271627(4)27(4)0m y y t m y y t ⇔++−++−=⇔()22222914418271627(4)27(4)0916916t mtm t m t m m −−++−+−=−−.整理得212320t t +=−,解得8t =或4t =(舍去). �CD 的方程为8x my =+,�直线CD 过定点,定点坐标为(8,0). 【点睛】圆锥曲线中直线过定点问题通法,先设出直线方程y kx m =+,通过韦达定理和已知条件若能求出m 为定值可得直线恒过定点,若得到k 和m 的一次函数关系式,代入直线方程即可得到直线恒过定点.22. 设函数()()2cos 102x f x x x =−+≥.(1)求()f x 的最值;(2)令()sin g x x =,()g x 的图象上有一点列()*11,1,2,...,,22i ii A g i n n =∈N ,若直线1i i A A +的斜率为()1,2,...,1i k i n =−,证明:1217 (6)n k k k n −+++>−. 【答案】(1)()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值. (2)见解析 【解析】【分析】(1)求出原函数的二阶导数后可判断二阶导数非负,故可判断导数非负,据此可求原函数的最值.(2)根据(1)可得3sin (0)6x x x x ≥−≥,结合二倍角的正弦可证:2271162i i k +>−×,结合等比数列的求和公式可证题设中的不等式. 【小问1详解】()sin f x x x ′=−+,设()sin s x x x =−+,则()cos 10s x x ′=−+≥(不恒为零),故()s x 在()0,∞+上为增函数,故()()00s x s >=,所以()0f x ¢>,故()f x 在[)0,∞+上为增函数, 故()f x 在[)0,∞+上的最小值为()00f =,()f x 在[)0,∞+上无最大值. 【小问2详解】先证明一个不等式:3sin (0)6x x x x ≥−≥,证明:设()3sin ,06x u x x x x =−+≥,则()2cos 1()02x u x x f x ′=−+=≥(不恒为零),故()u x 在[)0,∞+上为增函数, 故()()00u x u ≥=即3sin (0)6x x x x ≥−≥恒成立. 当*N i ∈时,11111111222sin sin 112222i i i i i i i ig g k ++++ − ==− − 11111111111122sin cos sin 2sin 2cos 122222i i i i i i i +++++++=−=×−由(1)可得()2cos 102x x x ≥−>,故12311cos 1022i i ++≥−>, 故111112311112sin2cos 12sin 2112222i i i i i i ++++++ ×−≥×−−1112213322111112sin121222622i i i i i i i +++++++ ×−≥−− × 2222224422117111711111622626262i i i i i +++++ =−−=−×+×>−× × , 故1214627111...16222n nk k k n −+++>−−+++41111771112411166123414n n n n −− =−−×=−−×−× −771797172184726n n n n =−−+×>−>−. 【点睛】思路点睛:导数背景下数列不等式的证明,需根据题设中函数的特征构成对应的函数不等式,从而得到相应的数列不等式,再结合不等式的性质结合数列的求和公式、求和方法等去证明目标不等式.。
雅礼中学高三月考试卷(一)数学及答案

雅礼中学高三月考试卷(一)数学一、单项选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合A =-2,0 ,B =x x 2-2x =0 ,则以下结论正确的是()A.A =BB.A ∩B =0C.A ∪B =AD.A ⊆B2.已知等比数列a n 满足a 1=1,a 3⋅a 5=4a 4-1 ,则a 7的值为()A.2B.4C.92D.63.已知复数z =a +1 -ai a ∈R ,则a =-1是z =1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知向量a =cos θ,sin θ ,b =2,-1 ,若a ⊥b ,则cos 2θ+12sin2θ的值为()A.13B.35C.45D.235.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱AA 1,CC 1的中点,过BE 的平面α与直线A 1F 平行,则平面α截该正方体所得截面的面积为()A.5B.25C.4D.56.某工厂有A ,B 两个生产车间,所生产的同一批产品合格率分别是99%和98%,已知某批产品的60%和40%分别是A ,B 两个车间生产,质量跟踪小组从中随机抽取一件,发现不合格,则该产品是由A 车间生产的概率为()A.34B.47C.12D.377.已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点,且∠F 1PF 2=π3,若F 1关于∠F 1PF 2平分线的对称点在椭圆C 上,则该椭圆的离心率为()A.22B.33C.12D.138.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是()A.2B.3C.3D.33二、多项选择题:本大题共4个小题,每小题5分,共20分。
2018届湖南省长沙市雅礼中学高三5月一模理科数学试题

2018年雅礼中学高三理科数学第一次模拟考试时量120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知复数i z -=1(i 为虚数单位),z 是z 的共轭复数,则z1的值为( B )A. 1B. 22 C.21D.22. 命题“存在2≥x ,使42≥x ”的否定是(A )A. 对任意2≥x ,都有42<xB. 对2<x ,都有42≥xC. 存在2≥x ,使42<xD. 存在2<x ,使42≥x 3. 设随机变量()()()2~,1=2=0.3N P P ξμσξξ<->,且,则()21=P <+ξμ( D )A .0.4B .0.5C .0.6D .0.74.已知x ,y满足22y xx y z x y x a ≥⎧⎪+≤=+⎨⎪≥⎩,且的最大值是最小值的4倍,则a 的值是( B ) A .34B .14C .211D .4 5. 双曲线22221(0,0)x y a b a b -=>>的一个顶点到一条渐近线的距离为2a,则双曲线的离心率为( D )A.B.C.223D. 3326. 五个人坐成一排,甲要和乙坐在一起,乙不和丙坐在一起, 则不同排法数为( C )A .12B .24C .36D .487. 如图所示的程序框图运行结束后,输出的集合中包含的元素个 数为( A )A. 3B. 4C. 5D. 6 8. 已知数列{}n a为等比数列,且201320150a a +=⎰,则()20142012201420162a a a a ++的值为( C )A .πB .2πC .2πD .24π 9. 某三棱锥的正视图如图所示,则这个三棱锥的俯视图不可..能.是( C )正视图A B C D 10.已知函数⎪⎩⎪⎨⎧>-≤-+=0),1(0,11)(x x f x x x x f ,则函数a e x f x g x +-=)()(的零点个数不可能是(D )A .0B .1C .2D .3二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.(一)选做题:在11,12,13三题中任选两题作答,如果全做,则按前两题记分.11.如图,圆A 与圆B 交于C 、D 两点,圆心B 在圆A 上,DE 为圆B 的直径。
2018-2019学年湖南省长沙市雅礼中学高三(上)月考数学试卷(文科)(三)

2018-2019学年湖南省长沙市雅礼中学高三(上)月考数学试卷(文科)(三)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个,选项中只有一个选项是符合题目要求的.1.(5分)复数(i为虚数单位)等于()A.1B.﹣1C.i D.﹣i2.(5分)若集合,,则A∩B=()A.[﹣∞,1]B.[﹣1,1]C.∅D.13.(5分)已知向量=(1,2),向量=(x,﹣2),且⊥(﹣),则实数x等于()A.9B.4C.0D.﹣44.(5分)已知数列{a n}为等差数列,若a1+a5+a9=π,则cos(a2+a8)的值为()A.B.C.D.5.(5分)若圆x2+y2﹣6x﹣2y+6=0上有且仅有三个点到直线ax﹣y+1=0(a是实数)的距离为1,则a等于()A.±1B.C.D.6.(5分)在△ABC中,角A,B,C所对的边长分别是a,b,c,若角B=,a,b,c成等差数列,且ac=6,则b的值是()A.B.C.D.7.(5分)如图,函数y=f(x)的图象在点P(5,f(5))处的切线方程是y=﹣x+8,则f (5)+f′(5)=()A.B.1C.2D.08.(5分)若将函数的图象向左平移m(m>0)个单位后,所得图象关于y轴对称,则实数m的最小值为()A.B.C.D.9.(5分)不等式组,所表示的平面区域的面积等于()A.B.C.D.10.(5分)阅读下面的程序框图,则输出的S=()A.14B.20C.30D.5511.(5分)函数,则集合{x|f(f(x))=0}元素的个数有()A.、2个B.3个C.4个D.5个12.(5分)已知定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x∈(﹣1,0)时,f(x)=2x+,则f(2018)+f(log220)=()A.1B.C.﹣1D.﹣二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)已知一个几何体的三视图如图所示(单位:cm),其中正视图是直角梯形,侧视图和俯视图都是矩形,则这个几何体的体积是cm3.14.(5分)已知,则x+y的最小值为.15.(5分)已知F是双曲线的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|P A|的最小值为.16.(5分)若关于x的不等式(2x﹣1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)设数列{a n}的前n项和为S n,且a1=1,S n=a n+1﹣1(n∈N*).(1)证明数列{a n}是等比数列,并求{a n}的通项公式;(2)若a n=a n+(﹣1)n log2a n,求数列{b n}的前2项的和T2n.18.(12分)如图,P A垂直于矩形ABCD所在的平面,AD=P A=2,CD=2,E,F分别是AB、PD的中点.(1)求证:AF⊥平面PCD.(2)求三棱锥P﹣EFC的体积.19.(12分)为了了解某学校高二年级学生的物理成绩,从中抽取n名学生的物理成绩(百分制)作为样本,按成绩分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],频率分布直方图如图所示.成绩落在[70,80)中的人数为20.男生女生合计优秀不优秀合计(Ⅰ)求a和n的值;(Ⅱ)根据样本估计总体的思想,估计该校高二学生物理成绩的平均数和中位数m;(Ⅲ)成绩在80分以上(含80分)为优秀,样本中成绩落在[50,80)中的男、女生人数比为1:2,成绩落在[80,100]中的男、女生人数比为3:2,完成2×2列联表,并判断是否有95%的把握认为物理成绩优秀与性别有关.参考公式和数据:K2=.P(K2≥k)0.500.050.0250.005k0.455 3.841 5.0247.87920.(12分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,过抛物线的焦点且斜率为1的直线与抛物线交于A、B两点,若|AB|=16(1)求抛物线的方程;(2)若AB的中垂线交抛物线于C、D两点,求过A、B、C、D四点的圆的方程.21.(12分)已知函数f(x)=alnx+.(1)若x=是f(x)的极值点,求a的值,并求f(x)的单调区间;(2)在(1)的条件下,当0<m<n时,求证:f(m+n)﹣f(2n)<+.[坐标系与参数方程]22.(10分)已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.(1)将圆的极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P(x,y)在该圆上,求x+y的最大值与最小值的和.[不等式选讲]23.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.。
湖南省长沙市雅礼中学2022-2023学年高三上学期第一次月考数学试卷含答案

注意事项:1.答题前,先将自己的姓名、考号填写在试卷和答题卡上,并将考号条形码粘贴在答 题卡上的指定位置。
2.请在答题卡上各题号对应的答题区域内答题,写在试卷、草稿纸和答题卡上的非答 题区域均无效。
3.选择题用 2B 铅笔把所选答案的标号涂黑,非选择题用黑色签字笔作答。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合=+<∈=P x x x N Q |log (1)1,,1,3,56}{}{,M =P ∪Q ,则集合M 中的元素共有( ) A .4个B .6个C .8个D .无数个2.设函数f x mx mx =−−2()1,命题“x ∃∈1,3][,f x m ≤−+()2是假命题”,则实数m 的取值范围是( )A .,37−∞⎛⎝⎤⎦⎥ B .−∞,3]( C .37,+∞⎛⎝ ⎫⎭⎪ D .3,+∞)(3.《九章算术》是我国古代数学成就的杰出代表,其中《方田》章有弧田面积计算问题, 计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积的计算公式为:弧田面积=21(弦×矢+矢×矢).弧田是由圆弧(简称为弧田弧)和以圆弧的端点为端点的线段(简称为弧田弦)围成的平面图形,公式中“弦”指的是弧田弦的长,“矢”等于弧田弧所在圆的半径与圆心到弧田弦的距离之差.现有一弧田,其弦长AB 等于6m ,其弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为2m 72,则∠=AOB cos ( )A .251 B .−257C .51D .257 4.已知⎝⎭ ⎪+=⎛⎫απ32sin 1,则⎝⎭ ⎪+⎛⎫απ6sin 2的值为( )A .21B .−21CD5.如图,在棱长为2的正方体−ABCD A B C D 1111中,E ,F 分别是棱AA 1,CC 1的中点,过BE 的平面α与直线A F 1平行,则平面α截该正方体所得截面的面积为( ) AB.C .4D .56.已知函数f (x )=x 3+ax 2-x 的图象在点A (1,f (1))处的切线方程为y =4x -3,则函数y =f (x)湖南省雅礼中学高三年级第一次月考 数学试卷的极大值为( ) A .1B .527−C .−2527D .-17. 20222022202232022322022212022020202222C C C C C +−+−的值为A .0B .1C .-1D .202228.已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R ,均有(2)()f x f x +=且(1)0f =,当[0,1)x ∈时,()21x f x =−,则方程()1||0f x g x −=的实根个数为( ) A .6B .8C .10D .12二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知由样本数据点集合{}(,)123,i i x y i n =,,,,求得的回归直线方程为 1.50.5y x =+,且3x =,现发现两个数据点12,2(2)..和4.8,(7)8.误差较大,去除后重新求得的回归直线l 的斜率为1.2,则( )A .变量x 与y 具有正相关关系B .去除后y 的估计值增加速度变快C .去除后与去除前均值x ,y 不变D .去除后的回归方程为 1.2 1.4y x =+10.如图所示,是一个3×3九宫格,现从这9个数字中随机挑出3个不同的数字,记事件A 1:恰好挑出的是1、2、3;记事件A 2:恰好挑出的是1、4、7;记事件A 3:挑出的数字里含有数字1.下列说法正确的是( )12 B .事件A 1,A 2是独立事件 C .P (A 1|A 3)=P (A 2|A 3)D .P (A 3)=P (A 1)+P (A 2)11.在正四面体ABCD 中,若AB = ) A .该四面体外接球的表面积为3πB .直线与平面BCDC .如果点M 在CD 上,则AM BM +D .过线段一个三等分点且与 12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()2f x x =(R x ∈),()1g x x=(0x <),()2eln h x x =(e 为自然对数的底数),则( )A .()()()m x f x g x =−在x ⎛⎫∈ ⎪⎝⎭内单调递增B .()f x 和()g x 间存在“隔离直线”,且k 的取值范围是[]4,1−C .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为1−三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量X 服从正态分布()28,X N σ~,(10)P x m ≥=,(68)P x n ≤≤=,则182m n+的最小值为____________.14.某中学元旦晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在节目乙的前面,节目丙不能排在最后一位,则该晚会节目演出顺序的编排方案共有_________. 15.=−−20cos 6420cos 120sin 3222_________. 16.已知函数()eln 2x f x x =,()22x g x x m=−,若函数()()()h x g f x m =+有3个不同的零点x 1,x 2,x 3(x 1<x 2<x 3),则()()()1232f x f x f x ++的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知.2,4,53)4sin(,4,0,553cos sin ⎪⎭⎫⎝⎛∈=−⎪⎭⎫ ⎝⎛∈=+ππβπβπααα (1)求α2sin 和α2tan 的值; (2)求()βα2cos +的值.18.已知2mx⎛⎝的展开式中,第4项的系数与倒数第4项的系数之比为.(1)求m 的值;(2)求展开式中所有项的系数和与二项式系数和; (3)将展开式中所有项重新排列,求有理项不相邻的概率.19.已知函数2()(,)f x x bx c b c R =++∈,且()0f x ≤的解集为[1,2]−. (1)求函数()f x 的解析式;(2)解关于x 的不等式mf(x)>2(x −m −1);(3)设g(x)=2f(x)+3x−1,若对于任意的x 1,x 2∈[−2,1]都有()()12g x g x M −≤,求M 的最小值.20.某学校共有2000名学生,其中女生1200人,为了解该校学生在学校的月消费情况,采取分层抽样随机抽取了200名学生进行调查,月消费金额分布在550~1050元之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示,将月消费金额不低于850元的学生称为“高消费群”.(1)求a 的值,并估计该校学生月消费金额的平均数;(同一组中的数据用该组区间的中点值作代表)(2)若样本中属于“高消费群”的男生有10人,完成下列2×2列联表,并判断是否有99.9%以上的把握认为该校学生属于“高消费群”与“性别”有关.(()()()()()2n ad bc K a b c d a c b d −=++++,其中n =a +b +c +d )21.在多面体ABCDE 中,平面ACDE ⊥平面ABC ,四边形ACDE 为直角梯形,CD ∥AE ,AC ⊥AE ,AB ⊥BC ,CD =1,AE =AC =2,F 为DE 的中点,且点E 满足4EB EG =.(1)证明:GF ∥平面ABC ;(2)当多面体ABCDE 的体积最大时,求二面角A -BE -D 的余弦值.22.已知函数()e cos x f x x x =+.(1)判断函数()f x 在[0,)+∞上的单调性,并说明理由;(2)对任意的0x ≥,e sin cos 2x x x x ax ++≥+,求实数a 的取值范围.湖南省雅礼中学高三年级第一次月考数学试卷参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B 2.B 3.D 4.B 5.B 6.A 7.B 8.D二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.ACD 10.AC 11.ACD 12.AD三、填空题:本题共4小题,每小题5分,共20分.13.25 14.300种 15.-32 16.()11002⎛⎫−⋃ ⎪⎝⎭,,四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.18.(1)展开式的通项为()152222122rrm m rrr r r mm T C x x C x −−−+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭, ∴展开式中第4项的系数为332m C ⋅,倒数第4项的系数为332m m m C −−⋅,33332122m m m m C C −−⋅∴=⋅,即611,722m m −=∴=. (2)令1x =可得展开式中所有项的系数和为732187=,展开式中所有项的二项式系数和为72128=.(3)展开式共有8项,由(1)可得当522rm −为整数,即0,2,4,6r =时为有理项,共4项, ∴由插空法可得有理项不相邻的概率为484485 114A A A =. 19.(1)因为()0f x ≤的解集为[1,2]−,所以20x bx c ++=的根为1−,2, 所以1b −=,2c =−,即1b =−,2c =−;所以2()2f x x x =−−;(2)mf(x)>2(x −m −1),化简有()222(1)m x x x m −−>−−,整理得(2)(1)0mx x −−>,所以当0m =时,不等式的解集为(,1)−∞,当02m <<时,不等式的解集为2(,1),⎛⎫−∞+∞ ⎪⎝⎭m ,当2m =时,不等式的解集为(,1)(1,)−∞+∞, 当2m >时,不等式的解集为()2(,)1,−∞+∞m,(3)因为[2,1]x ∈−时2()3123f x x x x +−=+−,根据二次函数的图像性质,有2()3123[4,0]f x x x x +−=+−∈−, 则有2()3123()22f x x xx g x +−+−==,所以,1(),116⎡⎤∈⎢⎥⎣⎦g x ,因为对于任意的x 1,x 2∈[−2,1]都有()()12g x g x M −≤, 即求()()12max g x g x M −≤,转化为()()−≤max min g x g x M , 而()(1)1==max g x g , 1()(1)16min g x g =−=, 所以,此时可得1516M ≥, 所以M 的最小值为1516. 20.(1)由频率分布直方图中所有小矩形的面积之和为1得到方程,解得a ,再根据频率分布直方图中平均数计算公式计算可得;(2)按照分层抽样求出样本中男生、女生的人数,再由频率分布直方图求出“高消费群”的人数,即可完善列联表,计算出卡方,即可判断; (1)解:由频率分布直方图可得()1000.00150.00350.00150.0011a ⨯++++=,解得0.0025a =, 所以样本的平均数为()6000.00157000.00358000.00259000.001510000.001100770⨯+⨯+⨯+⨯+⨯⨯=(元)(2)解:依题意知,样本中男生20001200200802000−⨯=人,女生12002001202000⨯=人,属于“高消费群”的有()0.00150.00110020050+⨯⨯=人,列出下列22⨯列联表:所以22001080407011.1110.828 5015080120K⨯−⨯=≈>⨯⨯⨯,所以有99.9%以上的把握认为该校学生属于“高消费群”与“性别”有关.21.(1)取AB,EB中点M,N,连接CM,MN,ND.在梯形ACDE中,DC∥EA且DC=12EA,且M,N分别为BA,BE中点,∴MN//EA,MN=12EA,∴MN//CD,MN=CD,即四边形CDNM是平行四边形,∴CM//DN,又14EG EB=,N为EB中点,∴G为EN中点,又F为ED中点,∴GF//DN,即GF//CM,又CM⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)在平面ABC内,过B作BH⊥AC交AC于H.∴平面ACDE⊥平面ABC,平面ACDE平面ABC=AC,BH⊂平面ABC,BH⊥AC,∴BH⊥平面ACDE,则BH为四棱锥B-ACDE的高,又底面ACDE 面积确定,要使多面体ABCDE 体积最大,即BH 最大,此时AB =BC过点H 作HP ∥AE ,易知HB ,HC ,HP 两两垂直,以{HB ,HC ,HP }为正交基底建立如图所示的平面直角坐标系H -xyz ,∴A (0,−1,0),B (1,0,0),E (0,−1,2),D (0,1,1),则AB =(1,1,0),BE =(−1,−1,2),DE =(0,−2,1).设n 1⃗⃗⃗⃗ =(x 1,y 1,x 1)为平面ABE 的一个法向量,则1100n AB n BE ⎧⋅=⎪⎨⋅=⎪⎩,即11111020x y x y z +=⎧⎨−−+=⎩,取n 1⃗⃗⃗⃗ =(1,−1,0),设n 2⃗⃗⃗⃗ =(x 2,y 2,z 2)为平面DBE 的一个法向量,则220n DE n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222222020y z x y z −+=⎧⎨−−+=⎩,取n 2⃗⃗⃗⃗ =(3,1,2), ∴1212127cos ,7n n n n n n ⋅<>==⋅,由图知:二面角A −BE −D 为钝二面角,∴二面角A −BE −D 的余弦值为. 22.(1)解:函数()f x 在[0,)+∞上是单调增函数,理由如下: 因为()e cos x f x x x =+,所以()e cos (sin )x f x x x x =+−'+. 记()e 1x g x x =−−,则()e 1x g x '=−,令()0g x '=,得0x =. 当0x >时,()0,()'>g x g x 为单调增函数; 当0x <时,()0,()g x g x '<为单调减涵数,所以min ()(0)0g x g ==,所以()e 10x g x x =−−≥,即e 1x x ≥+. 又sin 1,cos 1x x ≤≥−,所以()1cos (sin )(1sin )(1cos )0f x x x x x x x x ≥+++−=−++≥', 所以函数()f x 在[0,)+∞上是单调增函数. (2)解:记()e sin cos 2(0)x p x x x ax x =++−−≥,是()e cos x p x x x a =+−'. 由(1)知,()e cos x p x x x a =+−'为[0,)+∞上的单调增函数.1°当10a −≥时,(0)10p a =−≥',所以()(0)0p x p ''≥≥,所以()p x 为[0,)+∞上的单调增函数,所以()(0)0p x p ≥=,即e sin cos 2x x x x ax ++≥+.所以1a ≤符合题意. 2°当10a −<时,(0)10p a =−<',又()e cos e 2a a p a a a a a =−≥'+−. 记()e 2(1)x q x x x =−>,则()e 2e 20x q x =−>−>',所以()q x 为(1,)+∞上的单调增函数,所以()(1)e 20q x q >=−>, 所以e 20(1)x x x −>>,所以()e 20a p a a ≥−>'.又()p x 在[0,)+∞上的图象不间断,且()p x 为[0,)+∞上的单调增函数, 根据零点存在性定理知,存在唯一的零点0(0,)x ∈+∞,使得()00p x =. 所以当00x x ≤≤时,()0p x '≤,()p x 单调递减,所以()0(0)0p x p <=, 这与任意的0x ≥,e sin cos 2x x x x ax ++≥+矛盾, 所以1a >不符合题意 综上可得1a ≤.。
2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)(含答案)

2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x |log 2x >1},B ={x |0<x <4},则A ∩B =( )A. {x |2<x <4}B. {x |2⩽x <4}C. {x |0<x⩽2}D. {x |x⩽2}2.已知复数z 满足(1―i )z =2i ,且z +ai (a ∈R )为实数,则a =( )A. 1B. 2C. ―1D. ―23.设向量a =(1,0),b =(12,12),则下列结论中正确的是( )A. |a |=|b | B. a ⋅b = 22 C. a ―b 与b 垂直 D. a //b4.已知a 是函数f (x )=2x ―log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A. f (x 0)=0B. f (x 0)>0C. f (x 0)<0D. f (x 0)的符号不确定5.若sinx +cosx =13,x ∈(0,π),则sinx ―cosx 的值为( )A. ± 173 B. ― 173 C. 13 D. 1736.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A. 8B. 24C. 48D. 1207.函数y =f (x )的图象如图①所示,则如图②所示的函数图象所对应的函数解析式可能为( )A. y =f (1―12x )B. y =―f (1―12x )C. y =f (4―2x )D. y =―f (4―2x )8.刍曹是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某屋顶可视为五面体ABCDEF ,四边形ABFE 和CDEF 是全等的等腰梯形,△ADE 和△BCF 是全等的等腰三角形.若AB =25m ,BC =AD =10m ,且等腰梯形所在的面、等腰三角形所在的面与底面夹角的正切值均为145.为这个模型的轮廓安装灯带(不计损耗),则所需灯带的长度为( )A. 102mB. 112mC. 117mD. 125m二、多选题:本题共3小题,共18分。
湖南省长沙市雅礼中学2024届高三上学期第一次月考试题+语文+Word版含答案

英才大联考雅礼中学2024届高三月考试卷(一)语文得分: 本试卷共四道大题,23道小题,满分150分。
时量150分钟。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5 小题,19分)阅读下面的文字,完成1~5题。
①谢赫提出的“气韵生动,骨法用笔,应物象形,经营位置,传移模写,随类赋彩”成为指导中国绘画技法理论的经典。
其中对“随类赋彩”,理论家、画家有不同理解,但把“类”字解释为“物象的固有色”者,使“随类赋彩”成了幼稚的、简单的色彩赋色方法;把“类”字解释为“类型”“类似”者,让“随类赋彩”成为当今中国绘画色彩理论的经典训条。
也有学者在解释“随类赋彩”时模棱两可,含糊推诿过去。
因此弄清其真正含义,既是对上千年中国绘画色彩理论的正本清源,也对当下中国绘画色彩理论的发展与实践具有指导意义。
②我们对“随类赋彩”的理解要完整、客观。
谢赫“六法”是一个有机整体,“气韵生动”是品画的最高美学原则,谢赫把它视为“六法”之本,其他“五法”是达到“气龄生动”的必要条件。
③“气韵生动”指的是一幅画面给人的整体感觉,要感人、生动。
“骨法用笔”即中国画笔法、线条的运用。
它是表达画家思想、个性、意念的手段,不是客观事物的复制和翻版。
“应物象形”以“骨法用笔”的线条为依托,筑就中国画的气色容貌。
“经营位置”是指构图需要画家有强烈的主观意识来取舍、布局、调置。
“传移模写”就是师法自然,自自然取得灵感。
在“六法”指导思想下的“随类赋彩”作为一个完整而带有指导地位的法则被提出来之后,它的内涵就不仅仅是写实意义和描摹自然物象的外在色彩,更是主张画家主观意念与客观相结合,从属于“气韵生动”的一种表现方法。
这样,中国绘画减弱了对自然色彩的依附,渐渐出现了从重彩到淡彩、浅绛直至水墨画的重墨轻色。
④另外,古代中国画的颜料受当时生产技术和条件的局限及交通运输的不便,颜料的获取只能因陋就简。
画家只能用简单的、接近的、类似于物象色彩的颜料去表现他们眼中所看到的物象色彩,有时找不到或调不出眼中所见到的色彩,只好凭主观情感去用色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已知 偶 函 数 * 在 上 是 增 函 数 则 不 等 式 * $ $(! % $ 0 2 # $ #
*
! # ! $$ *"$ $ + +
' ( # ! ! # ! " , $ ( $ $$ ( 或 $ $$ ( ' + + + + ! # ! " $ $$ ( $ ' # + # ! ! # ! ." $ ( $ $$ ( 或 $ $$ ( ' + # # +
$ + ! )& )0 # + & ! % *" $ + ! " )& )0 ! + & ! % " 将函数,& 5 1 6# $0 " #!
! " $ + , )& )0 # + ! % ' ! $ + ." )& )0 ! + ! % ' 的图像向右平移 个单位$ 再纵坐标不变 $ 横 3 3 ! " 5 1 6$ , ,&
理科数学试题! 雅礼版" 共 "页" ) 页! !第!
" ! 本小题满分! ! " #分" #! $ 如图所示的几何体中$ # %,1 8$ # 1&+ $ ; -% $ 点 9 在平面# # %& # 1 8& # 1 %& ! ! % 1 8 内的 射影是点1$ 9 5,# 1$ # 1& # 9 5! ! " 求证# 平面 % 1 9( 平面 # 1 9 5, ! $ 求1 ! " 若二面角 8(# $ ; # 5(1 的平面角为3 9 的长!
理科数学试题! 雅礼版" 共 "页" + 页! !第!
第卷
本卷包括必考题和选考题两部分 ! 第! " " 题为必考题 $ 每个试题 ! + # ! ! 考生都必须作答! 第! " " 题为选考题 $ 考生根据要求作答! # # # + ! 二& 填空题# 本大题共)小题 $ 每小题%分 $ 共# $分 ! ! " 已知 & " $ 则向量 与向量 的夹角弧度值 $ &槡 且(! ! + ! #$ ( 为!!!! ! " 已知线性区域 ! )
命题人 常君!审题人 黄爱民
得分 !!!!!!! 选择题 和第 卷 非选择题 两部分 共 " 页 时量 !!本试卷分第 卷 ! # $分钟满分! % $分
学!号!
密!!封!!线!!内!!不!!要!!答!!题
第卷
选择题 本题共! 每小题%分 在每小题给出的四个选项中 只有 #小题 一项是符合题目要求的 ! 集合 #& 关 已知全集"& 和 %& $$ $$' $% ( $$ ) ! ) $ # $ 系的韦恩图如图所示 则阴影部分所示集合中的元素共有
$ 求 = 的取值范围 ! $ ) $( >! #"
理科数学试题! 雅礼版" 共 "页" 4 页! !第!
" & ! " 题中任选一题作答 $ 如果多做$ 则按所做的第一 # # # + !!请考生在第! 题记分$ 做答时请写清题号 % " ! 本小题满分! 选修) / # 坐标系与参数方程 # # $分" ) #! 已知直线/的方程为,& $ 圆1 的参数方程为 $0 ) ! 为 # 0 # 5 1 6 ,& 参数" $ 以原点为极点 $ $ 轴正半轴为极轴建立极坐标系!
" " 解析 " # # " # $ " 0 1 # & $ ! " # " 0 1 & # + /! " " # " " $ $ # # # 2 2 解析 直观图如图所示 为正方体挖去了一个四棱锥$ " $ /!
" 解析 % #' #' " " /! & 3 & 3 ( #' # $ 槡 # " )! "可知 " # ) " 解析 由 " 4 # 454)! 则+ 令 *3"4#4 4) " # , 3 4 4 4 3" $ % ! *3 ) ) ) # # # # # " ) ) + " $ ! $ ,3* ! " $ " $ 6 $ *! "3 ,3 # * * 二 填空题 (4 " 槡 '$ ( " & !" !" ' # &槡 " ' # # # 则/ 自下而上三个圆柱底面半径分别为" ! " ! " ! " ) . . . # & ! 解析 "3 槡 #3 槡 &3 槡 " ' " # # # & # # 易知 0 在 1 . 3& 3 ! ' # 3 & " ! " ' 3 . .4 .4 .3 & .! " ' . ." $ . . . " # & 0 0 & # " " " " " ' &槡 " ' # 槡 上为减函数 上为增函数 在 $ . 3 3 $ 7 8 93 8 93 0 0 27 " ' # " ' " ' & " ' 槡 槡 槡 " ' 槡 & 三 解答题
三& 解答题# 本大题共4 其中第# 解答应写出文字 $分 $ #题 # +题为选考题! 说明$ 证明过程或演算步骤 ! ! " ! 本小题满分! ! 4 #分" $ $ $ 已知 5 % 1 的内角#$ %$ 1 的对边分别为($ . + : 8 5#& $ ( 1 6#(槡 +# $ & 4 & % ! , ! " 求. ! 满足 # 求 +# ! " 设 8 为1 # % 延长线上一点$ 8(# 1$ % 8 的面积!
! " 请根据已知条件完成 #<# 列联表 $ 并判断是否有 ' ! $ = 的把握认为 生产能手与工人所在的年龄组有关. + 生产能手 # %周岁以上组 # %周岁以下组 合计 附# :#&
# " )! ( ;( . ! " ! ! " ! (0 . 0 ;" (0 . 0 ;"
非生产能手
合计
" &! :#* 0
! ." +
) + # ! " ! ! 的展开式中$ 的系数是 3 ! ( $" $" ! (槡 ! ! " *" ( 3 , ( +
! " $
! ! ! ! " 如图给出的是计算! 则图中执 4 0 0 0 * 0 的值的一个程序框图 $ + % # ' 行框中的 处和判断框中的 处应填的语句是
( + ( ) 1 . ( + 0 ) 1
#
学!校!
的公比为正数 且( 已知等比数列 则( ) ( ( # ( ( ! # ) + '& % #& !& ! * # # 槡 ! 的解集是 +
理科数学试题 雅礼版 共 "页 !第! 页
# 槡 , # . #
'
$0 # ) ,)
" $ 目标函数'& $ ( $0 ! (0# , 的最大值为 ) $ $* $ $ ,*
则( 的值为!!! ! 虚轴的一个端点为 %$ 如果直线 5 " 设双曲线的一个焦点为 5$ ! % % 与该 #! 双曲线的一条渐近线垂直 $ 那么此双曲线的离心率为!!!!!!! 其轴截面 ! " 在一个半径为! 的半球材料中截取三个高度均为 6 的圆柱$ ! 3 如 图 所 示!设 制 作 这 三 个 圆 柱 的 原 材 料 利 用 率 为 7 & 圆柱体体积之和 $ 则 7 的最大值为!!!!!!! 原半球材料的体积
'
$& # : 8 5
! " 求直线/与圆1 的交点的极坐标 , ! ! " 若 & 为圆1 上的动点 $ 求 & 到直线/ 的距离; 的最大值! # " ! 本小题满分! 选修) / # 不等式选讲 # + $分" % #! 设函数*! $" + ( $0 ! $ $%! & $( , ! " 解不等式*! ! ! $" $( ! " 设函数>! $ 且 >! $ 0 上恒成 在 $% ) # $" ( ( ) $" $" ( # # & $0 ) *! 立$ 求实数( 的取值范围 !
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "