第题蛛网模型数学建模
数学建模试题(带答案)四

数学建模部分课后习题解答1.在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何? 解:模型假设(1) 椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形 (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即从数学角度来看,地面是连续曲面。
这个假设相当于给出了椅子能放稳的必要条件(3) 椅子在任何位置至少有三只脚同时着地。
为了保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的。
因为在地面上椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
模型建立在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来。
首先,引入合适的变量来表示椅子位置的挪动。
生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换。
然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的。
于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形。
注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地。
把长方形绕它的对称中心旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置。
为此,在平面上建立直角坐标系来解决问题。
设椅脚连线为长方形ABCD,以对角线AC 所在的直线为x 轴,对称中心O 为原点,建立平面直角坐标系。
椅子绕O 点沿逆时针方向旋转角度θ后,长方形ABCD 转至A1B1C1D1的位置,这样就可以用旋转角)0(πθθ≤≤表示出椅子绕点O 旋转θ后的位置。
其次,把椅脚是否着地用数学形式表示出来。
当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地。
由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数。
由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数,而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0。
蜘蛛网建模论文

A 题:蜘蛛网问题摘要因为蜘蛛主要依靠蜘蛛网捕食,所以需要建立合理的蜘蛛网结构,使得受力稳定,捕食效率最大化。
本文就捕食效率及受力稳定两个方面分别对蜘蛛网结构进行了分析,并提出了最合理的结构。
针对问题一:捕食效率最大化方面,我们分析了影响捕食效率的五个因素,即总耗材料、平均网眼面积、网眼面积标准差、网总面积和捕获路径等,采用lingo软件,分别对五个影响因素建立了控制条件,综合考虑各影响因素间的相互关系,在此基础上建立了一个多约束条件的优化模型。
该模型的本质是一个多目标的优化模型,采用选取核心影响因素建立目标函数,次要因素建立控制条件的方法,通过分析各因素对目标函数的影响并采用图表对比法,不断优化控制条件,得到了最优结构,使其捕食效率最大化。
针对问题二:受力稳定这方面对蜘蛛网结构经过力学分析后,我们明确给出了关于蛛网合理结构的分析结论最优模型为:27边形,19条纬线。
在文章的末尾,我们客观地分析了建模过程中的问题。
之后,我们又宏观地将模型推广到城市路网规划、水产捕鱼业渔网的设计。
当然我们的模型还是比较理想化的仍然需要很多的改进。
关键词:蛛网结构捕食效率Lingo 多目标规划一、问题重述1 第一阶段问题:问题:世界上生存着许多种类的蜘蛛,而其中的大部分种类都会通过结网来进行捕食。
请你建立合理的数学模型,说明蜘蛛网织成怎样的结构才是最合适的。
事实上,这就是一个多目标的优化问题。
从宏观上分析,有以下两方面需要讨论:(1)捕食效率:消耗尽可能少的资源而最大限度的提高捕食概率。
对于问题(1),具体可以展开为如下几点:(a)蛛丝总量消耗尽可能少;(b)蛛网的总面积尽可能大;(c)平均网眼面积尽可能小;(d)网眼面积标准差尽可能小;(e)平均捕食路径尽可能短。
(2)蛛网自身结构的力学特性:现实世界中的蛛网会承受风荷载、猎物碰撞所产生的冲击荷载以及蛛网自重作用等外荷载,合理的蛛网结构应能抵抗这些外力作用,使网格结构始终保持稳定。
数学建模-蜘蛛网

数学建模*蜘蛛网世界上生存着许多种类的蜘蛛,而其中的大部分种类都会通过结网来进行捕食。
请你建立合理的数学模型,说明蜘蛛网织成怎样的结构才是最合适的。
最合适的结构:对数螺线对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角。
方程:x=m*e^(t)*cos(t),x=m*e^(t)*cos(t),t是参数,范围是实数域方法:先向空中放出一根“搜索丝”。
之后放出一根悬垂丝,并在这根丝的中段加上第三根丝成Y字状,形成最初的3根不规则半径。
再加上n多条线形成网的雏形。
接下是铺设螺旋线,纺织成网。
以网心为起点,织出一根自内向外的螺旋线.从中心往边的过程中,在合适的地方加几根辐线,为了保持网的平衡,再到对面去加几根对称的辐线。
这种螺旋线把它放大或缩小都不会改变。
就像我们不能把角放大或缩小一样。
用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体相同的.整个网看起来是一些半径等分的圆周.从中心开始,用一条线在半径上作出一条螺旋状的线。
这是一条辅助的线。
然后,从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。
在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。
这样半径上就有许多小球。
从外面看上去,就是许多个小点。
垂曲线的图形:当一根弹性线的两端固定,而中间松驰的时候,它就形成了一条垂曲线在同一个扇形里,所有的弦,也就是那构成螺旋形线圈的横辐,都是互相平行的,并且越靠近中心,这种弦之间的距离就越远。
每一根弦和支持它的两根辐交成四个角,一边的两个是钝角,另一边的两个是锐角。
而同一扇形中的弦和辐所交成的钝角和锐角正好各自相等——因为这些弦都是平行的。
这些相等的锐角和钝角,又和别的扇形中的锐角和钝角分别相等。
这螺旋形的线圈包括一组组的横档以及一组组和辐交成相等的角。
这曲线在一根无限长的直线上滚动,焦点将要划出的轨迹是:垂曲线。
这个数字的值约等于这样一串数字+1/1+1/1*2+1/1*2*3+1/1*2*3*4+…=e。
28—市场经济中的蛛网模型.doc

目录市场经济中的蛛网模型 (2)摘要 (2)一、问题重述 (3)二、模型条件假设 (3)三、符号约定 (3)四、问题分析 (3)五、模型建立和求解 (3)5.1蛛网模型建立和求解 (3)5.2差分方程模型建立和求解 (6)六、模型分析 (6)七、模型推广 (8)八、参考文献 (9)市场经济中的蛛网模型摘要在市场经济中商品的价格是由消费者的需求关系决定,商品数量越多,价格越低;而下一生产周期商品的数量是由生产者的供应关系决定,商品价格越低,生产的数量就越少.这样的需求和供应关系就决定了市场经济中商品的价格和数量是存在震荡的.本文首先用图形方法建立蛛网模型,对市场经济中商品的价格和数量存在的震荡现象进行分析,给出市场经济趋于稳定的条件为需求曲线f 在0P 点斜率的绝对值f K 小于供应曲线g 在0P 点斜率的绝对值g K ;然后用差分方程建立模型,得到当1αβ<或1αβ<时,市场经济趋于稳定;并对模型结果进行分析解释,讨论当市场经济不稳定时政府可以采取控制物价和宏观调控的干预措施;最后对模型作适当评价和推广.一、问题重述根据某种商品市场需求和供应关系求解以下问题:(1)描述商品数量与价格的变化规律.(2)商品数量与价格的振荡在什么条件下趋向稳定?(3)当不稳定时政府能采取什么干预手段使之稳定?二、模型条件假设针对本问题可做以下假设:(1)假设在同一生产周期内不会严重的自然灾害.(2)假设在同一生产周期内消费者生活习惯不会有大的改变.三、符号约定表1 符号约定四、问题分析商品的价格是由消费者的需求关系决定,商品数量越多,价格越低,而下一时期商品的数量由生产者的供应关系决定,商品价格越低,生产的数量就越少.这样的需求和供应关系决定了市场经济中商品的价格和数量必然是震荡的.本题先用图形方法建立蛛网模型,对上述现象进行分析,给出市场经济趋于稳定的条件;然后用差分方程建立模型,对模型结果进行解释,并讨论当市场经济不稳定时政府采取的干预措施;最后对上述模型作适当评价和推广.五、模型建立和求解5.1蛛网模型建立和求解在商品的一个生产周期内,其价格k y 取决于数量k x ,设存在消费者需求关系为()k k y f x = (1)因为商品的数量越多价格越低,所以该需求曲线f 是一条下降曲线.下一生产周期商品的数量1k x +由上一生产周期商品的价格k y 决定,设存在生产者供应关系1()k k x h y +=或1()k k y g x += (2)因为价格越高生产产量才越大,所以该供应曲线g 是一条上升曲线.将两条曲线分别画在同一坐标内,可以发现两条曲线相交于000(,)P x y 点,则该点即为平衡点,因为在某个生产周期内有0k x x =,则由需求关系和供应关系可知,01010,,,k k k y y x x y y ++===L ,即商品的数量和价格将永远保持在000(,)P x y 点.但在实际情况下,,x y 不可能停在0P 点,故将1x 点偏离0x 点分析问题如图1所示.图1数量价格关系图在图1中,价格1y 由曲线f 上的1P 点决定,下一生产周期的2x 由曲线g 上的2P 点决定,2y 由曲线f 上的3P 点决定,依次下去可得到点列111(,)P x y ,221(,)P x y ,322(,)P x y ,432(,),P x y L ,即1230P P P P →→→→L ,这表明000(,)P x y 点为平衡点,即市场经济将趋于稳定.当曲线f 和曲线g 的斜率发生改变时,存在另外一种情况如图2所示.图2 数量价格关系图在图2中,按类似方法分析可得点列关系为1230P P P P →→→⨯L r ,这表明000(,)P x y 点不是平衡点,即市场经济将趋于不稳定.两图中折线1234PP P P L 形似蛛网,故这种需求曲线和供应曲线分析市场经济稳定性的图示法在经济学上称为蛛网模型.实际上,需求曲线f 和供应曲线g 的具体形式通常是根据各个阶段商品数量和价格的一些列统计资料得到的.f 取决于消费者对这种商品的需求程度和他们的消费水平,g 则与生产者的生产能力、经营水平等因素有关.对于蛛网模型中,需求曲线和供应曲线交点000(,)P x y 稳定性的判断,可根据两条曲线在点000(,)P x y 的斜率关系来判断:当曲线f 在0P 点斜率的绝对值f K 小于曲线g 在0P 点斜率的绝对值g K 时,0P 点是稳定点.当曲线f 在0P 点斜率的绝对值f K 大于曲线g 在0P 点斜率的绝对值g K 时,0P 点是不稳定点.5.2差分方程模型建立和求解在0P 点附近取函数f 和g 的线性近似分别为00()(0)k k y y x x αα-=--> (3)100()(0)k k x x y y ββ+-=-> (4)两式消去k y ,合并可得1010()()k k x x x x αβ+-=-- (5)因为(5)是一阶线性差分方程,对k 递推可得到,当k →∞时0k x x →,则使得稳定的条件是1αβ<或1αβ< (6)当k →∞时0k x x →,则使得不稳定的条件是1αβ>或1αβ> (7)分析可知方程模型与蛛网模型的一致,且f K α=和1g K β=.六、模型分析对于α和β的含义,需求函数f 的斜率的绝对值α表示商品供应量减少1个单位时价格的上涨幅度;供应函数h 的斜率β表示价格上涨1个单位时生产周期商品供应的增加量.所以α的数值反映消费者对商品需求的敏感度,如果这种商品是生活必需品,消费者处于持币待购状态,商品量少缺,人们立即蜂拥购买,那么α会比较大;反之,若这种商品非必需品,消费者购买心理稳定,或者消费水平低下,则α值小.β的数值反映生产经营者对商品价格的敏感度,如果他们目光短浅,热衷于追逐于一时的高利润,价格稍有上涨立即大量增加生产,那么β值会比较大;反之,若他们素质较高,有长远的计划,则β较小.根据α、β的意义很容易对商场经济稳定与否的条件(6)、(7)做出解释.对于供应函数g ,当β固定时,α越小,需求曲线越平,表明消费者对商品需求的敏感程度越小,越利于经济稳定.对于需求函数f ,当α固定时,β越小,供应曲线越陡,表明生产者对价格的敏感程度越小,越利于经济稳定.反之,α、β当较大,表明消费者对商品的需求和生产者对商品的价格都很敏感,则会导致经济不稳定.从上述分析还可以看到,当市场经济趋向不稳定时政府有两种干预办法.一种办法是使α尽量小,极端情情况是0α=,即需求曲线水平,如图3所示,这时不论供应曲线如何(即不论β多大),总是稳定的.这相当于政府控制物价,无论商品数量多少,价格都不会改变.图3数量价格关系图 另外一种办法是使β尽量小,极端情况0β=,即供应曲线竖直,如图4所示,于是不论需求曲线如何变化(即不管α多大),也总是稳定的.这相当于控制市场上商品数量,当供应少于需求时,政府从外地购买或调拨,投入市场;当供过于求时,政府收购过剩部分,维持商品上市不变.y 0图4 数量价格关系图 七、模型推广如果生产者的管理水平更高一些,他们在决定商品生产数量1k x +时,不是仅根据前一时期的价格k y ,而是根据前两个时期的价格k y 和1k y +.为了简单起见不妨设取二者的平均值11()2k k k y y x +++=,则供应函数为 1()2k k k y y y g ++= (8)在0P 点附近取线性近似时可表示为1010()(2)2k k k k x x y y y β++-=+- (9) 因为需求函数不改变,β仍为原来的含义,则由(3)与(9)式得到21022(1)k k k x x x x αβαβαβ++++=+ (10)方程的通解为1122k k k x c c λλ=+ (1c ,2c 由初始条件确定) (11)特征根1λ和2λ为特征方程220λαβλαβ++=的根,即为1,2λ= (12)当8αβ>时有24αβλ=<- (13) 从而,22λ>,则2λ在单位圆外.当8αβ<时有1,21λ=< (14)平衡点稳定条件为 2αβ<与原有模型中0P 点稳定的条件相比,保持经济稳定的参数α、β的范围放大了(α、β得含义未变).可以想到,这是生产经营者的生产管理水平提高,对市场经济稳定起着有利影响的必然结果.八、参考文献[1] 韩中庚,《数学建模方法与应用》,北京;高等教育出版社,2009.[2]中南大学,数学模型-市场经济中的蜘蛛网模型(图片), ,2015年7月.。
第3题-蛛网模型——数学建模

六、问题三模型的建立与求解7.1问题分析由题可知,该问题是多目标优化问题,满足居民人体的营养均衡、平衡进出口贸易、土地面积等条件下,满足购买成本尽量低、使种植者获益尽量大这两个目标。
7.2弹性理论及蛛网模型弹性描述的是两个变量之间的关系, 即因变量对自变量变化的敏感程度。
在经济学中,弹性表示某一经济变量变动1%时,所导致的另一个经济变量变化的百分比:弹性系数=因变量的变化比例/自变量的变化比例1.需求弹性价格:价格每变动1%引起的需求量变化的百分比。
通常用需求量变化的百分率除以价格变动的百分率表示。
它们之间的比值称为弹性系数,记为Ep,即:2..供给价格弹性:价格每变动1%引起供给量变化的百分比。
一般地,Es>0,斜率为正。
3.蛛网模型理论(Cobweb Model Theorom)蛛网模型是对弹性理论的运用,用来考察某种商品(主要用于农产品)价格波动对下一周期产量的影响。
蛛网理论有一系列假定条件:市场是完全竞争市场,任何消费者和厂商都不能单独影响商品的产量和价格;当期商品价格不受当期产量的影响,当期产量由前期价格决定。
根据某种商品供给弹性和需求弹性之间的关系,蛛网理论分为收敛性蛛网、发散型蛛网和封闭型蛛网三种类型。
(l)收敛型蛛网需求弹性绝对值大于供给弹性的绝对值,当市场受到干扰偏离均衡状态时,价格和产量围绕均衡水平波动,但是波动越来越小,最后恢复均衡,称为收敛型蛛网。
图中S曲线为供给曲线,D曲线为需求曲线,E点为均衡点,P0,Q分表代表均衡价格和均衡产量。
在第一期,假定由于受到外在因素干扰导致减产,实际产量QI <Q,导致价格从P0上升到Pl。
在第二期:生产者在Pl的位置上愿意把产量从Ql增至Q4,此时Q4>Q,生产者为了把商品出清,价格跌到P2,此时P2<P。
在第三期:生产者根据第二期P2的价格愿意提供的产量为Q3,此时Q3<Q,消费者愿意支付的价格上升为P3,此时P<P3<Pl,在P3的价格水平上生产者有安排了Q2的产量,如此循环,产量和价格波动越来越小,最后恢复到初始的均衡状态。
毕业论文--蛛网模型

. .. .本科毕业论文蛛网模型的研究与应用蛛网模型的研究与应用摘要:本文首先从蛛网模型的经济学定性分析出发,分析了蛛网波动的三种类型.然后分别在连续时间的条件下以时滞微分方程的形式和在离散化时间条件下以差分方程的形式两种角度建立模型,对传统的蛛网模型进行了定量分析并讨论了均衡点趋于稳定的条件.最后讨论了蛛网模型的实际应用并对其进行了改进及推广.关键词:蛛网模型;差分方程;时滞微分方程;稳定性1 蛛网模型介绍蛛网理论(cobweb theorem),又称蛛网模型,是利用弹性理论来考察价格波动对下一个周期产量影响的动态分析,它是用于市场均衡状态分析的一种理论模型. 蛛网理论是20世纪30年代出现的一种关于动态均衡分析方法.许多商品特别是某些生产周期较长的商品(如猪肉,棉花等),他们的的市场价格、数量会随时间的变化而发生变化,呈现时涨时跌、时增时减、交替变化的规律. 1930年美国的舒尔茨、荷兰的丁伯根和意大利的里奇各自独立提出,由于价格和产量的连续变动用图形表示犹如蛛网,1934年英国的尼古拉斯·卡尔多将这种理论命名为蛛网理论.蛛网模型理论是在现实生活中应用较多、较广的动态经济模型,它在一定围揭示了市场经济的规律,对实践具有一定的指导作用.根据产品需求弹性与供给弹性的不同关系,将波动情况分成三种类型:收敛型蛛网(供给弹性小于需求弹性)、发散型蛛网(供给弹性大于需求弹性)和封闭型蛛网(供给弹性等于需求弹性).近年来,许多学者对经典的蛛网模型进行了广泛的的研究并做了一些改进,建立了更符合实际经济意义的蛛网模型.在这些研究中,对蛛网模型的假设基本上是基于单一商品市场上,将时间离散化后,从差分方程的角度入手, 研究蛛网模型的稳定性,并通过讨论模型平衡点的稳定性,得到了蛛网模型稳定的条件.实际上,价格是影响商品需求量、供给量因素,但并非唯一因素,例如人们对某种商品的需求量不仅与商品的价格有关,也与人们当期的可支配收入、当期价格上涨率等有关;另一方面,由于市场信息的滞后作用,生产者在进行市场价格与供给预测时,不仅会考虑前一期的价格,还会考虑到前几期甚至更长一段时期商品价格的综合趋势,因此考虑时滞效应的非均衡蛛网模型更具有实际意义.本文建立了蛛网理论的数学模型,给出了相应的数学分析与论证,使蛛网理论有了一个更加完备的理论基础,同时也为这一理论的量化分析提供了新的思路.2 蛛网模型在西方经济学中的定性分析蛛网模型考察的是生产周期较长的商品.蛛网模型的基本假设条件是:商品的本期产量s t Q 决定于前一期的价格1-t P ,即供给函数为)(1-=t s t P f Q .商品本期的需求量d t Q 决定于本期的价格t P ,即需求函数为)(t d t P g Q =.文中用t P 、t Q 、d t Q 、s t Q 分别表示t 时刻的价格、数量、需求量、供给量.蛛网模型是一个动态模型,它根据供求曲线的弹性分析了商品的价格和产量波动的三种类型:“收敛型蛛网”、“发散型蛛网”和“封闭型蛛网”.第一种类型:如图2-1所示,相对于价格轴,需求曲线斜率的绝对值大于供给曲线斜率的绝对值.当市场受到干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均平上下波动,但波动的幅度越来越小,最后会恢复到原来的均衡点.相应的蛛网称为“收敛型蛛网”.由于某种原因的干扰,如恶劣的气候条件,实际产量由均平e Q 减少为1Q .根据需求曲线,消费者愿意以价格1p 购买全部产量1Q ,于是,实际价格上升为1p . 根据第一期较高的价格水平1p ,按照供给曲线,生产者将第二期的产量增加为2Q ;在第二期,生产者为了出售全部产量2Q ,接受消费者支付的价格2p ,于是实际价格下降为2p .根据第二期较低的价格2p ,生产者将第三期的产量减少为3Q ;在第三期,消费者愿意支付3p 的价格购买全部的产量3Q ,于是实际价格又上升为3p .根据第三期的较高的价格3p ,生产者又将第四期的产量调整为4Q .依此类推,如图2-1所示,实际价格和实际产量的波动幅度越来越小,最后恢复到均衡点E 所代表的水平.由此可见,图2-1中均衡点E 状态是稳定的.也就是说,由于外在的原因,当价格与产量发生波动而偏离均衡状态()e e Q P 、时,经济体系中存在着自发的因素,能使价格和产量自动的恢复均衡状态.在图2-1中,产量与价格变化的路径就形成了一个蜘蛛网似的图形.从图2-1中可以看到,只有当供给曲线斜率的绝对值大于需求曲线斜率的绝对值时,即供给曲线比需求曲线较为陡峭时,才能得到蛛网稳定的结果,相应的蛛网被称为“收敛型蛛网”.在这里,我们看到,除第一期受到外在原因干扰外,其它各期都不会再受新的外在原因干扰,从而前一期的价格能够唯一决定下一期的产量.按照动态的逻辑顺序,我们还看到,生产者片面地根据上一期的价格决定供给量, 消费者被动地消费生产者提供的全部生产量,而价格则由盲目生产出来的数量所决定.第二种类型:如图2-2所示,相对于价格轴,需求曲线斜率的绝对值小于供给曲线斜率的绝对值.当市场受到外力干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均平上下波动,但波动的幅度越来越大,最后会偏离原来的均衡点.相应的蛛网称为“发散型蛛网”.假定在第一期由于某种原因的干扰,实际产量由均平e Q 减少为1Q .根据需求曲线,消费者愿意支付价格1p 购买全部产量1Q ,于是实际价格上升为1p ,根据第一期较高的价格水平1p ,按照供给曲线,生产者将第二期的产量增加为2Q ;在第二期,生产者为了出售全部产量2Q ,接受消费者支付的价格2p ,于是实际价格下降为2p .根据第二期较低的价格2p ,生产者将第三期的产量减少为3Q ;在第三期,消费者愿意支付3p 的价格购买全部的产量3Q ,于是实际价格又上升为3p ;根据第三期的较高的价格3p ,生产者又将第四期的产量调整为4Q .依此类推,如图2-2所示,实际价格和实际产量的波动幅度越来越大,最后偏离均衡点E 所代表的水平.由此可见,图2-2中均衡点E 所代表的均衡状态是不稳定的.从图2-2可看出,当相对于价格轴,需求曲线斜率的绝对值小于供给曲线斜率的绝对值时,即相对于价格轴而言,需求曲线比供给曲线较为平缓时,才能得到蛛网不稳定的结果.所以供求曲线的上述关系是蛛网不稳定的条件,当市场由于受到干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均平上下波动,但波动的幅度越来越大,偏离原来的均衡点越来越远.相应的蛛网称为“发散型蛛网”.第三种类型:如图2-3所示,相对于价格轴,需求曲线斜率的绝对值等于供给曲线斜率的绝对值时.市场受到外力干扰偏离原有的均衡状态以后,实际价格和实际产量会按照同一幅度围绕均平上下波动,既不偏离,也不趋向均衡点.相应的蛛网称为“封闭型蛛网”.对于图2-3中,不同时点的价格与供求量之间的解释与前两种情况类似,故从略.从图2-3可看出,当相对于价格轴,需求曲线斜率的绝对值等于供给曲线斜率的绝对值时,即相对于价格轴而言,供求曲线具有相同的陡峭与平缓程度时,蛛网以相同的幅度上下波动,相应的蛛网称为“封闭型蛛网”.3 蛛网模型的数学分析3.1 连续时间条件下的蛛网模型的数学分析在连续时间的条件下,建立起微分方程形式的蛛网模型,研究蛛网模型的稳定性,并对模型结果进行了经济解释.我们考虑基于单一商品的市场的蛛网模型,并假设:时间是连续变量,价格、商品数量随时间连续变化.设某商品价格是时间t 的函数()p p t =,供给量S 由供给函数()S f p =决定,记做()t S .供给是由多种因素决定的, 这里我们略去价格以外的因素, 只讨论供给与价格的关系.考虑到商品生产者对商品信息了解到商品价格的调节有个时间滞后,假定供给是某一时期价格()p t t -∆的线性函数:()()0S t S p t t α=+-∆,()1 其中, 0S 、α是大于零的常数,0t ∆>,α可表示商品的边际供给量. 在传统的蛛网理论中,需价格的函数,价格作为影响需求的唯一因素,这对正确反映商品价格变化规律具有一定局限性,为更好的反映商品价格变化过程,考虑影响需求的其他因素如价格上涨等.假设需求与价格及价格的上涨率都有关系,需求与价格、价格上涨率负相关.为此建立的需求函数为:()()0.dP D t D P t dtβγ=-- ()2 其中, 0D 、β是大于零的常数,β表示商品的边际需求量. γ的大小反映了商品需求对价格上涨率的依赖程度.需求量与供给量之差()S D -称为过量需求,即需求大于供给的部分.供给者时刻都在确定价格()t P ,根据商品市场在正常的情况下, 商品供需的变化引起价格的变动, 价格的涨速与第t 段时间过剩的需求正相关, 即()()()()000,t dp D S D u S u du dtμ⎡⎤=-+-⎢⎥⎣⎦⎰ ()3 所以有()()()22.d p D t S t dtμ=- ()3* 其中,0μ>为价格的调节系数, 反映价格依据超额需求的变动而进行调节时的调整速度和幅度的度量参数.将()1式、()2式代入()3*式可得()()()2002.d p dp p t t p t D S dt dtμγμμβμ=--∂-∆-+- ()4 在()4式中,令()()p t x t =,()dp y t dt=,则有 ()()()()()()()()00,5.dx t y t dt dy t y t x t t x t D S dt μγμμβμ⎧=⎪⎪⎨⎪=--∂-∆-+-⎪⎩当00D S >时,系统()5有唯一平衡点00,0D S αβ⎛-⎫ ⎪+⎝⎭.当需求量等于供给量,即市场出清时的价格为均衡价格,即 βα+-=00_S D p 为均衡价格. 系统()5在00,0D S αβ⎛-⎫ ⎪+⎝⎭处线性近似系统为: ()()()()()(),+.du t v t dt dv t Au t Bu t t Cv t dt⎧=⎪⎪⎨⎪=-∆+⎪⎩ ()6其中,,,A B C μβμαμγ=-=-=-系统()6的特征方程为: ()20.t C A e B λλλ∆---= ()7令z t λ=∆,()7式可化为()2+=0z z mz n e ω++,其中,m C t =-∆,2n A t =-∆,2B t ω=-∆.记()()()2,+z H z h z t z mz n e ω==++,显然()()2,h z t z mz n t =+++ω具有主项2z t .令()()()+H i F iG σσσ=,则()()2cos sin ,F n m σσσσσω=--+()()2sin +cos .G n m σσσσσ=-由于函数()()2sin +cos G n m σσσσσ=-的所有零点都是实数,又因为22μγαβ<≤,0,0,0αβγ>≥≥,则对于()G σ的每一个零点k σ都有不等式()()'0k k F G σσ>成立:如果22μγαβ<≤,0,0,0αβγ>≥≥,那么系统()5的平衡点00,0D S αβ⎛-⎫ ⎪+⎝⎭是局部渐进稳定的. 通过对系统()5的分析,可得到如下结论:如果边际商品供给小于边际商品需求,边际商品需求不大于22μγ,并且商品需求对商品价格上涨率的依赖程度γ满足一定条件,那么无论时滞t ∆多么大,商品价格随着时间的变化,稳定的趋于均衡价格_00D S p αβ-=+.也就是说,无论供给者从了解商品需求到调控生产量的时间滞后有多长,对价格的调整有多么不同,只要这些调控的幅度不是很大,商品的价格总是能够回到使供需相等的均衡价格水平;反之,如果边际商品供给大于边际商品需求,边际商品需求不大于22μγ,当时滞t ∆取一定值时,系统会出现Hopf 分支,也就是说,价格会围绕均衡价格上下波动,而且商品的价格最终不能回到均衡价格.3.2 离散时间条件下的蛛网模型的数学分析最简单的市场经济模型是单一商品市场模型,在时间离散化后的条件下,假设商品的供给量、需求量,只与该商品的价格有关,由需求量等于供给量建立的方程,即均衡方程,求得其解即是均衡价格.若进一步假定需求、供给是价格的线性函数,可以得到传统线性蛛网模型.最后在需求、供给是价格的非线性函数的条件下,可以得到非线性蛛网模型.3.2.1 蛛网模型的线性分析由蛛网模型的基本假设条件,本期的需求量是本期价格的线性函数,即t t P Q ⋅-=βαd ,β表示商品价格减少1个单位时需求量的上涨幅度;而本期的供给量是由上一期的价格决定的,为上一期价格的线性函数,即1s -⋅+-=t t P Q γδ,γ表示商品价格增加1个单位时供给量的上涨幅度.该模型可以用以下三个联立的方程式来表示:d ,t t Q P αβ=-⋅ ()8s 1,t t Q P δγ-=-+⋅ ()9d s .t t Q Q = ()10式中,β、∂、γδ和均为常数,且均大于零.d t Q 为第t 期的需求量,s t Q 为第t 期的供给量,t P 为第t 期的价格,1-t P 为第1-t 期的价格.将前面的()8式和()9式代入()10式可得1-.t t P P αβδγ-⋅=-+⋅ ()11由此可得第t 期的产品价格为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-+++⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+++⎪⎪⎭⎫ ⎝⎛-=++⎥⎦⎤⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=++⎪⎪⎭⎫ ⎝⎛-=----233222111βγβγβδαβγβγβδαβγβδαβδαβγβγβδαβγt t t t t P P P P P2101t t P γαδγγγβββββ-=⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=-++-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 011t tP γβγαδγββγβ⎛⎫-- ⎪⎛⎫⎛⎫+⎝⎭=-+⋅ ⎪ ⎪+⎝⎭⎝⎭+ 01.t t P γαδγββγβ⎡⎤⎛⎫⎛⎫+=-+--⎢⎥ ⎪ ⎪+⎢⎥⎝⎭⎝⎭⎣⎦()12 又因为在市场均衡时,均衡价格为1-==t t e P P P ,所以,由()11式可得均衡价格为 γβδα++=e P ()13 均衡价格是一种理想状态,即在此价格水平下,每个人的需求都得到满足,而且不会有商品卖不出去.将()13式代入()12式可得()t 001.t t e t e e P P P P P P γγββγβ⎡⎤⎛⎫⎛⎫=-+--⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎛⎫=--+ ⎪⎝⎭()14 分析()14式,可以得到以下三种情形第一种情况,若1<βγ,当∞→t 时,则此时e t P P →.也就是说,价格t P 随着时间的推移,其波动幅度愈来愈小,最终趋向于均衡价格e P .事实上,此时因需求弹性P P e d βαβ-=,供给弹性PP e S γδγ+-=,当1<βγ时,可推得s d e e >,即供给弹性的绝对值小于需求弹性的绝对值(需求曲线斜率的绝对值小于供给曲线斜率的绝对值),蛛网模型是收敛的.在收敛性蛛网中,价格变动引起的需求量变动大于价格变动引起的供给量的变动,因而任何超额需求或超额供给只需较小的价格变动即可消除.同时价格变动引起的下一期供给量的变动较小,从而对当期价格发生变动的作用较小,这意味着超额需求或超额供给偏离其均衡量的幅度以及每期成交价格偏离均衡价格的幅度,在时间序列中将是逐渐缩减的,并最终趋向其均衡产量e Q 和均衡价格e P .第二种情况,若1>βγ,当∞→t 时,则此时∞→t P .这说明,需求曲线斜率的绝对值(β)小于供给曲线斜率的绝对值(γ)时,或供给弹性较大而需求弹性较小时,市场价格将振荡至无穷大,蛛网模型是发散的.在发散型蛛网中,价格变动引起的供给量的变动大于价格变动引起的需求量的变动.当出现超额供给时,为使市场上供给者卖出所有的产品,要求价格大幅度下跌,这将会导致下一期的供给量减少,以致该期出现大量的供给短缺,供给的严重不足导致价格大幅度上扬,由此导致下一期供给量大幅度增加和价格大幅度下跌.在这种情况下,一旦失去均衡,以后各期的供给过剩或短缺的波动幅度以及成交价格波动的幅度,都将离均衡价格e P 越来越远.第三种情况,若1=βγ,当∞→t 时为常数.这说明,相对于价格轴,需求曲线斜率的绝对值(β)等于供给曲线斜率的绝对值(γ)时,即市场价格一旦偏离均衡状态,则以后各期的价格及产量的变动序列就表现为围绕均衡值循环往复地上下振荡,既不进一步偏离,又不进一步逼近均衡价格e P .这就是“封闭型蛛网”的情形.从上面的讨论,我们可以看出,均衡点最终能否趋于稳定状态关系到该模型的分类,因此我们有必要对均衡点趋于稳定的条件作进一步讨论.3.2.2 蛛网模型的非线性分析记第t 时段商品的数量为t x ,价格为t y ,自然数t 表示时段, ,2,1=t .这里把时间离散化为时段,每个时段相当于商品的一个生产周期,蔬菜、水果是一个种植周期,肉类是牲畜的饲养周期.价格与产量紧密相关,可以用一个确定的关系来表现,即设().t t y f x =该函数反映消费者对这种商品的需求关系,称为商品数量越多,格就越低,所以f 是单调递减函数.因此在图1-3中用一条下降曲线f 表示它,称为需求曲线.又假设下一个时段的产量1+t x 是生产者根据上一时期的价格决定的,即设()1.t t x g y +=该函数反映生产者的供应关系,品的价格越高,供给量就越大,g 是单调增加函数. 在图1-3中用一条上升曲线g 表示它,g 称为供给曲线.为了表现出t x 和t y 的变化过程,我们可以借助已有的函数f 和g ,当供需相等时,如图1-3所示求函数f 与供给函数g 相交于()000,y x P ,点0P 即是市场出清的均衡状态.在进行市场经济分析时,f 取决于消费者对某种商品的需求程度和消费水平等因素,g 取决于生产者的生产、经营等能力,当知道具体的需求函数与消费函数时,可以根据f 、g 曲线的具体性质来判定在平衡点()000,y x P 的稳定性.一旦需求曲线和供应曲线确定下来, 商品数量和价格是否趋向稳定状态, 就完全有这两条曲线在平衡点()000,y x P 附近的形状决定.建立差分方程:()t t x f y = ()15()t t y g x =+1 ()16设()000,y x P 点满足:()00x f y =,()00y g x =,设()'0f x α= ,()'01.g y β=在()000,y x P 点附近取f 、g 的一阶泰勒展式,线性近似为()00x x y y t t --=α ()17 ()001y y x x t t -+=+β ()18合并()17、()18两式,并消去()0t y y -可得()1010.t t x x x αβαβ++-+= ()19上式是关于t x 的一阶线性差分方程,它是原来方程的近似模型,这是客观实际问题的近似模拟,解这个一阶线性差分方程得:()()()()()()()()()()()()()()()10210010211010100-1-1111111.t t t t t t t t t x x x x x x x x x x x x x x x αβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβαβ+---=++⎡⎤⎡⎤=-++++=-++-+⎣⎦⎣⎦=⎡⎤=-++-+-++-+⎣⎦⎡⎤=-+--⎣⎦=--+由此可得,当∞→t 时,0x x t →,即()000,y x P 点稳定条件是1<αβ,即βα1<,需求曲线f 在点()000,y x P 的切线斜率绝对值小于供给曲线g 在该点的切线斜率绝对值;反之,()000,y x P 点不稳定的条件是1>αβ,即βα1>,需求曲线f 在点()000,P y x 的切线斜率绝对值大于供给曲线g 在该点的切线斜率绝对值.这个非线性分析使传统的线性蛛网模型的分析有了进一步的推广.西方经济学家认为,蛛网模型解释了某些生产周期较长的商品的产量和价格的波动的情况,是一个有意义的动态分析模型,对理解某些行业产品的价格和产量的波动提供了一种思路.但是,这个模型还是一个很简单的和有缺陷的模型.实际上在大多数情况下, 商品生产数量并不只是根据前一时期的价格决定的,具有相当管理经验的生产经营者在决定产品数量1+t Q 时不会仅仅只参考前一期的价格t P ,可能还会对更前几期的价格做一定的比较和分析,尤其像生产者始终只是简单地把上一期价格作为本期价格预期并以此作为决定产量的依据,这种非理性假设与现实是极不相符的.4 蛛网模型的实际应用研究4.1 模型中核心变量β、γ的实际意义在第3.2.1节蛛网模型的线性分析中我们建立了蛛网模型,该模型用了()8、()9、()10三个联立的方程式来表示,首先来考察参数β、γ 的含义,需求函数d t Q 的斜率β(取绝对值)表示商品供应量减少1个单位时价格的上涨幅度;供给曲线s t Q 的斜率γ表示价格上涨1个单位时(下一时期)商品供应的增加量.因此,β 的数值反映消费者对商品需求的敏感程度.如果这种商品是生活必需品,消费者处于持币待购的状态,商品数量稍缺,人们立即蜂拥抢购,那么,β 就会比较大;反之,若这种商品为非必需品,消费者购物心理稳定,或者消费水平低下,则β 较小.γ的数值反映生产经营者对商品价格的敏感程度,如果他们目光短浅,热衷于追逐一时的高利润,价格稍有上涨立即大量增加生产,那么,γ就会比较大;反之,若他们素质较高,有长远的计划,则γ会较小.4.2大学生就业问题与蛛网模型“2012年全国高校应届毕业生将突破680万人,比2011年增加20万人,毕业生人数增加、金融危机下相关行业用人需求减少,使2012年的就业竞争更为激烈”.这是国家教育部门的统计数据.然而,透过毕业生增多这层薄薄的面纱,可以看出,大学生就业市场出现紊乱的原因完全是因为人才供需失衡,并且,我国高校毕业生就业市场符合“蛛网模型”.学生在报考志愿时看到的是就业后的待遇,而就业机会反映的是当年的情况,蜂拥而至的报名者在几年后毕业时可能面临的是另外一种就业形势,即当年的“热门”毕业时可能成为“冷门”.因此,根据当年高校毕业生市场价格和就业情况所作出的调整并不一定正确,尤其是在某些技术性很强的专业领域,比如工程及法律等方面。
数学模型-市场经济中的蜘蛛网模型

xk+1 = (-αβ)kx1+(1 - (-
(8)
17
由此可得,当k∞时xk x0 ,使得 P0稳定的条件是
αβ < 1 或 α <1
而k∞时,xk∞, 即P0点不是稳定 点的条件是
1
αβ < 1 或 α < 1
注意到(5)、(6)式中α、β的定义, 1 有Kf = α,kg= ,所以条件
23
即α固定时,β越小,供应曲线越陡, 表明生产者对价格的敏感程度越小(使 (9)式成立),越利于经济稳定。 反之,当α、β较大,表明消费者 对商品的需求和生产者对商品的价格 都很敏感,则会导致经济不稳定。
24
结果解释 结果解释
考察 , 的含义
xk~第k时段商品数量;yk~第k时段商品价格
1 ( 1 / )
xk x0 xk
P0稳定 K f K g P0不稳定 K f K g
1 ( 1 / )
方程模型与蛛网模型的一致
Kf
1/ K g
20
模型解释 首先考察α 、β得含义。需求函数f 的斜率 α(取绝对值)表示商品供应量减少1 个单位时价格的上涨幅度;供应函数h的斜率 β 表示价格上涨1个单位时(下一时期)商品 供应的增加量。
1
局面。在没有外面干预的情况下,这种现 象将如此循环下去。在完全自由竞争的市 场经济中上述现象通常是不可避免的。因 为商品的价格是由消费者的需求关系决定 的。商品数量越多价格越低。而下一时期 商品的数量由生产者的供求关系决定,商 品价格越低生产的数量就越少。这样的需 求和供应关系决定了市场经济中商品的价 格和数量必然是震荡的。在现实世界里这 样的震荡出现不同的形式,有的振幅渐小
蛛网模型(差分方程)汇总

n
x1 (k 1) bi xi (k ) (设至少1个bi>0) i 1
x i
1
(k
1)
s i
x i
(k),
i
1,2,,
n
1
b1
s 1
b2 0
bn1 0
bn
0
x(k) [x1(k), x2 (k),xn (k)]T
~按年龄组的分布向量
L
s2
0
x(k 1) Lx(k)
x(k) Lk x(0)
设x1偏离x0
x1 y1 x2 y2 x3
xk x0 , yk y0
xk x0 , yk y0
P1 P2
P3 P0
P P P P
1
2
3
0
P0是稳定平衡点
P0是不稳定平衡点
y
f
y2 P3
yy30 y1
P2
g
y
P4 曲线斜率
P0 | K f || K g | y0
P1
0 x2 x0 x3 x1 x
~ 商品数量减少1单位, 价格上涨幅度 xk1 x0 ( yk y0 )
~ 价格上涨1单位, (下时段)供应的增量
~ 消费者对需求的敏感程度 小, 有利于经济稳定
~ 生产者对价格的敏感程度 小, 有利于经济稳定
1 经济稳定
结果解释
经济不稳定时政府的干预办法
1. 使 尽量小,如 =0
y
g
需求曲线变为水平 y0 以行政手段控制价格不变
0
2. 使 尽量小,如 =0 y
供应曲线变为竖直
靠经济实力控制数量不变
0
f
x g
f
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六、问题三模型的建立与求解
7.1问题分析
由题可知,该问题是多目标优化问题,满足居民人体的营养均衡、平衡进出口贸易、土地面积等条件下,满足购买成本尽量低、使种植者获益尽量大这两个目标。
7.2弹性理论及蛛网模型
弹性描述的是两个变量之间的关系, 即因变量对自变量变化的敏感程度。
在经济学中,弹性表示某一经济变量变动1%时,所导致的另一个经济变量变化的百分比:
弹性系数=因变量的变化比例/自变量的变化比例
1.需求弹性价格:价格每变动1%引起的需求量变化的百分比。
通常用需求量变化的百分率除以价格变动的百分率表示。
它们之间的比值称为弹性系数,记为Ep,即:
2..供给价格弹性:价格每变动1%引起供给量变化的百分比。
一般地,Es>0,斜率为正。
3.蛛网模型理论(Cobweb Model Theorom)
蛛网模型是对弹性理论的运用,用来考察某种商品(主要用于农产品)价格波动对下一周期产量的影响。
蛛网理论有一系列假定条件:市场是完全竞争市场,任何消费者和厂商都不能单独影响商品的产量和价格;当期商品价格不受当期产量的影响,当期产量由前期价格决定。
根据某种商品供给弹性和需求弹性之间的关系,蛛网理论分为收敛性蛛网、发散型蛛网和封闭型蛛网三种类型。
(l)收敛型蛛网
需求弹性绝对值大于供给弹性的绝对值,当市场受到干扰偏离均衡状态时,价格和产量围绕均衡水平波动,但是波动越来越小,最后恢复均衡,称为收敛型蛛
网。
图中S曲线为供给曲线,D曲线为需求曲线,E点为均衡点,P
0,Q
分表代表均
衡价格和均衡产量。
在第一期,假定由于受到外在因素干扰导致减产,实际产量Q
I <Q
,导致价格
从P
0上升到P
l。
在第二期:生产者在P
l
的位置上愿意把产量从Q
l
增至Q
4
,此时Q
4
>Q,生产者为
了把商品出清,价格跌到P
2,此时P
2
<P。
在第三期:生产者根据第二期P
2的价格愿意提供的产量为Q
3
,此时Q
3
<Q
,消费
者愿意支付的价格上升为P
3,此时P
<P
3
<P
l
,在P
3
的价格水平上生产者有安排了Q
2
的产量,如此循环,产量和价格波动越来越小,最后恢复到初始的均衡状态。
可见,初始均衡点E是稳定的。
以时间为自变量将图 2.6中价格波动的情况反映在坐标图中(如图 2.7所示)。
从图中可以看出:外因所导致的价格波幅越来越小,最后逐渐接近于初始均衡价格P。
(2)发散型蛛网
当需求弹性绝对值小于供给弹性的绝对值的情况下,产量和价格波动越来越大,越来越远离初始均衡点,称为发散型蛛网(如图2.8所示)。
图中符号及含义同图2.6。
在第一期,假定由于受到外在因素干扰导致减产,实际产量Q
1<Q
,导致价格
从P
0上升到P
l。
在第二期:生产者在P
l
的位置上愿意把产量从Q
2
,此时Q
2
>Q
,生产者为了把
商品出清,价格跌到P
2,此时P
2
<P。
在第三期:生产者根据第二期P
2的价格愿意提供的产量为Q
3
,此时Q
3
<Q。
,消
费者愿意支付的价格上升为P3,此时P0<P1<P3,在P3的价格水平上生产者有安排了Q4的产量,如此循环,如图2.8所示,产量和价格波动越来越大,无法恢复到初始均衡状态,而且偏离情况越来越远。
可见,初始均衡点E是不稳定的。
这种蛛网称为发散型蛛网。
以时间为自变量将图2.8中价格波动的情况反映在坐标图中(如图2.9所示)。
从图中可以看出:外因所导致的价格波幅越来越大,如果没有其他外力干预的情况下,价格和产量无法再回到初始均衡状态,而且偏离均衡状态越来越远。
(3)封闭型蛛网
在需求弹性的绝对值和供给弹性的绝对值相等的条件下,价格和产量始终按同一波动幅度进行,在没有外力干预的情况下,无法回归至初始均衡状态,上述情形称为封闭型蛛网(如图2.10所示)。
在第一期,假定由于受到外在因素干扰导致减产,实际产量Ql<Q0,导致价格从P。
上升到PI。
在第二期:生产者在Pl的位置上愿意把产量增加至Q2,此时Q2>Q0,生产者为了把商品出清,价格跌到P2此时P2<P。
在第三期:生产者根据第二期P2的价格愿意提供的产量为Q1,此时Ql<Q0,消费者愿意支付的价格上升为P1,此时又恢复到第一期出现的产量和价格水平上。
如此循环,价格和产量既不更多偏离初始均衡点,也不会逐渐恢复至初始均衡点,而保持一种循环往复的状态,其形成的蛛网大小由实际产量Q1决定。
蛛网理论主要用来分析粮食价格的波动对于未来粮食产量的影响。