先进材料制备技术论文

合集下载

先进制造技术论文

先进制造技术论文

先进制造技术先进制造技术AMT(Advanced Manufacturing Tecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。

随着经济技术的高速发展以及顾客需求和市场环境的不断变化,越来越多的制造企业开始将大量的人力、财力和物力投入到先进的制造技术和先进的制造模式的研究和实施策略之中。

改革开放以来,我国制造科学技术有日新月异的变化和发展,确立了社会主义市场经济体制,但与先进的国家相比仍有一定差距,为了迎接新的挑战,对先进制造技术及制造模式的研究和实施是摆在我们面前刻不容缓的重要任务,必须认清制造技术的发展趋势,缩短与先进国家的差距,使我国的产品上质量、上效率、上品种和上水平,以增强市场竞争力,实现我国机械制造业跨入世界先进行列之梦想。

一、先进制造技术的体系结构及分类先进制造技术是系统的工程技术,可以划分为三个层次和四个大类。

三个层次:一是优质、高效、低耗、清洁的基础制造技术。

二是新型的制造单元技术。

三是先进制造的集成技术。

四个大类:一是现代设计技术二是先进制造工艺技术三是制造自动化技术四是系统管理技术。

1、现代设计技术现代设计技术是先进制造技术的一个组成部分,是制造技术的第一个环节。

根据德国工程师协会文件VDI2225 的调查分析,产品设计成本约占产品成本的5% 7%,但却决定了产品制造成本的75%- 80%。

为此,世界各国都非常重视产品的设计问题。

而现代设计技术在机械设计技术中的地位同样重要。

机械设计是根据使用要求对机械的工作原理、结构、运动方式、力和能量的传递方式、各个零件的材料和形状尺寸、润滑方法等进行构思、分析和计算,并将其转化为具体的描述以人为制造依据的工作过程。

纳米复合材料与技术论文3000字纳米复合材料论文

纳米复合材料与技术论文3000字纳米复合材料论文

纳米复合材料与技术论文3000字纳米复合材料论文纳米复合材料与技术论文3000字纳米复合材料论文纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。

下面给大家分享一些纳米材料与技术3000字论文,希望能对大家有所帮助![摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。

纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。

纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。

[关键词]高聚物纳米复合材料一、纳米材料的特性当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能:1、尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。

如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。

若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。

2、表面效应一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。

纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044×1034022.5×1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。

由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与其它原子结合。

若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。

碳纤维复合材料论文

碳纤维复合材料论文

碳纤维复合材料论文标题:碳纤维复合材料:制备、性能与应用摘要:碳纤维复合材料是一种重要的先进材料,在航空航天、汽车制造、体育器材以及其他领域具有广泛的应用前景。

本文综述了碳纤维复合材料的制备方法、性能特点以及其在不同领域的应用研究,旨在为碳纤维复合材料的研究和应用提供一定的参考。

1.引言随着科技的进步和产品性能需求的提高,新型材料的研究和应用成为一个重要的研究方向。

碳纤维复合材料以其高强度、低密度、优异的机械性能和化学稳定性等特点,受到了广泛关注。

2.碳纤维复合材料的制备方法2.1碳纤维的制备工艺2.2树脂基体的制备方法2.3复合材料的制备工艺2.4其他制备方法的研究进展3.碳纤维复合材料的性能特点3.1机械性能3.2热性能3.3电性能3.4耐腐蚀性能4.碳纤维复合材料在航空航天领域的应用4.1飞机结构件4.2发动机部件4.3航空航天用复合材料板5.碳纤维复合材料在汽车制造领域的应用5.1车身材料5.2引擎附件5.3车内装饰材料6.碳纤维复合材料在体育器材领域的应用6.1网球拍6.2高尔夫球杆6.3自行车车架7.碳纤维复合材料的未来发展趋势对碳纤维复合材料未来的发展趋势进行展望,并提出了一些研究方向和应用前景。

包括在材料性能的进一步提高、制备工艺的优化、成本的降低等方面。

结论:碳纤维复合材料以其出色的性能和广泛的应用领域,成为了当今研究热点。

本文综述了碳纤维复合材料的制备方法、性能特点以及在航空航天、汽车制造和体育器材等领域的应用情况,并对其未来的发展趋势进行了展望。

碳纤维复合材料在各个领域的应用前景广阔,值得进一步深入研究和应用。

关于材料成型的论文4篇

关于材料成型的论文4篇

关于材料成型的论文精选4篇关于材料成型的论文篇一浅谈新型金属材料成型加工技术【摘要】随着现代科学技术的发展以及新型金属材料的应用,新型金属材料成型加工技术也得到了相应的发展。

在本文中,笔者将基于金属材料成型加工的实际工作经验,在对新型金属材料固有特性与加工特性深入分析的基础上,对当前的七种成型加工技术进行综合探究,以期促进新型金属材料成型加工技术的发展。

【关键词】新型金属材料;成型加工;加工技术;技术创新当前,新型的金属复合材料已经得到了广泛的应用,复合型材料虽然成本与技术要求都较高,但其所具有的材料特性相较于普通的金属材料具有更高的性能优势,成为工程建设的重要材料。

除此之外,更多的零部件制作采用新型金属材料,也催生了很多先进的成型加工技术。

那么在新时代背景下,究竟如何才能进一步存进新型金属材料成型加工技术的发展与完善,是当前的材料工程师应该重点关注的问题。

1 关于新型金属材料的综述1.1 新型金属材料的固有特性新型金属材料的种类繁多,都涵盖在合金的范畴之内,金属材料的固有特性包括以下几点:新型金属材料具有更好的延展性;新型金属的化学性较为活泼;新型金属具有特有的光泽与色彩等。

当前应用广泛的新型金属材料包括形状记忆合金、高温合金、贮氢合金以及非晶态合金等。

1.2 新型金属材料的加工特性1.2.1 焊接性焊接性是金属成型加工的基础特性之一,所指是金属材料通过焊接来完成二次成型并满足设计要求。

新型金属材料的焊接性良好,在焊接时可以保证没有气孔、没有裂缝等。

新型金属材料具有好的焊接性通常收缩小、导热性能好。

1.2.2 锻压性锻压性对于金属的成型加工的关键因素,金属具有的锻压性能够使金属在锻压的过程中承受塑性变形,并有效缓解冲压。

除此之外,金属的锻压性还会受到加工条件的影响。

1.2.3 铸造性金属所具有的铸造性包括收缩性、流动性、偏析以及裂纹敏感性等具有相关性,由于新型金属材料均为合金,因此其中含有的高熔点元素会金属的流动性降低,给材料成型加工增加了一定的难度。

《贵金属-MXene纳米复合材料的研制及性能研究》

《贵金属-MXene纳米复合材料的研制及性能研究》

《贵金属-MXene纳米复合材料的研制及性能研究》贵金属-MXene纳米复合材料的研制及性能研究摘要:随着科技的不断发展,纳米材料的研究已成为当今科学界关注的焦点。

本篇论文致力于探索一种新型的贵金属/MXene纳米复合材料,通过对材料的合成、表征以及性能的深入研究,揭示了其在诸多领域潜在的应用价值。

一、引言贵金属因其独特的物理和化学性质,在众多领域中都有着广泛的应用。

而MXene作为一种新兴的二维材料,因其优异的电学、热学和力学性能,也受到了科研人员的广泛关注。

将贵金属与MXene结合,形成纳米复合材料,有望进一步提升材料的综合性能。

二、贵金属/MXene纳米复合材料的研制1. 材料选择与制备方法本部分详细描述了贵金属/MXene纳米复合材料的制备过程。

包括原料的选择、制备工艺的确定以及实验条件的控制等。

通过化学气相沉积法、溶胶凝胶法等手段,成功制备出具有优异性能的贵金属/MXene纳米复合材料。

2. 材料表征通过X射线衍射、扫描电子显微镜、透射电子显微镜等手段,对制备出的贵金属/MXene纳米复合材料进行表征。

从微观结构上分析材料的组成、形貌以及尺寸分布等。

三、性能研究1. 电学性能贵金属/MXene纳米复合材料具有优异的电导率和电化学性能。

通过电导率测试、循环伏安法等手段,研究材料的电学性能,并探讨其在实际应用中的潜力。

2. 磁学性能对贵金属/MXene纳米复合材料的磁学性能进行研究。

通过磁化曲线、磁滞回线等手段,分析材料的磁学特性,为进一步应用提供理论依据。

3. 催化性能研究贵金属/MXene纳米复合材料在催化领域的应用。

通过催化实验,探讨材料在化学反应中的催化活性、选择性以及稳定性等。

四、应用领域探讨结合贵金属/MXene纳米复合材料的优异性能,探讨其在能源、环保、生物医学等领域的应用潜力。

如作为锂离子电池的电极材料、催化剂、生物传感器等。

五、结论本论文成功研制出贵金属/MXene纳米复合材料,并通过一系列实验手段对其性能进行了深入研究。

碳化硅铝复合材料的制备

碳化硅铝复合材料的制备

论文题目:碳化硅铝复合材料的制备专业:材料科学与工程学生:段红伟签名:指导老师:王涛签名:摘要碳化硅颗粒增强铝基复合材料( SiCp / Al 复合材料) 具有高比强度和比刚度、耐磨、耐疲劳、低热膨胀系数、低密度、高微屈服强度、良好的尺寸稳定性和导热性、优异的力学性能和物理性能。

本文采用粉末冶金法制备SiCp复合材料。

使用X射线衍射仪(XRD)、扫描电镜(SEM),抗折强度试验,洛氏硬度实验以及密度,吸水率,气孔率实验等方法研究碳化硅铝复合材料的微观结构、性能特点和机理。

得到实验结果为SiCp复合材料组织均匀,致密,无杂质,气孔少等优良特点。

随着SiC复合材料质量分数的增加,SiCp的密度、抗折强度、硬度均相应增大,而气孔率、吸水率随之减小。

SiC质量分数一定的情况下,随着烧结温度的升高试样的性能也越来越好。

关键字:粉末冶金法碳化硅铝复合材料制备性能研究类型:实验型Subject: Preparation of Silicon Carbide Reinforced Aluminum CompositeSpeciality: Materials Science and EngineeringName:Duan hongwei Signature: Instructor: Wang Tao Signature:AbstractSilicon carbide particles reinforced aluminum matrix composites (SiCp / Al matrix composite) with high specific strength and stiffness, wear and fatigue resistance, low thermal expansion coefficient, low density and high micro-yield strength, good dimensional stability and thermal conductivity , excellent mechanical properties and physical properties.In this paper, Using method of powder metallurgy to preparation SiCp composite materials. Using X-ray diffraction (XRD),Scanning electron microscopy (SEM), bending strength and Rockwell hardness test and the density, water absorption, porosity of experimental methods research aluminum silicon carbide composite material microstructure, properties and mechanism. The experimental results obtained for the SiCp homogeneous, compact, no impurities, porosity and less good features. With the increase of SiC quality score, SiCp density, flexural strength and hardness, and all relevant porosity, bibulous rate is then decreased.SiC quality score certain situations, the sintering temperature elevatory sample properties and strengthened.Key words :Method of powder metallurgy; SiCp / Al matrixcomposite;Preparation; Performance;Thesis type:Experimental目录目录 (1)1文献综述 (1)1.1复合材料概述 (1)1.1.1 复合材料的定义 (1)1.1.2复合材料的分类 (1)1.1.3复合材料的性能 (2)1.1.4复合材料的成型方法 (3)1.1.5复合材料的应用 (3)1.1.6复合材料的发展和应用 (3)1.2金属基复合材料 (5)1.2.1 金属基复合材料的定义 (5)1.2.2 金属基复合材料分类 (5)1.3碳化硅铝复合材料 (7)1.3.1碳化硅铝复合材料引言 (7)1.3.2国外开发及应用研究现状 (7)1.3.3碳化硅铝复合材料的制备方法 (8)1.3.4国内开发与应用中存在的问题 (10)1.3.5碳化硅铝复合材料今后发展趋势 (11)1.4本文研究内容 (11)1.5工艺流程 (12)2 实验方法及内容 (13)2.1实验方法 (13)2.1.1实验方法介绍 (13)2.1.2原料计算称量及配置 (13)2.1.3冷压成型 (13)2.1.4低温排胶 (14)2.1.5高温烧结 (14)2.2实验原料 (14)2.3 实验设备 (15)2.4实验过程 (15)2.4.1试验配方 (15)2.4.2原料混合 (16)2.4.3冷压成型 (16)2.4.4高温烧结 (17)2.5试样测试 (18)3实验结果与分析 (19)3.1试样的微观形貌分析 (19)3.2试样XRD成分分析 (20)3.3 试样的抗折强度 (21)3.3.1温度对抗折强度的影响 (21)3.3.2 SiC 含量对抗折强度的影响 (21)3.4试样密度、吸水率、气孔率的测试 (22)3.4.1测试方法 (22)3.4.2温度对试样密度、吸水率、气孔率的影响 (23)3.4.3 SiC含量对试样密度、吸水率、气孔率的影响 (24)3.5试样洛氏硬度的测试 (27)3.5.1 烧结温度对洛氏硬度的影响 (27)3.5.2 SiC含量对试样洛氏硬度的影响 (28)3.6粘结剂、Mg粉以及真空热压烧结的作用 (28)3.6.1粘结剂的作用 (28)3.6.2 Mg粉的作用 (29)3.6.3热压烧结的作用 (29)4结论 (30)致谢 (31)参考文献 (32)1文献综述1.1复合材料概述1.1.1 复合材料的定义复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。

【精品硕士论文】电子封装材料钼铜合金胡制备工艺及性能

【精品硕士论文】电子封装材料钼铜合金胡制备工艺及性能

摘要本课题着眼于制备生产成本低廉、操作工艺简单、容易实现规模化生产、性能优良的高致密度电子封装用钼铜复合材料。

在遵循以上原则的情况下,探讨了成型压力、烧结温度、机械合金化、活化法、铜含量对钼铜复合材料密度、热导率、电导率、热膨胀系数、宏观硬度的影响。

利用扫描电镜、X-衍射仪、能谱仪、透射电子显微镜对钼铜复合粉末和烧结后的钼铜合金进行了组织和结构分析。

实验结果表明:(1)经混合后的钼铜粉由单个颗粒堆积在一起,颗粒没有发生明显变形,粒度比较均匀。

机械合金化后的钼铜粉末完全变形,颗粒有明显的层片状,小颗粒明显增多并黏附在大颗粒上面,有部分小颗粒到达纳米级。

混合法和机械合金化法处理的钼铜粉比较均匀。

机械合金化后的钼铜粉末的衍射峰变宽和布拉格衍射峰强度下降。

Mo-30Cu 复合粉通过机械合金化后在不同温度下烧结的钼铜合金致密度较高,相对密度最高达到97.7%,其热膨胀系数和热导率的实测值分别为8.1×10-6/K和145 W/m·K左右;(2)晶粒之间相互连接的为Mo相,另一相为粘结相Cu相,两相分布较均匀。

钼、铜相之间有明显的相界,有成卵形的单个钼晶粒和相互串联在一起的多个钼晶粒结合体,钼铜两相中均存在大量的高密度位错。

随着液相烧结温度的升高,钼晶粒明显长大;随着压制粉末成型压力的增大,液相烧结后钼晶粒长大;(3)随着粉末压制成型压力的增大,压制Mo-30Cu复合粉末的生坯密度增大,在1250℃烧结后,钼铜合金的密度、硬度、电导率、热膨胀系数和热导率变化都不大;(4)Mo-30Cu粉末中添加0.6%的Co时,在1250℃烧结1h后获得相对密度达到最高值97.7%。

随着钴含量的增大,合金电导率下降,硬度升高。

钼铜合金中加入钴时会形成金属间化合物Co7Mo6;(5)随着铜含量的增加,烧结体相对密度增大,铜含量在30%左右烧结体致密度达到最大值97.51%。

随着铜含量的增加,电导率、热导率和热膨胀系数增大,硬度下降;(6)随着孔隙度的增大,钼铜合金的导电导热性能急剧下降。

先进制造技术论文

先进制造技术论文

先进制造技术论文篇一:先进制造技术论文先进制造技术论文院专姓学号:时间:20xx年5月10日目录一、概述***************************** 1二、材料加工************************* 1三、先进制造工艺技术***************** 6四、先进制造自动技术***************** 8五、先进生产模式********************* 9六、生产与技术********************** 11七、参考文献************************ 13一:概述随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。

介绍了先进制造技术和先进制造模式的内容和发展情况,从两种角度解释其结构特征和关系,并从各种不同角度展望先进制造技术和先进生产模式的发展前景及其趋势特征。

先进制造技术AMT(Advanced Manufacturing Technology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。

当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。

先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。

二:材料加工材料加工工程在先进制造技术中占有重要地位,是发展高新技术产业和传统工业更新换代的重要科学基础和共性技术。

其中包括高效、精密的加工工艺、装备和检测技术,低能耗、低成本产品的流程制造,集成、柔性、智能化制造系统,是工程可持续发展与绿色制造体系的重要组成部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

先进材料制备技术论文材料制备技术得到了不同类型的商业化制品。

下面是精心推荐的先进材料制备技术论文,希望你能有所感触!摘要综述了国内外块状纳米材料的制备技术进展及存在的问题。

提出了超短时脉冲电流直接晶化法和深过冷直接晶化法两类潜在的块状金属纳米晶制备技术,并对今后的研究及发展前景进行了展望。

关键词纳米晶块体材料制备非晶晶化机械合金化深过冷DEVELOPMENT OF BULK METAL NANOMETER MATERIALS PREPARATION TECHNOLOGIES AND THEiR ESTIMATEABSTRACT On the basis of the summarization of bulk metal nanocrystalline materials preparation methods,two potential technologies:super short false current directcrystallization method and high undercooling direct crystallization method are proposed.In the end,the development and application prospects of various methods are also estimated.KEYWORDS bulk nanometer material,preparation of materials,crystallization of amorphous alloys,mechanical alloying,high undercoolingCorrespondent:Zhang Zhenzhong Northwestern Polytechnical University,State key Laborotry of Solidification Processing Xi'an 710072自80年代初德国科学家H.V.GlEIter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后[1],纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。

由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能[2],使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。

为使这种新型材料既有利于理论研究,又能在实际中拓宽其使用范围,探索高质量的三维大尺寸纳米晶体样品的制备技术已成为纳米材料研究的关键之一。

本文综述国内外现有块状金属纳米材料的制备技术进展,并提出今后可能成为块状金属纳米材料制备的潜在技术。

1 现有块状金属纳米材料的制备技术1.1 惰性气体凝聚原位加压成形法该法首先由H.V.Gleiter教授提出[1],其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成形(烧结)系统组成。

其制备过程是:在高真空反应室中惰性气体保护下使金属受热升华并在液氮冷镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒刮落进入漏斗并导入模具,在10-6Pa高真空下,加压系统以1~5GPa的压力使纳米粉原位加压(烧结)成块。

采用该法已成功地制得Pd、Cu、Fe、Ag、Mg、Sb、Ni3Al、NiAl、TiAl、Fe5Si95等合金的块状纳米材料[3]。

近年来,在该装置基础之上,通过改进使金属升华的热源及方式(如采用感应加热、等离子体法、电子束加热法、激光热解法、磁溅射等)以及改良其它装备,可以获得克级到几十克级的纳米晶体样品。

纳米超饱和合金、纳米复合材料等也正在利用此法研究之中。

目前该法正向多组分、计量控制、多副模具、超高压力方向发展。

该法的特点是适用范围广,微粉表面洁净,有助于纳米材料的理论研究。

但工艺设备复杂,产量极低,很难满足性能研究及应用的要求,特别是用这种方法制备的纳米晶体样品存在大量的微孔隙,致密样品密度仅能达金属体积密度的75%~90%,这种微孔隙对纳米材料的结构性能研究及某些性能的提高十分不利。

近年来,尽管发展了一些新的纳米粉制备方法如电化学沉积[4]、电火花侵蚀(sparkerosion)[5]等方法,但与这些方法相衔接的纳米粉的分散、表面处理及成型方法尚未得到发展。

1.2 机械合金研磨(MA)结合加压成块法MA法是美国INCO公司于60年代末发展起来的技术。

它是一种用来制备具有可控微结构的金属基或陶瓷基复合粉末的高能球磨技术:在干燥的球型装料机内,在高真空Ar2气保护下,通过机械研磨过程中高速运行的硬质钢球与研磨体之间相互碰撞,对粉末粒子反复进行熔结、断裂、再熔结的过程使晶粒不断细化,达到纳米尺寸[6]。

然后、纳米粉再采用热挤压、热等静压等技术[7]加压制得块状纳米材料。

研究表明,非晶、准晶、纳米晶、超导材料、稀土永磁合金、超塑性合金、金属间化合物、轻金属高比强合金均可通过这一方法合成。

该法合金基体成分不受限制、成本低、产量大、工艺简单,特别是在难熔金属的合金化、非平衡相的生成及开发特殊使用合金等方面显示出较强的活力,该法在国外已进入实用化阶段。

如美国INCO 公司使用的球磨机直径为2m,长3m,每次可处理约1000kg粉体,这样的球磨机1993年在美国安装有七座,英国安装有二座,大多用来加工薄板、厚板、棒材、管材及其它型材。

近年来,该法在我国也获得了广泛的重视。

其存在的问题是研磨过程中易产生杂质、污染、氧化及应力,很难得到洁净的纳米晶体界面,对一些基础性的研究工作不利。

1.3 非晶晶化法该法是近年来发展极为迅速的一种新工艺,它是通过控制非晶态固体的晶化动力学过程使晶化的产物为纳米尺寸的晶粒。

它通常由非晶态固体的获得和晶化两个过程组成。

非晶态固体可通过熔体激冷、高速直流溅射、等离子流雾化、固态反应法等技术制备,最常用的是单辊或双辊旋淬法。

由于以上方法只能获得非晶粉末、丝及条带等低维材料,因而还需采用热模压实、热挤压或高温高压烧结等方法合成块状样品[8]。

晶化通常采用等温退火方法,近年来还发展了分级退火[9]、脉冲退火[10]、激波诱导[11]等方法。

目前,利用该法已制备出Ni、Fe、Co、Pd基等多种合金系列的纳米晶体,也可制备出金属间化合物和单质半导体纳米晶体,并已发展到实用阶段。

此法在纳米软磁材料的制备方面应用最为广泛。

值得指出的是,国外近年来十分重视块体非晶的制备研究工作,继W.Klement、H.S.Chen、H.W.Kui等采用真空吸铸法及合金射流法制备出Mg-La-TM、La-Al-TM、Zr-Al-TM系非晶块体之后,近几年日本以Inoue为代表的研究小组在非晶三原则指导下,又成功地采用合金射流成形及深过冷与合金射流成形相结合的方法制备了厚度分别为2mm、3mm、12mm、15mm、40mm、72mm的Fe-(Al,Ga)-(P,C,B,Si,Ge)[12]、(Fe,Co,Ni)70Zr8B20Nb2[13]、(Nd,Pr)-Fe-(Al,Ga)[14]、Zr-Al-Cu-Ni[15]、Pd-Cu-Si-B[16]系的非晶块体。

我国北京科技大学的何国、陈国良最近也采用合金射流成形法获得?8mm Zr65Al7.5Cu17.5Ni10[17]的非晶块体,这些研究结果为该法制备及应用块体纳米材料注入了极大生机。

该法的特点是成本低,产量大,界面清洁致密,样品中无微孔隙,晶粒度变化易控制,并有助于研究纳米晶的形成机理及用来检验经典的形核长大理论在快速凝固条件下应用的可能性。

其局限性在于依赖于非晶态固体的获得,只适用于非晶形成能力较强的合金系。

1.4 高压、高温固相淬火法该法是将真空电弧炉熔炼的样品置入高压腔体内,加压至数GPa 后升温,通过高压抑制原子的长程扩散及晶体的生长速率,从而实现晶粒的纳米化,然后再从高温下固相淬火以保留高温、高压组织。

胡壮麒等利用此法已获得?4×3(mm)的Cu60Ti40及?3×3(mm)的Pd78Cu6Si16晶粒尺寸为10~20(nm)的纳米晶样品[18,19]。

该法的特点是工艺简便,界面清洁,能直接制备大块致密的纳米晶。

其局限性在于需很高的压力,大块尺寸获得困难,另外在其它合金系中尚无应用研究的报道。

1.5 大塑性变形与其它方法复合的细化晶粒法1.5.1 大塑性变形方法在采用大塑性变形方法制备块状金属纳米材料方面, ___科学院R.Z.Valiev领导的研究小组开展了卓有成效的研究工作,早在90年代初,他们就发现采用纯剪切大变形方法可获得亚微米级晶粒尺寸的纯铜组织[20],近年来他们在发展多种塑性变形方法的基础上,又成功地制备了晶粒尺寸为20~200(nm)的纯Fe、Fe-1.2%C 钢、Fe-C-Mn-Si-V低合金钢、Al-Cu-Zr、Al-Mg-Li-Zr、Mg-Mn-Ce、Ni3Al金属间化合物、Ti-Al-Mo-Si[21-23]等合金的块体纳米材料。

1.5.2 塑性变形加循环相变方法1996年我国赵明、张秋华等[24]将碳管炉中氩气保护下熔炼的Zn78Al22超塑性合金,经固溶处理后通过小塑性变形和循环相变(共析转变),获得了晶粒尺寸为100~300(nm)的块状纳米晶体。

该方法与其他方法相比具有适用范围宽,可制造大体积试样,试样无残留缩松(孔),可方便地利用扫描电镜详细研究其组织结构及晶粒中的非平衡边界层结构,特别有利于研究其组织与性能的关系等特点并可采用多种变形方法制备界面清洁的纳米材料,是今后制备块体金属纳米材料很有潜力的一种方法。

如将此法与粉末冶金及深过冷等技术相结合,则可望利用此法制备金属陶瓷纳米复合材料[21],并拓宽其所能制备的合金成份范围。

除以上主要方法外,近年来还发展的有喷雾沉积法、离子注入法等块体金属纳米材料制备技术,在此不再一一赘述。

2 直接制备块状纳米晶的潜在技术2.1 脉冲电流直接晶化法近年来,关于脉冲电流对金属凝固组织的影响已屡见报道:80年代,印度学者A.K.Mistra首先在Pb68Sb15Sn7共晶及Pb87Sb10Sn3亚共晶合金中通以40mA/cm2的直流电,发现凝固后组织明显细化[25],M.Nakada等人在Sn85Pb15合金凝固过程中通脉冲电流后,也发现凝固组织细化且发生枝晶向球状晶转变[26],J.P.Barnak等研究了高密度脉冲电流对Sn60Pb40和Sn63Pb37合金凝固组织的影响[27]。

结果证实,脉冲电流可增加过冷度,并可使共晶的晶粒度降低一个数量级,且晶粒度随脉冲电流密度增加而降低。

相关文档
最新文档