四种典型的全控型器件

合集下载

全控型电力电子器件

全控型电力电子器件

GTO的关断机理: 在双晶体管等效模型中,利用门 极负电流分流IC1,并快速抽取 V2管发射结侧载流子,以实现快 速关断 GTO优点:电压、电流容量大,适用于大 功率场合,具有电导调制效应,其通流能 力很强;缺点:电流关断增益很小,关断 时门极负脉冲电流大,开关速度低,驱动 功率大,驱动电路复杂,开关频率低
2.电力晶体管(Giant Transistor—GTR)
GTR是一种耐高电压、大电流的双极结型晶体管,电流驱动型全控器件。
GTR关断原理: 开通时,Uce正偏,提供基极电流; 关断时,I b小于等于零。 开通和关断可由基极电流来控制,故称为全控型器件和电流型驱动器件。
GTR优点:耐压高,电流大,开关特性好,通流能力强,饱和压降低 缺点:开关速度低,为电流驱动,所需驱动功率电路复杂,存在二次击穿问题
4.绝缘栅极晶体管(IGBT)
复合型器件,将GTR双极型电流驱动器件和电力MOSFET 单极型电压驱动器件结合。综合了GTR和MOSFET的优点,因而具有良好的特性。
关断原理:IGBT是一种压控器件。其C-E间主电流的通断是由栅极和射极间的电压 uGE的高低决定的。 E极为公共端。 IGBT优点:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低, 输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压, 电流容量不及GTO
3.电力场效应管绝缘栅型中的MOS型 (Metal Oxide Semiconductor FET)
关断原理:以G-S间施加电压的高低来控制D-S间主电流的通断。源极S为公共端。 门极几乎不取用电流,属压控器件。uGS正电压超过开启电压时导通,负电压作 用可使其快速关断。 优点:开关频率最高;驱动电流小,易驱动;通态电阻具有正温度系数(有利于器件 并联均流);缺点:电压电流容量较小;通态压降较大,ID大则压降随之增大。

2.4典型全控型器件

2.4典型全控型器件
off可描述负门极电流关断大的阳极电流的能力, 一般很小,只有3~5左右。这是GTO的一个主要缺点。
1000A的GTO关断时门极负脉冲电流峰值要200A 。
2019/11/7
电力电子技术
太原工业学院自动化系
2.4.2 电力晶体管(GTR)
GTR是一种耐高压,大电流的双极结型晶 体管。它具有自关断能力,并有开关时间短 、饱和压降低、安全工作区宽等优点。20世 纪80年代是GTR发展和应用的全盛时期。由 于GTR实现了高频化、模块化,廉价化,因 此被广泛应用于交流电机调速、UPS、中频 电源等电力变流装置中,并在中小功率应用 方面取代了传统的晶闸管。但随着IGBT的兴 起,GTR在逐步被IGBT取代。
2019/11/7
电力电子技术
太原工业学院自动化系
◤当发射结处于正向偏置而集电结仍为反向偏置 时,即UBE>0,UBC<0,随着IB增加,集电极电流 IC线性增大,晶体管呈放大状态,特性上对应线 性放大区(II区)。◢ ◤当基极电流IB>(IC /β)时,晶体管就充分饱和 了。这时发射结和集电结都是正向偏置,即 UBE>0,UBC>0,电流增益和导通压降UCE均达到 最小值,GTR进入饱和区(IV区)。GTR工作在 饱和区,相当于处于导通状态的开关。◢
A
P1
N1
N1
G
P2
P2
N2
K
A
IA
PNP
V1
G IG
Ic1
Ic2
R
NPN
V2
S EG
IK
EA
K
a)
b)
• 由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具
有共基极电流增益α1和α2。

全控型器件名词解释

全控型器件名词解释

全控型器件名词解释
全控型器件(英语:Fully Controlled Device),在电力电子学中,是一种可以在没有反向电压的情况下控制其电流的电子器件。

常见的全控型器件包括二极管、晶闸管、以及新发展的功率场效应管(Power Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)、绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor, IGBT)等。

全控型器件在许多领域都有应用,包括**电力系统和电动机**。

在电力系统中,它们可以用来控制发电机的开关和电流的大小。

在电动机中,这些器件可以通过调节电压来控制电机的速度和方向。

此外,全控型器件还可以用于**电子设备和家用电器**的控制器中,例如电视、音响、照明设备等。

通过使用全控型器件,这些设备的电源和控制电路可以实现更加灵活和智能的控制。

除此之外,全控型器件还被广泛应用于**汽车工业**。

特别是在电动汽车中,全控型器件作为逆变器的一部分,可以将电池中的直流能转换成交流能,从而驱动车轮。

四种典型的全控型器件

四种典型的全控型器件

四种典型的全控型器件班级学号:********* 姓名:***日期:2013.10.3四种典型的全控型器件全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件。

四种典型全控型器件:只在汽车点火装置和电视机行扫描电路中进行试用。

自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、2500V/1000A、4500V/2400A的产品,目前已达9kV/25kA/800Hz及6Hz/6kA/1kHz的水平。

(2)大功率晶体管(GTR)GTR是一种电流控制的双极双结电力电子器件,产生于本世纪70年代,其门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力晶体管(Giant Transistor-GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)。

容量比较:(1)1964年,美国第一次试制成功了500V/10A的GTO。

在此后的近10年内,GTO的容量一直停留在较小水平,额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。

(3)功率MOSFET目前制造水平大概是1kV/2A/2MHz和60V/200A/2MHz。

(4)绝缘门极双极型晶体管(IGBT)IGBT是由美国GE公司和RCA公司于1983年首先研制的,当时容量仅500V/20A,且存在一些技术问题。

目前,其研制水平已达4500V/1000A。

开关频率:GTO的延迟时间一般为1~2us;下降时间一般小于2us。

GTR的开关时间一般在几微秒以内,比晶闸管短很多,也短于GTO。

MOSFET的开关时间一般在10--100ns之间。

IGBT的开关时间要低于电力MOSFET。

驱动方式和驱动功率:GTO:电流驱动型,驱动功率大。

典型全控型电力电子器件

典型全控型电力电子器件

(1)静态特性
共发射极接法时,GTR的典型输出特性如图4-8所示, 可分为三个工作区:
① 截止区。在截止区内,iB≤0,uBE≤0,uBC<0,
集电极只有漏电流流过。
② 放大区。iB >0,uBE>0,uBC<0,iC =βiB。

饱和区。iB
I CS
,uBE>0,uBC>0,iCS是集电极
饱和电流,其值由外电路决定。
a)
b)
图4-14 电力MOSFET的结构和符号
a) MOSFET元组成剖面图 b) 图形符号
.
电力MOSFET的外形图
.
2.电力MOSFET的工作原理
当漏极接电源正极,源极接电源负极,栅源极之间电 压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏
源极之间无电流流过。如果在栅极和源极间加正向电压UGS,
.
(2)动态特性
图4-8 GTR共发射极接法的输出特性
图4-9 GTR开关特性
.
2.GTR的参数
(1)最高工作电压 ①BUCBO:射极开路时,集-基极间的反向击穿电压。 ②BUCEO:基极开路时,集-射极之间的击穿电压。 ③BUCER:GTR的射极和基极之间接有电阻R。 ④BUCES:发射极和基极短路,集-射极之间的击穿电压。 ⑤BUCEX:发射结反向偏置时,集-射极之间的击穿电压。 其中BUCBO > BUCES > BUCES> BUCER> BUCEO,实际使用时, 为确保安全,最高工作电压要比BUCEO低得多。 (2)集电极最大允许电流ICM (3)集电极最大允许耗散功率PCM
1.GTO的开关特性
图4-3 GTO在开通和关断过程中电流的波形
.
2.GTO的主要参数

全控型器件的详细介绍

全控型器件的详细介绍

典型全控型器件的介绍班级学号 :姓名日期一.门极可关断晶闸管1.1门极可关断晶闸管的简介门极可关断晶闸管简称GTO,是一种全控型的晶闸管。

其主要特点为,当栅极加负向触发信号时晶闸管能自行关断,保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。

GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频纺比GTR低。

目前,GTO 已达到3000A、4500V的容量。

大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。

1.2门极可关断晶闸管的结构和工作原理GTO是PNPN四层半导体结构,外部引出阳极,阴极和门极,是多元件的功率集成器件,内部由许多的GTO元的阳极和门极并联在一起。

其工作原理可用双晶体管来分析P1N1P1和N1P2N2构成的两个晶体管V1,V2分别具有共基极电流增益α1和α2,普通的晶体管分析,α1+α2=1是器件的临界导电条件,当α1+α2>1时2,当α1+α2<1时不能维持饱和导通而关断。

1.3 GTO的驱动方式及频率当信号要求可关断晶闸管导通时,驱动电路提供上升率足够大的正栅极脉冲电流(其幅度视晶闸管容量不同在0.1到几安培范围内),其正栅极脉冲宽度应保证门极关断晶闸管可靠导通。

当信号要求门极关断晶闸管关断时,驱动电路提供上升率足够大的负栅极脉冲电流,脉冲幅度要求大于可关断晶闸管阳极电流的五分之一,脉冲宽度应大于可关断晶闸管的关断时间和尾部时间。

根据对驱动门极关断晶闸管的特性、容量、应用场合、电路电压、工作频率、可靠性要求和性价比等方面的不同要求,有多种形式的栅极驱动电路。

1.4存在的问题及其最新的发展GTO在使用中,导通时的管压降较大,增加了通态损耗。

对关断负脉冲的要求较高,门极触发电路需要严格设计,否则易在关断过程中烧毁管子。

门极电流应大于元件的擎住电流IL;正负触发脉冲其前沿要陡,后沿要平缓,中小功率电路上升沿小于0.5μs ,大功率电路小于1μs ;门极电路电阻要小,以减小脉冲源内阻由于多元集成,对制造工艺提出极高的要求,它要求必须保持所有GTO元特性一致,开通或关断速度不一致,会使GTO元因电流过大而损坏。

四种典型全控型器件比较(汇编)

四种典型全控型器件比较(汇编)

四种典型全控型器件的比较四种典型全控型器件的比较一、 对四种典型全控型器件的介绍1、门极可关断晶闸管(GTO ) 1)GTO 的结构与工作原理芯片的实际图形 GTO 结构的纵断面 GTO 结构的纵断面 图形符号GTO 的内部结构和电气图形符号2)工作原理:设计α2较大,使晶体管V2控 制灵敏。

导通时α1+α 2= 1.05更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。

多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。

下图为工作原理图。

2222R NPNPNPA G SK E GI G E AI K I c2I c1I A V 1V 2b)2、电力晶体管(GTR) 1)电力晶体管的结构:内部结构电气图形符号NPN型电力晶体管的内部结构及电气图形符号2)工作原理:在电力电子技术中,GTR主要工作在开关状态。

晶体管通常连接成共发射极电路,GTR通常工作在正偏(I b>0)时大电流导通;反偏(I b<0)时处于截止状态。

因此,给GTR的基吸施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。

3、电力场效应晶体管(Power MOSFET)1)电力MOSFET的结构MOSFET元组成剖面图图形符号电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上,使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和提高电流密度。

2)电力MOSFET的工作原理:当漏极接电源正极,源极接电源负极,栅源极之间电压为零或为负时,P型区和N-型漂移区之间的PN结反向,漏源极之间无电流流过。

如果在栅极和源极间加正向电压U GS,由于栅极是绝缘的,不会有电流。

但栅极的正电压所形成的电场的感应作用却会将其下面的P 型区中的少数载流子电子吸引到栅极下面的P型区表面。

当u GS大于某一电压值U GS(th)时,栅极下面的P型区表面的电子浓度将超过空穴浓度,使P型反型成N型,沟通了漏极和源极。

第二章 - 3_GTO+GTR(电力电子技术)

第二章 - 3_GTO+GTR(电力电子技术)
12
2.4.2 电力晶体管
☞在应用中,GTR一般采用共发射极接 法。集电极电流ic与基极电流ib之比为
i =i
c b
i
c
ib I ceo
(2-9)
空穴流
称为GTR的电流放大系数,它反映
了基极电流对集电极电流的控制能力。 当考虑到集电极和发射极间的漏电流Iceo 时,ic和ib的关系为
4/7
门极可关断晶闸管
工作原理:
与普通晶闸管一样,可以用图所示的双晶体管模型来分析。
A A P1 N1 G P2 N2 K a) b) N1 P2 IA V1 G IG S EG Ic1 NPN PNP Ic2 V2 IK K R EA
IA
2 I G I CBO1 I CBO2
1 ( 1 2 )
2.4 典型全控型器件· 引言
门极可关断晶闸管 —— 在晶闸管问世后不久 出现。 20 世纪80 年代以来,电力电子技术进入了一 个崭新时代。 典型代表 —— 门极可关断晶闸管、电力晶体 管、电力场效应晶体管、绝缘栅双极晶体管。
1
2.4 典型全控型器件
2.4.1 2.4.2 2.4.3 2.4.4 门极可关断晶闸管 电力晶体管 电力场效应晶体管 绝缘栅双极晶体管
10
电力晶体管
1)GTR的结构和工作原理
空穴流 i 基区很薄; 导通条件:发射结正偏,集电结反偏; E 1 、形成发射极电流 Ie ,与电子流动方向 相反,同时基区的空穴也扩散到发射区; 2 、发射区电子注入基区后,在基区积累, 形成一定的浓度梯度,靠近发射极浓度高, 远离发射极浓度低。 3 、集电结反偏,集电结势垒很高,阻止 集电结的扩散运动,但是其可以吸引集电 结边缘的电子,形成集电极电流Ic。同时 该PN结反向饱和电流对Ic来说很小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四种典型的全控型器件
班级学号:********* 姓名:***
日期:2013.10.3
四种典型的全控型器件
全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件被称为全控型器件,又称为自关断器件。

四种典型全控型器件:只在汽车点火装置和电视机行扫描电路中进行试用。

自70年代中期开始,GTO的研制取得突破,相继出世了1300V/600A、2500V/1000A、4500V/2400A的产品,目前已达9kV/25kA/800Hz及6Hz/6kA/1kHz的水平。

(2)大功率晶体管(GTR)GTR是一种电流控制的双极双结电力电子器件,产生于本世纪70年代,其门极可关断晶闸管(Gate-Turn-Off Thyristor—GTO),电力晶体管(Giant Transistor-GTO),电力场效应晶体管(Power MOSFET),绝缘栅双极晶体管(Insulate-Gate Bipolar Transistor—IGBT)。

容量比较:(1)1964年,美国第一次试制成功了500V/10A的GTO。

在此后的近10年内,GTO的容量一直停留在较小水平,额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。

(3)功率MOSFET目前制造水平大概是1kV/2A/2MHz和60V/200A/2MHz。

(4)绝缘门极双极型晶体管(IGBT)IGBT是由美国GE公司和RCA公司于1983年首先研制的,当时容量仅500V/20A,且存在一些技术问题。

目前,其研制水平已达4500V/1000A。

开关频率:GTO的延迟时间一般为1~2us;下降时间一般小于2us。

GTR的开关时间一般在几微秒以内,比晶闸管短很多,也短于GTO。

MOSFET的开关时间一般在10--100ns之间。

IGBT的开关时间要低于电力MOSFET。

驱动方式和驱动功率:GTO:电流驱动型,驱动功率大。

GTR:电流驱动型,驱动功率大。

电力MOSFET:电压驱动型,驱动功率小。

IGBT:电压驱动型,驱动功率小。

存在问题:GTO缺点是:同样工作条件下擎住电流大。

擎住电流指刚从断态转入通态并切除门极电流之后,能维持通态所需的最小阳极电流。

关断脉冲对功率和负门极电流的上升率要求高。

门控回路比较复杂。

GTR缺点是:开关比速度低,驱动电路复杂,存在二次击穿问题。

MOSFET缺点是:击穿电压低,工作电流小。

IGBT 的缺点是:K开关速度低于电力MOSFET,电压电流容量不及GTO。

最新发展:GTO:当前各种自关断器件中,GTO容量最大、工作频率最低(1~2kHz)。

GTO是电流控制型器件,因而在关断时需要很大的反向驱动电流;GTO
通态压降大、dV/dT及di/dt耐量低,需要庞大的吸收电路。

目前,GTO虽然在低于2000V的某些领域内已被GTR和IGRT等所替代,但它在大功率电力牵引中有明显优势;今后,它也必将在高压领域占有一席之地。

GTR:GTR既具备晶体管的固有特性,又增大了功率容量,因此,由它所组成的电路灵活、成熟、开关损耗小、开关时间短,在电源、电机控制、通用逆变器等中等容量、中等频率的电路中应用广泛。

GTR 的缺点是驱动电流较大、耐浪涌电流能力差、易受二次击穿而损坏。

在开关电源和UPS内,GTR正逐步被功率MOSFET和IGBT所代替。

MOSFET:MOSFET是一种电压控制型单极晶体管,它是通过栅极电压来控制漏极电流的,因而它的一个显著特点是驱动电路简单、驱动功率小;仅由多数载流子导电,无少子存储效应,高频特性好,工作频率高达100kHz以上,为所有电力电子器件中频率之最,因而最适合应用于开关电源、高频感应加热等高频场合;没有二次击穿问题,安全工作区广,耐破坏性强。

功率MOSFET的缺点是电流容量小、耐压低、通态压降大,不适宜运用于大功率装置。

IGBT:IGBT于1986年开始正式生产并逐渐系列化。

至90年代初,IGBT 已开发完成第二代产品。

目前,第三代智能IGBT已经出现,科学家们正着手研究第四代沟槽栅结构的IGBT。

IGBT可视为双极型大功率晶体管与功率场效应晶体管的复合。

通过施加正向门极电压形成沟道、提供晶体管基极电流使IGBT导通;反之,若提供反向门极电压则可消除沟道、使IGBT因流过反向门极电流而关断。

IGBT集GTR通态压降小、载流密度大、耐压高和功率MOSFET驱动功率小、开关速度快、输入阻抗高、热稳定性好的优点于一身,因此备受人们青睐。

它的研制成功为提高电力电子装置的性能,特别是为逆变器的小型化、高效化、低噪化提供了有利条件。

比较而言,IGBT的开关速度低于功率MOSFET,却明显高于GTR;IGBT的通态压降同GTR相近,但比功率MOSFET低得多;IGBT的电流、电压等级与GTR接近,而比功率MOSFET高。

目前,其研制水平已达4500V/1000A。

由于IGBT具有上述特点,在中等功率容量(600V以上)的UPS、开关电源及交流电机控制用PWM逆变器中,IGBT已逐步替代GTR成为核心元件。

另外,IR公司已设计出开关频率高达150kHz 的WARP系列400~600VIGBT,其开关特性与功率MOSFET接近,而导通损耗却比功率MOSFET低得多。

该系列IGBT有望在高频150kHz整流器中取代功率MOSFET,并大大降低开关损耗。

相关文档
最新文档