全控型电力电子器件
全控型电力电子器件

GTO的关断机理: 在双晶体管等效模型中,利用门 极负电流分流IC1,并快速抽取 V2管发射结侧载流子,以实现快 速关断 GTO优点:电压、电流容量大,适用于大 功率场合,具有电导调制效应,其通流能 力很强;缺点:电流关断增益很小,关断 时门极负脉冲电流大,开关速度低,驱动 功率大,驱动电路复杂,开关频率低
2.电力晶体管(Giant Transistor—GTR)
GTR是一种耐高电压、大电流的双极结型晶体管,电流驱动型全控器件。
GTR关断原理: 开通时,Uce正偏,提供基极电流; 关断时,I b小于等于零。 开通和关断可由基极电流来控制,故称为全控型器件和电流型驱动器件。
GTR优点:耐压高,电流大,开关特性好,通流能力强,饱和压降低 缺点:开关速度低,为电流驱动,所需驱动功率电路复杂,存在二次击穿问题
4.绝缘栅极晶体管(IGBT)
复合型器件,将GTR双极型电流驱动器件和电力MOSFET 单极型电压驱动器件结合。综合了GTR和MOSFET的优点,因而具有良好的特性。
关断原理:IGBT是一种压控器件。其C-E间主电流的通断是由栅极和射极间的电压 uGE的高低决定的。 E极为公共端。 IGBT优点:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低, 输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压, 电流容量不及GTO
3.电力场效应管绝缘栅型中的MOS型 (Metal Oxide Semiconductor FET)
关断原理:以G-S间施加电压的高低来控制D-S间主电流的通断。源极S为公共端。 门极几乎不取用电流,属压控器件。uGS正电压超过开启电压时导通,负电压作 用可使其快速关断。 优点:开关频率最高;驱动电流小,易驱动;通态电阻具有正温度系数(有利于器件 并联均流);缺点:电压电流容量较小;通态压降较大,ID大则压降随之增大。
第四章 全控型电力电子器件

图4-4 较为理想的门极电压和电流波形
《电力电子技术》
2.GTO的驱动电路
a) b) 图4-5 GTO门极驱动电路 a)小容量GTO门极驱动电路 b)较大容量GTO桥式门极驱动电路
《电力电子技术》
3.GTO的保护电路
b) c) d) 图4-6 GTO的阻容缓冲电路 图4-6为GTO的阻容缓冲电路。图4-6a只能用于小电流;图4-6b加 在GTO上的初始电压上升率大,因而在GTO电路中不推荐;图4-6c与图 4-6d是较大容量GTO电路中常见的缓冲器,其二极管尽量使用速度快 的,并使接线短,从而使缓冲器电容效果更显著。
《电力电子技术》
a)
第三节 电力场效应晶体管(Power MOSFET)
一、电力MOSFET的结构 电力MOSFET采取两次扩散工艺,并将漏极D移到芯片的另一侧表面上, 使从漏极到源极的电流垂直于芯片表面流过,这样有利于减小芯片面积和 提高电流密度。
a)
b) 图4-14 电力MOSFET的结构和符号 a) MOSFET元组成剖面图 b) 图形符号
《电力电子技术》
二、工作原理
IGBT的驱动原理与电力MOSFET基本相同,它是一种 压控型器件。其开通和关断是由栅极和发射极间的电 压 uGE 决 定 的 , 当 uGE 为正且 大 于开启电 压 uGE(th) 时, MOSFET内形成沟道,并为晶体管提供基极电流使其导 通。当栅极与发射极之间加反向电压或不加电压时, MOSFET内的沟道消失,晶体管无基极电流,IGBT关断。 PNP晶体管与N沟道MOSFET组合而成的IGBT称为N沟 道IGBT,记为N-IGBT,其电气图形符号如图4-19c所示。 对应的还有P沟道IGBT,记为P-IGBT。N-IGBT和P-IGBT 统称为IGBT。由于实际应用中以N沟道IGBT为多。
全控型器件名词解释

全控型器件名词解释
全控型器件(英语:Fully Controlled Device),在电力电子学中,是一种可以在没有反向电压的情况下控制其电流的电子器件。
常见的全控型器件包括二极管、晶闸管、以及新发展的功率场效应管(Power Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)、绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor, IGBT)等。
全控型器件在许多领域都有应用,包括**电力系统和电动机**。
在电力系统中,它们可以用来控制发电机的开关和电流的大小。
在电动机中,这些器件可以通过调节电压来控制电机的速度和方向。
此外,全控型器件还可以用于**电子设备和家用电器**的控制器中,例如电视、音响、照明设备等。
通过使用全控型器件,这些设备的电源和控制电路可以实现更加灵活和智能的控制。
除此之外,全控型器件还被广泛应用于**汽车工业**。
特别是在电动汽车中,全控型器件作为逆变器的一部分,可以将电池中的直流能转换成交流能,从而驱动车轮。
全控型电力电子器件

⑤ BUCEX 为基极----发射极施加反偏压时,集电极----发射极的击穿电压。 各种不同接法时的击穿电压的关系是: BUCBO BUCEX BUCES BUCER BUCEO
为了保证器件工作安全,GTR的最高工作电压 UCEM 应比 BUCEO 低。 (2)饱和压降 U CES 处于深饱和区的集电极电压称为饱和压降,在大功率应用中它关系到器 件导通的功率损耗。单个GTR的饱和压降一般不超过 1 ~ 1.5 V,它随着集电 极电流 ICM 的增加而增大。
全控型电力电子器件
6.1 电力双极型晶体管 6.2 电力场效应晶体管 6.3 绝缘栅双极型晶体管 6.4 其它新型电力电子器件
6.1.1 电力双极型晶体管的结构及工作原理
➢ 电力双极型晶体管(GTR)是一种耐高压、能承受大电流的双极性 晶体管,也称为BJT,简称为电力晶体管。 ➢ 电力晶体管有与一般双极型晶体管相似的结构、工作原理和特性。 它们都是3层半导体,2个PN结的三端器件,有PNP和NPN这2种类型, 但GTR多采用NPN型。 在应用中,GTR一般 采用共发射极接法。集电 极电流 与基极电流 的比
6.3.1 IGBT的结构及工作原理
IGBT也是一种三端器件,它们分别是栅极G、集电极C和发射极E。 由IGBT的结构图可知,它相当于用一个MOSFET驱动的厚基区PNP 晶体管。从简化等效电路可以看出,IGBT等效于一个N沟道的MOSFET 和一个PNP型晶体三极管构成的复合管,导电以GTR为主。图中的 是 GTR厚基区内的调制电阻。 IGBT的开通和关断均由栅极电压控制。当栅极加正电压时,N沟道 场效应管导通,并为晶体三极管提供基极电流,使得IGBT开通。当栅 极加反向电压时,场效应管导电沟道消失,PNP型晶体管基极电流被切 断,IGBT关断。
全控型器件特点

全控型器件特点
全控型器件是指可以在整个周期内对电流或电压进行控制的器件。
全控型器件的特点主要体现在以下几个方面:
1. 控制范围广:全控型器件可以对电流或电压进行全程控制,可以实现从零到最大值的连续调节。
这使得它在不同的应用场景中具有灵活性和适应性。
2. 精度高:全控型器件具有较高的控制精度,可以实现对电流或电压的精确控制。
这对于一些对电流或电压要求较高的应用来说十分重要,例如电力电子设备中的功率控制。
3. 响应速度快:全控型器件的响应速度较快,能够在很短的时间内实现对电流或电压的调节。
这使得全控型器件在实时控制和快速响应的应用中具有优势,例如交流调速系统和电力变换器。
4. 可靠性高:全控型器件的结构简单、稳定性好,能够在恶劣的环境条件下工作,具有较高的可靠性。
这使得全控型器件在一些对稳定性要求较高的应用中得到广泛应用,例如电力系统和工业自动化领域。
5. 控制灵活:全控型器件可以通过改变控制信号的幅值、频率和相位等参数来实现对电流或电压的控制。
这使得它具有灵活性,可以根据实际需求进行调节和变化。
6. 功能强大:全控型器件可以实现多种功能,例如电流调节、电压调节、功率调节和相位控制等。
这使得它在不同的应用场景中具有广泛的适用性和灵活性。
总的来说,全控型器件具有控制范围广、精度高、响应速度快、可靠性高、控制灵活和功能强大等特点。
这些特点使得全控型器件在电力电子、工业自动化、交通运输、通信等领域得到广泛应用,对于提高系统的控制性能和稳定性具有重要作用。
全控型器件的详细介绍

典型全控型器件的介绍班级学号 :姓名日期一.门极可关断晶闸管1.1门极可关断晶闸管的简介门极可关断晶闸管简称GTO,是一种全控型的晶闸管。
其主要特点为,当栅极加负向触发信号时晶闸管能自行关断,保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。
GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频纺比GTR低。
目前,GTO 已达到3000A、4500V的容量。
大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。
1.2门极可关断晶闸管的结构和工作原理GTO是PNPN四层半导体结构,外部引出阳极,阴极和门极,是多元件的功率集成器件,内部由许多的GTO元的阳极和门极并联在一起。
其工作原理可用双晶体管来分析P1N1P1和N1P2N2构成的两个晶体管V1,V2分别具有共基极电流增益α1和α2,普通的晶体管分析,α1+α2=1是器件的临界导电条件,当α1+α2>1时2,当α1+α2<1时不能维持饱和导通而关断。
1.3 GTO的驱动方式及频率当信号要求可关断晶闸管导通时,驱动电路提供上升率足够大的正栅极脉冲电流(其幅度视晶闸管容量不同在0.1到几安培范围内),其正栅极脉冲宽度应保证门极关断晶闸管可靠导通。
当信号要求门极关断晶闸管关断时,驱动电路提供上升率足够大的负栅极脉冲电流,脉冲幅度要求大于可关断晶闸管阳极电流的五分之一,脉冲宽度应大于可关断晶闸管的关断时间和尾部时间。
根据对驱动门极关断晶闸管的特性、容量、应用场合、电路电压、工作频率、可靠性要求和性价比等方面的不同要求,有多种形式的栅极驱动电路。
1.4存在的问题及其最新的发展GTO在使用中,导通时的管压降较大,增加了通态损耗。
对关断负脉冲的要求较高,门极触发电路需要严格设计,否则易在关断过程中烧毁管子。
门极电流应大于元件的擎住电流IL;正负触发脉冲其前沿要陡,后沿要平缓,中小功率电路上升沿小于0.5μs ,大功率电路小于1μs ;门极电路电阻要小,以减小脉冲源内阻由于多元集成,对制造工艺提出极高的要求,它要求必须保持所有GTO元特性一致,开通或关断速度不一致,会使GTO元因电流过大而损坏。
电力电子技术第三章 全控型器件的驱动

第一节 全控型电力电子器件的驱动
2.专用集成驱动电路芯片 1)驱动电路与IGBT栅射极接线长度应小于1m,并使用双绕线,以提 高抗干扰能力。
图3-9 电力MOSFET的一种驱动电路
第一节 全控型电力电子器件的驱动
3z10.tif
第一节 全控型电力电子器件的驱动
2)如果发现IGBT集电极上产生较大的电压脉冲,应增加栅极串接电 阻RG的阻值。 3)图3-10中外接两个电容为47μF,是用来吸收电源接线阻抗变化引 起的电源电压波动。
图3-6 抗饱和电路
第一节 全控型电力电子器件的驱动
图中VD1、VD2为抗饱和二极管,VD3为反向基极电流提供回路。在 轻载情况下,GTR饱和深度加剧使UCE减小,A点电位高于集电极电 位,二极管VD2导通,使流过二极管VD1的基极电流IB减小,从而减 小了GTR的饱和深度。抗饱和基极驱动电路使GTR在不同的集电极 电流情况下,集电结处于零偏或轻微正向偏置的准饱和状态,以缩 短存储时间。在不同负载情况下以及在应用离散性较大的GTR时, 存储时间趋向一致。应当注意的是,VD2为钳位二极管,它必须是 快速恢复二极管,该二极管的耐压也必须和GTR的耐压相当。因电 路工作于准饱和状态,其正向压降增加,也增大了导通损耗。
图3-2 门极控制电路 结构示意图
第一节 全控型电力电子器件的驱动
(1)开通控制 开通控制要求门极电流脉冲的前沿陡、幅度高、宽 度大及后沿缓。
图3-3 推荐的GTO门极控制 信号波形
第一节 全控型电力电子器件的驱动
(2)关断控制 GTO的关断控制是靠门极驱动电路从门极抽出P2基区 的存储电荷,门极负电压越大,关断的越快。 (3)GTO的门极驱动电路 GTO的门极控制电路包括开通电路、关断 电路和反偏电路。 间接驱动是驱动电路通过脉冲变压器与GTO门极相连,其优点是: GTO主电路与门极控制电路之间由脉冲变压器或光耦合器件实现电 气隔离,控制系统较为安全;脉冲变压器有变换阻抗的作用,可使 驱动电路的脉冲功率放大器件电流大幅度减小。缺点是:输出变压 器的漏感使输出电流脉冲前沿陡度受到限制,输出变压器的寄生电 感和电容易产生寄生振荡,影响GTO的正确开通和关断。此外,隔 离器件本身的响应速度将影响驱动信号的快速
全控型电力电子器件

GTO 的 外 形
电路符号
阳阳A
☞GTO的导通过程与普通 晶闸管是一样的,只不 过导通时饱和程度较浅。 ☞而关断时,给门极加负脉 冲,即从门极抽出电流, 器件退出饱和而关断。 ☞GTO的多元集成结构使 得其比普通晶闸管开通 过程更快,承受di/dt的 能力增强。
阳阳G 阳阳A
2018/12/13
2
1.3.1可关断晶闸管GTO——主要参数
2018/12/13
0.01ms 1ms
另外安全工作区与导通控制 脉冲有关系,如左图,给出不同 宽度的脉冲对应的安全工作区
C D BUCE UCE
11
1.3.3 功率场效应管MOSFET——外型和电路符号和特点
外 型
电 路 符 号
2018/12/13
阳阳D
阳阳G 阳阳S
■分为结型和绝缘栅型,但通常主要指绝缘栅型 中的MOS型(Metal Oxide Semiconductor FET),简称电力MOSFET(Power MOSFET)。 ■电力MOSFET是用栅极电压来控制漏极电流的, 它的特点有: ◆驱动电路简单,需要的驱动功率小。 ◆开关速度快,工作频率高(可达106)。 ◆热稳定性优于GTR。 ◆电流容量小,耐压低,多用于功率不超过 10kW的电力电子装置。 比较: GTO一般可以做到几KA/KV(功率最大);开关 速度几百HZ; GTR一般可以做到几百A/KV,速度稍慢,几K到 几百K, MOSFET一般可以做到几十A/KV(速度最快), 可达106 ;
关断过程
从开始施加反向基极电流到集电极电流开始下降 (下降到90%ICO)对应的时间叫做存储时间ts。接 着是下降时间tf,定义为集电极电流从90%ICO下降 到10%ICO对应的时间。关断时间toff=ts+tf。 GTR的开关时间在几微秒以内,比晶闸管和 GTO都短很多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.特点
高频,容量大 反向耐压低(必须反接二极管) 模块化 驱动和保护有专用芯片
其他电力电子器件
MCT——MOS控制晶闸管 SIT——静电感应晶体管 SITH——静电感应晶闸管
小结:
IGBT的结构与工作原理 IGBT的特性与参数 IGBT的擎住效应与安全工作区 作业:11、12
本章小结
1、根据开关器件是否可控分类
(1)不可控器件:二极管VD (2)半控器件:普通晶闸管SCR (3)全控器件:GTO、GTR、功率MOSFET、IGBT等。
2、根据门极(栅极)驱动信号的不同
(1)电流控制器件:驱动功率大,驱动电路复杂,工作频率低。该 类器件有SCR、GTO、GTR。
(2)电压控制器件:驱动功率小,驱动电路简单可靠,工作频率高。 该类器件有P-MOSEET、IGBT。
1、2
第二节 GTR——电力晶体管
➢ 电力晶体管GTR (Giant Transistor,巨型晶体管) ➢ 耐 高 电 压 、 大 电 流 的 双 极 结 型 晶 体 管 ( Bipolar
Junction Transistor——BJT), 英 文 有 时 候 也 称 为 Power BJT ➢ 在电力电子技术的范围内,GTR与BJT这两个名称等效。 应用 ➢ 20世纪80年代以来,在中、小功率范围内取代晶闸管, 但目前又大多被IGBT和电力MOSFET取代
安全工作区
防止二次击穿,采用保护电路,同时考虑器件 的安全裕量,尽量使GTR工作在安全工作区。
4.特点
全控型,电流控制型 二次击穿(工作时要防止) 中大容量,开关频率较低
第三节 功率场效应晶体管(MOSFET)
S G
N+ P N+
N+ P N+
沟道
N-
N+
D
D
D
G: 栅极
D: 漏极
G
G
S: 源极
一次击穿 ❖ 集电极电压升高至击穿电压时,Ic迅速增大,出现雪 崩击穿; ❖ 只要Ic不超过限度,GTR一般不会损坏,工作特性也 不变。
二次击穿 ❖ 一次击穿发生时,如果继续增高外接电压,则Ic继续 增大,当达到某个临界点时,Uce会突然降低至一个 小值,同时导致Ic急剧上升,这种现象称为二次击穿, ❖ 二次击穿的持续时间很短,一般在纳秒至微秒范围, 常常立即导致器件的永久损坏。必需避免。
IGBT综合了MOSFET和GTR的输入阻抗高、工 作速度快、通态电压低、阻断电压高、承受电流 大的优点。成为当前电力半导体器件的发展方向。
1. 结构
复合结构(= MOSFET+GTR)
发射极 栅极
E
G
N+ P N+
N+ P N+
J3 J2
N-
N+
J1
P+
C 集电极 a)
漂移区 缓冲区 G
注入区
C
ID RN V-J1+ IC
C
-+
+ -IDRon
G
E
b)
c)Βιβλιοθήκη .导通关断条件驱动原理与电力MOSFET基本相同,属于场控器件, 通断由栅射极电压uGE决定 导通条件:在栅射极间加正电压UGE UGE大于开启电压UGE(th)时,MOSFET内形成沟道, 为晶体管提供基极电流,IGBT导通。 关断条件:栅射极反压或无信号 栅射极间施加反压或不加信号时,MOSFET内的沟 道消失,晶体管的基极电流被切断,IGBT关断。
1.单管GTR
单管GTR的基本工作原理与晶体管相同 作为大功率开关管应用时,GTR工作在截
止和导通两种状态。 主要特性是耐压高、电流大、开关特性好
2.达林顿GTR
单管 GTR的电流增益低,将给基极驱动电 路造成负担。达林顿结构是提高电流增益 一种有效方式。
达林顿结构由两个或多个晶体管复合而成, 可以是PNP型也可以是NPN型,其性质由 驱动管来决定
S
S
N沟道
P沟道
a)
b)
电力MOSFE图T1的-1结9 构和电气图形符号 a) 内部结构断面示意图 b) 电气图形符号
1.导通关断条件
漏源极导通条件:在栅源极间加正电压UGS 漏源极关断条件:栅源极间电压UGS为零
2.特点
控制级输入阻抗大 驱动电流小 防止静电感应击穿 中小容量,开关频率高 导通压降大(不足)
2. 导通关断条件
导通:同晶闸管,AK正偏,GK正偏 关断:门极加负脉冲电流
3.特点
全控型 容量大 off≈5 电流控制型
off
I ATO I GM
1000A的GTO关断时门极负脉
冲电流峰值要200A 。
小结
GTO的结构 GTO的工作原理 GTO的特性曲线 GTO的主要参数
作业
达林顿GTR的开关速度慢,损耗大
3.GTR 模块
将 GTR管芯、稳定电阻、加速二极管、 续流二极管等组装成一个单元,然后根 据不同用途将几个单元电路组装在一个 外壳之内构成GTR模块。
目前生产的GTR模块可将多达6个互相绝 缘的单元电路做在同一模块内,可很方 便地组成三相桥式电路。
3. GTR的二次击穿现象
模块
IGBT
开关器件——IGCT=驱动电路+GCT
4kA/4.5kV IGCT
663A/4.5kV IGCT
GCT分解部件
第一节 门极可关断(GTO)晶闸管
1. 结构
➢与普通晶闸管的相同点:PNPN四层半导体 结构,外部引出阳极、阴极和门极; ➢和普通晶闸管的不同点:GTO是一种多元的 功率集成器件,内部包含数十个甚至数百个共 阳极的小GTO元,这些GTO元的阴极和门极 则在器件内部并联在一起。
小结
1. MOSFET的结构与工作原理 2. MOSFET的特性 3. MOSFET的主要参数 4. 作业:9、10、11
第四节 绝缘栅双极晶体管IGBT)
绝缘栅双极型晶体管简称为IGBT(Insulated Gate Biopolar Transistor),是80年代中期 发展起来的一种新型复合器件。