Interface layer thickness effect on the photocurrent of Pt sandwiched polycrystalline ferroelectric

合集下载

(完整版)光伏行业英文词汇

(完整版)光伏行业英文词汇

光伏行业英文词汇Cell 电池Crystalline silicon 晶体硅Photovoltaic 光伏bulk properties 体特性at ambient temperature 在室温下wavelength 波长absorption coefficient吸收系数electron-hole pairs 电子空穴对photon 光子density 密度defect 缺陷surface 表面electrode 电极p-type for hole extraction p 型空穴型n-type for electron extraction n 型电子型majority carriers 多数载流子minority carriers 少数载流子surface recombination velocity (SRV)表面复合速率back surface field(BSF)背场at the heavily doped regions 重掺杂区saturation current density Jo 饱和电流密度thickness 厚度contact resistance 接触电阻concentration 浓度boron 硼Gettering techniques 吸杂nonhomogeneous 非均匀的solubility 溶解度selective contacts 选择性接触insulator 绝缘体oxygen 氧气hydrogen 氢气Plasma enhanced chemical vapor deposition PECVDInterface 界面The limiting efficiency reflection 反射light- trapping 光陷intrinsic material 本征材料bifacial cells 双面电池monocrystalline 单晶float zone material FZ -Si Czochralski silicon Cz -Si industrial cells 工业电池a high concentration of oxygen 高浓度氧Block or ribbon 块或硅带Crystal defects 晶体缺陷grain boundaries 晶界dislocation 位错solar cell fabrication太阳能电池制造impurity 杂质P gettering effect 磷吸杂效果Spin -on 旋涂supersaturation 过饱和dead layer 死层electrically inactive phosphorus 非电活性磷interstitial 空隙the eutectic temperature 共融温度boron -doped substrate 掺硼基体passivated emitter and rear locally diffused cells PERL 电池losses 损失the front surface 前表面metallization techniques 金属化技术metal grids 金属栅线laboratory cells 实验室电池the metal lines 金属线selective emitter 选择性发射极photolithographic 光刻gradient 斜度precipitate 沉淀物localized contacts 局部接触point contacts 点接触passivated emitter rear totally diffused PERTsolder 焊接bare silicon 裸硅片high refraction index 高折射系数reflectance 反射encapsulation 封装antireflection coating ARC 减反射层an optically thin dielectric layer 光学薄电介层interference effects 干涉效应texturing制绒alkaline solutions 碱溶液etch 刻蚀/ 腐蚀anisotropically 各向异性地plane 晶面pyramids 金字塔 a few microns 几微米etching time and temperature 腐蚀时间和温度manufacturing process 制造工艺process flow 工艺流程high yield高产量starting material 原材料solar grade 太阳级a pseudo -square shape 单晶型状saw damage removal 去除损伤层fracture 裂纹acid solutions 酸溶液immerse 沉浸tank 槽texturization 制绒极限效率microscopic pyramids 极小的金字塔size 尺寸大小hinder the formation of the contacts 阻碍电极的形成the concentration ,the temperature and the agitation of the solution 溶液的浓度,温度和搅拌the duration of the bath 溶液维持时间alcohol 酒精improve 改进增加homogeneity 同质性wettability 润湿性phosphorus diffusion 磷扩散eliminate adsorbed metallic impurities 消除吸附的金属杂质quartz furnaces 石英炉quartz boats 石英舟quartz tube 石英炉管bubbling nitrogen through liquidP0CL3小氮belt furnaces 链式炉back contact cell 背电极电池reverse voltage 反向电压reverse current 反向电流amorphous glass of phospho -silicates 非晶玻璃diluted HF 稀释HF溶液junction isolation 结绝缘coin -stacked 堆放barrel -type reactors 桶状反应腔fluorine 氟fluorine compound 氟化物simultaneously 同时地high throughput 高产出ARC deposition 减反层沉积Titanium dioxide Ti02Refraction index 折射系数Encapsulated cell 封装电池Atmospheric pressure chemical vapor deposition APCVD Sprayed from a nozzle 喷嘴喷雾Hydrolyze 水解Spin -on 旋涂Front contact print 正电极印刷The front metallization 前面金属化Low contact resistance to silicon 低接触电阻Low bulk resistivity 低体电阻率Low line width with high aspect ratio 低线宽高比Good mechanical adhesion 好机械粘贴solderability 可焊性screen printing 丝网印刷comblike pattern 梳妆图案finger 指条bus bars 主栅线viscous 粘的solvent 溶剂back contact print 背电极印刷both silver and aluminum 银铝form ohmic contact 形成欧姆接触warp 弯曲cofiring of metal contacts 电极共烧organic components of the paste 浆料有机成分burn off 烧掉sinter 烧结perforate 穿透testing and sorting 测试分选I-V curve I-V 曲线Module 组件Inhomogeneous 不均匀的Gallium 镓Degradation 衰减A small segregation coefficient 小分凝系数Asymmetric 不对称的High resolution 高分辨率Base resistivity 基体电阻率The process flow 工艺流程Antireflection coating 减反射层Cross section of a solar cell 太阳能电池横截面Dissipation 损耗Light -generated current 光生电流Incident photons 入射光子The ideal short circuit flow 理想短路电路The depletion region 耗尽区Quantum efficiency 量子效率Blue response 蓝光效应Spectral response 光谱响应Light -generated carriers 光生载流子Forward bias 正向偏压Simulation 模拟Equilibrium 平衡Superposition 重合The fourth quadrant 第四象限The saturation current 饱和电流Io Fill factor 填充因子FF Graphically 用图象表示The maximum theoretical FF 理论上Empirically 经验主义的Normalized Voc 规范化VocThe ideality factor n -factor 理想因子Terrestrial solar cells 地球上的电池At a temperature of 25C 25 度下Under AM1.5 conditions 在AM1.5环境下Efficiency is defined as XX 定义为Fraction 分数Parasitic resistances 寄生电阻Series resistance 串联电阻Shunt resistance 并联电阻The circuit diagram 电路图Be sensitive to temperature 易受温度影响The band gap of a semiconductor 半导体能隙The intrinsic carrier concentration 本征载流子的浓度Reduce the optical losses 减少光损Deuterated silicon nitride 含重氢氮化硅Buried contact solar cells BCSCPorous silicon PS 多孔硅Electrochemical etching 电化学腐蚀Screen printed SP 丝网印刷A sheet resistance of 45-50 ohm/sq 45 到50 方块电阻The reverse saturation current density Job 反向饱和电流密度Destructive interference 相消干涉Surface textingInverted pyramid 倒金字塔Four point probe 四探针Saw damage etchAlkaline 碱的Cut groove 开槽Conduction band 导带Valence band 价带B and O simultaneously in silicon 硼氧共存Iodine/methanol solution 碘酒/ 甲醇溶液Rheology 流变学Spin -on dopants 旋涂掺杂Spray -on dopants 喷涂掺杂The metallic impurities 金属杂质One slot for two wafers 一个槽两片Throughput 产量A standard POCL3 diffusion 标准POCL矿散Back-to -back diffusion 背靠背扩散Heterojunction with intrinsic thin -layer HIT 电池Refine 提炼Dye sensitized solar cell 染料敏化太阳电池Organic thin film solar cell 有机薄膜电池Infra red 红外光Unltra violet 紫外光Parasitic resistance 寄生电阻Theoretical efficiency 理论效率Busbar 主栅线Kerf loss 锯齿损失Electric charge 电荷Covalent bonds 共价键The coefficient of thermal expansion (CTE) 热膨胀系数Bump 鼓泡Alignment 基准Fiducial mark 基准符号Squeegee 橡胶带Isotropic plasma texturing 各向等离子制绒Block-cast multicrystalline silicon 整铸多晶硅Parasitic junction removal 寄生结的去除Iodine ethanol 碘酒Deionised water 去离子水Viscosity 粘性Mesh screen 网孔Emulsion 乳胶Properties of light 光特性Electromagnetic radiation 电磁辐射The visible light 可见光The wavelength ,denoted by R 用R 表示波长An inverse relationship between and ..................... given by theequation :相反关系,可用方程表示Spectral irradiance 分光照度...... i s show n in the figure below. Directly convert electricity into sunlight 直接将电转换成光Raise an electron to a higher energy state 电子升入更高能级External circuit 外电路Meta-stable 亚稳态Light-generated current 光生电流Sweep apart by the electric field Quantum efficiency 量子效率The fourth quadrant 第四象限The spectrum of the incident light 入射光谱The AM1.5 spectrumThe FF is defined as the ratio of to Graphically 如图所示Screen-printed solar cells 丝网印刷电池Phosphorous diffusion 磷扩散A simple homongeneousdiffusion 均匀扩散Blue response 蓝光相应Shallow emitter 浅结Commercial production 商业生产Surface texturing to reduce reflection 表面制绒Etch pyramids on the wafer surface with a chemical solutionCrystal orientationTitanium dioxide TiO2PasteInorganic 无机的Glass 玻璃料DopantCompositionParticle size DistributionEtch SiNxContact pathSintering aidAdhesion 黏合性Ag powderMorphology 形态CrystallinityGlass effect on Ag/Si interface Reference cellOrganicResin 树脂Carrier 载体Rheology 流变性Printability 印刷性Aspect ratio 高宽比Functional groupMolecular weightAdditives 添加剂Surfactant 表面活性剂Thixotropic agent 触变剂Plasticizer 可塑剂Solvent 溶剂Boiling pointVapor pressure 蒸汽压Solubility 溶解性Surface tension 表面张力Solderability Viscosity 黏性Solids contentFineness of grind ,研磨细度Dried thicknessFired thicknessDrying profilePeak firing temp300 mesh screenEmulsion thickness 乳胶厚度StorageShelf life 保存期限Thinning 稀释Eliminate Al bead formation 消除铝珠Low bowingWet depositPattern design: 100um*74 太阳电池solar cell单晶硅太阳电池single crystalline silicon solar cell 多晶硅太阳电池so multi crystalline silicon solar cell 非晶硅太阳电池amorphous silicon solar cell 薄膜太能能电池Thin-film solar cell多结太阳电池multijunction solar cell 化合物半导体太阳电池compound semiconductor solar cell 用化合物半导体材料制成的太阳电池带硅太阳电池silicon ribbon solar cell光电子photo-electron短路电流short-circuit current (Isc)开路电压open-circuit voltage (Voc)最大功率maximum power (Pm)最大功率点maximum power point最佳工作点电压optimum operating voltage (Vn)最佳工作点电流optimum operating curre nt (In)填充因子fill factor(curve factor)曲线修正系数curve correct ion coefficie nt太阳电池温度solar cell temperature 串联电阻series resista nee并联电阻shunt resista nee转换效率cell efficiency暗电流dark current暗特性曲线dark characteristic curve光谱响应spectral response(spectral sen sitivity)太阳电池组件module(solar cell module)隔离二极管blocking diode旁路二极管bypass (shunt) diode组件的电池额定工作温度NOCT ( nominal operati ng cell temperature短路电流的温度系数temperature coefficie nts of Isc开路电压的温度系数temperature coefficie nts of Voc峰值功率的温度系数temperature coefficie nts of Pm组件效率Module efficiency峰瓦watts peak额定功率rated power额定电压rated voltage额定电流rated current太阳能光伏系统solar photovoltaic (PV) system并网太阳能光伏发电系统Grid-C onn ected PV system独立太阳能光伏发电系统Sta nd alone PV system太阳能控制器solar controller逆变器inverter孤岛效应islanding逆变器变换效率inv erter efficie ncy方阵(太阳电池方阵)array ( solar cell array)子方阵sub-array (solar cell sub-array)充电控制器charge controller直流/直流电压变换器DC/DCcon verter(i nverter)直流/交流电压变换器DC/ACcon verter(i nverter)电网grid太阳跟踪控制器sun-tracking ontroller 并网接口utility interface 光伏系统有功功率active power of PVpower station 光伏系统无功功率reactive power ofPV power station 光伏系统功率因数power factor of PVpower station公共连接点point of common coupling 接线盒junction box 发电量powergeneration 输出功率output power 交流电Alternating current 断路器Circuitbreaker 汇流箱Combiner box 配电箱Distribution box 电能表Supply meter 变压器Transformer 太阳能光伏建筑一体化Building-integrated PV (BIPV) 辐射radiation太阳辐照度Solar radiation 散射辐照(散射太阳辐照)量diffuseirradiation(diffuse insolation)直射辐照direct irradiation (direct insolation)irradiance (solar global irradiance) 辐射计radiometer 方位角Azimuth angle 倾斜角Tilt angle 太阳常数solar constant 大气质量(AM) air mass 太阳高度角solar elevation angle 标准太阳电池standard solar cell(reference solar cel)l 太阳模拟器solar simulator 太阳电池的标准测试条件为:环境温度25i2C,用标准测量的光源辐照度为1000W/m2 并且有标准的太阳光谱辐照度分布。

对称平板波导

对称平板波导

课程设计任务书学生姓名:xxx 专业班级:电子0903指导教师:娄平工作单位:信息工程学院题目: 对称平板波导模式的计算初始条件:计算机、beamprop软件(或Fullwave软件)要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、课程设计工作量:2周2、技术要求:(1)学习beamprop软件(或Fullwave软件)。

(2)设计平板波导的模式计算(3)对对称堆成平板波导进行beamprop软件仿真工作。

3、查阅至少5篇参考文献。

按《武汉理工大学课程设计工作规范》要求撰写设计报告书。

全文用A4纸打印,图纸应符合绘图规范。

时间安排:2012.6.25做课设具体实施安排和课设报告格式要求说明。

2012.6.25-6.28学习beamprop软件(或Fullwave软件),查阅相关资料,复习所设计内容的基本理论知识。

2012.6.29-7.5对平板波导进行设计仿真工作,完成课设报告的撰写。

2012.7.6提交课程设计报告,进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (3)Abstract (4)1 绪论 (5)2平板波导.............................................................................. 错误!未定义书签。

2.1平板波导简介................................................................. 错误!未定义书签。

3 Beamprop介绍 (8)4仿真 (9)4.1 BeamProp参数设置步骤 (9)4.2光谱仿真......................................................................... 错误!未定义书签。

4心得体会................................................................................... 错误!未定义书签。

钢表面堆焊耐蚀层厚度,过渡层厚度_解释说明以及概述

钢表面堆焊耐蚀层厚度,过渡层厚度_解释说明以及概述

钢表面堆焊耐蚀层厚度,过渡层厚度解释说明以及概述1. 引言1.1 概述钢表面堆焊耐蚀层厚度和过渡层厚度是关于钢材防腐性能的重要概念。

在工业生产和实际应用中,堆焊技术被广泛使用来提高材料的耐腐蚀性能,并延长其使用寿命。

钢表面堆焊耐蚀层厚度和过渡层厚度对于材料的腐蚀抗力、强度和外观等方面都有着直接影响。

1.2 文章结构本文将详细介绍钢表面堆焊耐蚀层厚度和过渡层厚度的定义、作用及影响因素,并探讨测量和控制这两个参数的方法与步骤。

文章主要分为四个部分:引言、正文-钢表面堆焊耐蚀层厚度、正文-过渡层厚度以及结论。

通过对这些内容的研究,旨在提高读者对于钢材防腐性能方面知识的认识和理解。

1.3 目的本文的目标是系统全面地介绍钢表面堆焊耐蚀层厚度和过渡层厚度的相关知识。

通过对这两个参数的定义、作用及影响因素进行分析,可以帮助读者了解如何选择合适的钢表面堆焊耐蚀层厚度和过渡层厚度,从而提高材料的防腐性能。

同时,本文还将介绍测量和控制这些参数的方法和实施步骤,为实际工程应用提供参考依据。

最终,通过研究结论部分对所述内容进行总结,以期为读者提供一个全面且清晰的概述。

2. 正文-钢表面堆焊耐蚀层厚度:2.1 钢表面堆焊耐蚀层的定义与作用钢表面堆焊耐蚀层是指在钢结构的表面通过堆焊工艺施加的一层具有优异耐腐蚀性能的保护层。

其主要作用是防止钢结构表面受到环境中的湿气、酸碱等化学物质的侵蚀,从而延长钢结构的使用寿命并提高其抗腐蚀性能。

该保护层还能减少外部机械因素对钢材造成的损伤,并提供额外的强度和硬度。

2.2 影响钢表面堆焊耐蚀层厚度的因素影响钢表面堆焊耐蚀层厚度的因素包括以下几个方面:首先,堆焊工艺参数会直接影响到保护层形成过程中热量输入和冷却速率。

例如,电流大小、电压水平以及导电效率等参数将调节热源对基材和填充材料之间界面温度分布情况,进而影响保护层的形成。

其次,填充材料的化学成分和机械性能特性也会对保护层厚度产生影响。

对于腐蚀性环境较为恶劣的应用场景,通常需要选择具有较高耐腐蚀性能的填充材料,并确保其与基材之间具备良好的相容性。

保护层厚度、板厚及受荷水平对钢筋混凝土板耐火极限的影响

保护层厚度、板厚及受荷水平对钢筋混凝土板耐火极限的影响

第51卷第8期2021年4月下建㊀筑㊀结㊀构Building StructureVol.51No.8Apr.2021DOI :10.19701/j.jzjg.2021.08.011作者简介:刘利先,博士,副教授,Email:1773535933@;通信作者:邓明康,硕士研究生,Email:305976203@㊂保护层厚度㊁板厚及受荷水平对钢筋混凝土板耐火极限的影响刘利先,㊀邓明康,㊀李㊀维,㊀赵广书(昆明理工大学建筑工程学院,昆明650500)[摘要]㊀通过对钢筋混凝土板温度场进行数值模拟,研究了钢筋混凝土板的耐火极限与混凝土保护层厚度㊁板厚及受荷水平之间的关系㊂结果表明:耐火极限随混凝土保护层厚度的增大有显著的提高,而钢筋混凝土板厚对楼板的耐火极限基本没有影响;钢筋混凝土板承受的荷载水平越高,其耐火极限越低㊂[关键词]㊀钢筋混凝土板;温度场模拟;保护层厚度;板厚;荷载水平;耐火极限中图分类号:TU375文献标识码:A文章编号:1002-848X (2021)08-0066-05[引用本文]㊀刘利先,邓明康,李维,等.保护层厚度㊁板厚及受荷水平对钢筋混凝土板耐火极限的影响[J].建筑结构,2021,51(8):66-70.LIU Lixian,DENG Mingkang,LI Wei,et al.Influence of protective layer thickness,slabs thickness and load level on the refractory limit of reinforced concrete slabs[J].Building Structure,2021,51(8):66-70.Influence of protective layer thickness ,slabs thickness and load level on the refractory limit ofreinforced concrete slabsLIU Lixian,DENG Mingkang,LI Wei,ZHAO Guangshu(Faculty of Civil Engineering,Kunming University of Science and Technology,Kunming 650500,China)Abstract :Through numerical simulation of the temperature field of reinforced concrete slabs,the relationship between the refractory limit of reinforced concrete slabs and the concrete protective layer thickness,the thickness of the slab and the load level of the slab was studied.The results show that the refractory limit increases significantly as the concrete protective layer thickness increases,while the reinforced concrete slab thickness has no effect on the refractory limit of the slabs;the higher the load level the reinforced concrete slab bears,the lower the refractory limit.Keywords :reinforced concrete slab;temperature field simulation;protective layer thickness;slab thickness;load level;refractory limit0㊀引言火灾对建筑结构的危害极大,钢筋混凝土楼板是防火阻隔的重要构件,也是整个结构中防火最薄弱环节㊂常温时,相同板厚情况下,保护层厚度越小,钢筋混凝土板截面有效高度越大,极限承载力越高,若不考虑结构的耐久性能和耐火性能,保护层厚度可取最小值㊂在火灾作用下,随着保护层厚度的增加,受力钢筋升温速度减缓,钢筋强度退化速度降低,从而提高了钢筋混凝土板的耐火能力[1]㊂由于火灾试验费用高,且试验测试手段受到高温限制等原因,对钢筋混凝土楼板高温性能研究主要限于耐火极限的测定㊂本文通过数值模拟分析,确定钢筋混凝土保护层厚度㊁板厚度及受荷水平与钢筋混凝土板耐火极限之间的关系,给出了相关研究分析结论及保护层厚度的最佳建议取值㊂1㊀钢筋混凝土板温度场模型的引用随着温度的升高,混凝土的热工参数会变化,混凝土结构的热传导是一个非线性瞬态问题㊂刘利先㊁赵广书等[2]推导了钢筋混凝土结构热传导微分方程,并建立钢筋混凝土板温度场数值模型,该模型在ISO-834标准升温曲线[3]下的数值模拟结果与试验得出数据相近,证明了数值模型的合理可靠性,因此本文引用文献[2]中的钢筋混凝土板温度场模型来研究保护层厚度㊁板厚及受荷水平对钢筋混凝土板耐火极限的影响㊂对钢筋混凝土温度场影响较大的热工参数主要是导热系数㊁比热容和质量密度㊂由于钢筋体积仅占总体积的3%左右,可看做均质混凝土材料㊂一般常用硅质和钙质骨料混凝土的导热系数差别很小,轻质骨料混凝土的导热系数与前两者相差较大㊂混凝土比热容在100~200ħ时受其含水率的影响较大,但随水分的蒸发该影响减弱,可忽略㊂温度升高对混凝土质量密度的影响也可忽第51卷第8期刘利先,等.保护层厚度㊁板厚及受荷水平对钢筋混凝土板耐火极限的影响略㊂综上所述,钢筋混凝土板温度场模型适用于一般硅质和钙质骨料混凝土,对特殊混凝土则需要调整相应的热工参数㊂2㊀钢筋混凝土板耐火极限的判定对于承重构件,如梁㊁板,‘建筑构件耐火试验方法第1部分:通用要求“(GB /T 9978.1 2008)[4]规定,试验试件达到耐火极限的判定准则为:1)试件的最大挠度超过L /20,其中L 为计算跨度(净跨);2)试件由于承载能力丧失而无法与外荷载平衡;3)结构构件失去完整性或隔热性同样也表明试件达到耐火极限,其完整性判别的依据为查看试件是否存在穿透裂缝,隔热性的判别是试件背火面的平均升温温度超高140ħ或表面单点最高升温温度超过180ħ㊂ASTM E119-20[5]中规定:钢筋混凝土构件在火灾环境下的耐火极限,以受力钢筋的温度作为判定标准,其不能超过钢筋的临界温度(对于普通钢筋,其临界温度为593ħ)㊂为了得出较为合理的耐火极限判定方式,在ISO-834标准火灾升温曲线下对钢筋混凝土板温度场模型进行了数值模拟分析㊂选用的混凝土板混凝土强度等级为C30,板厚为120mm,混凝土保护层厚度为15mm,板底受力钢筋选配8@200,见图1㊂图1㊀钢筋混凝土板配筋情况经过整理计算,得到ISO-834标准火灾升温曲线下钢筋混凝土板各截面的温度分布情况,如图2所示㊂当钢筋温度达到593ħ(参看距板底受火面20mm 的温升曲线)时,所对应的受火时间约为50min,此时板背火面的温度约为81ħ,温升未超过140ħ;当板背火面温度温升达到140ħ时,其受火时间约为67min,而此时钢筋温度已达到680ħ左右,钢筋混凝土板早因高温时钢筋强度的急剧下降而丧失承载能力㊂故在此处用背火面温度作为构件耐火极限的判别条件不合适㊂本次数值模拟分析计算的钢筋混凝土板的耐火极限以构件受火面纵向受力钢筋温度达到593ħ作为判别条件,其耐火极限约为50min㊂3㊀混凝土保护层厚度对耐火极限的影响在ISO-834标准火灾升温曲线下,利用钢筋混凝土板温度场模型来进行数值模拟,选取不同的混凝土保护层厚度:5,10,15,20,25,30,35mm,对钢筋混凝土板钢筋位置处的温度进行分析,升温曲线见图3㊂温升曲线钢筋温度达593ħ时,距板底受火面10,15,20,25,30,35,40mm 处,不同保护层厚度的受火时间见表1㊂图2㊀板不同高度截面升温曲线图3㊀不同混凝土保护层厚度下钢筋的温度-时间曲线钢筋温度达593ħ时不同混凝土保护层厚度板底的受火时间表1钢筋混凝土保护层厚度/mm 5101520253035受火时间/min354453657789103从表1中可以看出:火灾作用下,混凝土保护层对钢筋起到有效的保护作用,随着混凝土保护层厚度的增加,钢筋温度达到593ħ的时间显著延长㊂从图3中可以看出:随着混凝土保护层厚度的增加,板底受力钢筋的温度有明显降低,说明增加混76建㊀筑㊀结㊀构2021年凝土保护层厚度可以有效地抑制火灾下钢筋的温度上升㊂其中,对比混凝土保护层厚度分别为15mm 和20mm 的升温曲线发现:当混凝土保护层厚度增加5mm 后,相同受火时间的钢筋温度降低约50ħ;钢筋温度达到593ħ时,混凝土保护层厚度15,20mm 的受火时间约为44,54min,钢筋混凝土板的耐火极限提高了10min,可见增加混凝土保护层厚度可以有效提高构件的耐火性能㊂为探明混凝土保护层厚度与构件耐火极限的关系,不同混凝土保护层厚度下构件的耐火极限曲线如图4所示㊂由表1和图4可知,在相同升温时间下,对不同混凝土保护层厚下的钢筋温度进行多项式拟合,得到混凝土板耐火极限t 与混凝土保护层厚度c 之间的关系式如下:t =26.86+1.51c +0.019c 2㊀5mm ɤc ɤ40mm ()(1)㊀㊀通过分析可知:增加混凝土保护层厚度可有效提高钢筋混凝土板的耐火极限㊂但实际工程中,若钢筋混凝土板保护层厚度过大,且未采取有效抗裂措施时,常温下构件表面易产生大量裂缝,影响常温下的使用性能㊂此外,在板厚不变的情况下,当混凝土保护层厚度过大时会增加板重,且明显降低板在常温下的承载能力㊂所以,本文不建议通过过度增加混凝土保护层厚度来提高钢筋混凝土板的耐火极限㊂根据‘建筑设计防火规范“(GB 500162014)[6]的规定,当民用建筑耐火极限为一级㊁二级㊁三级时,板的耐火极限分别不低于90,60,30min,代入式(1)得出混凝土保护层厚度分别不低于31,18,3mm㊂根据‘混凝土结构设计规范“(GB50010 2010)[7]中的规定,一类环境混凝土最小保护层厚度为15mm,已满足耐火极限不低于30min 的要求㊂建议钢筋混凝土保护层厚度在耐火等级为一级㊁二级㊁三级时分别取35,20,15mm,其既能保证钢筋混凝土板在常温下的承载力和耐久性,又可保证钢筋混凝土板的耐火极限要求㊂4㊀板厚度对钢筋混凝土板耐火极限的影响为较全面地分析板厚度对钢筋混凝土板截面温度场的影响,板厚度h 分别取80,100,120,140,160mm,混凝土保护层厚度均为15mm,对5块板钢筋位置处的数值模拟温度曲线进行分析比较,如图5所示㊂不同板厚下钢筋混凝土板对应的耐火极限(板底受力钢筋的温度达到593ħ时的受火时长)如图6所示㊂从图5中可以看出,这5条温度-时间曲线的变化趋势保持一致,且各受火时间对应的温度值非常接近,板厚的增加并没有导致钢筋位置处升温曲线出现较大的变动;结合图6不同板厚钢筋混凝土板的耐火极限可以得出:板厚变化对钢筋混凝土板耐火极限的影响很小,在钢筋混凝土板不是很薄的情况下,可不考虑板厚对其耐火极限的影响㊂5㊀受荷水平对耐火极限的影响国外常以钢筋混凝土板受火面受力钢筋的温度达到593ħ作为其耐火极限的判定依据;国内常采用钢筋混凝土板承载能力丧失或失去完整性或隔热性等作为其耐火极限的判定依据㊂此处以构件承受的荷载水平为耐火极限的判别条件,分析高温时不同荷载水平情况下,钢筋混凝土板达到极限承载能力所对应的耐火极限㊂荷载水平定义为:荷载水平=M 实M uˑ100%(2)式中:M u 为常温下钢筋混凝土板的极限承载能力,kN ㊃m;M 实为外荷载实际作用下钢筋混凝土板内的最大弯矩,kN ㊃m㊂图4㊀混凝土保护层厚度与钢筋混凝土板耐火极限关系图5㊀不同板厚钢筋混凝土板的温度-时间曲线图6㊀不同板厚钢筋混凝土板的耐火极限86第51卷第8期刘利先,等.保护层厚度㊁板厚及受荷水平对钢筋混凝土板耐火极限的影响㊀㊀分析采用的耐火极限判别条件为:当钢筋混凝土板高温下的极限承载力等于外荷载实际作用的弯矩时,即认为钢筋混凝土板达到其耐火极限㊂耐火极限判别条件表达式为:M T u=M 实(3)式中M T u 为钢筋混凝土板高温时的极限承载能力,kN ㊃m㊂大量研究表明:常温时在正常使用状态下,楼板上的使用荷载一般为其极限荷载的40%~70%,即:M 实=40%~70%()㊃M u (4)㊀㊀常温下钢筋混凝土板的极限承载能力为:M u =α1f c bx h 0-x /2()(5)式中:x 为常温极限承载能力下,钢筋混凝土板的受压区高度,mm;α1为混凝土受压区等效矩形应力图形系数;f c 为常温下混凝土的抗压强度设计值,N /mm 2;b 为板宽,mm;h 0为截面有效高度,mm㊂本次研究对象受火面为板底,受压侧为板背火面,由图4可知,在受火120min 内,板背火面的温度未超过200ħ,由文献[8-9]可知,当混凝土的温度不超过200ħ时,其强度基本不变,f c 可取常温下混凝土的抗压强度㊂常温极限承载能力下,钢筋混凝土板的受压区高度x 可以根据下式计算:x =f y A sα1f c b (6)式中:f y 为常温下钢筋的抗拉强度设计值,N /mm 2;A s 为受拉钢筋的截面面积,mm 2㊂常温下当荷载水平为40%,50%,60%,70%时对应的截面抵抗距系数αs 分别由下式计算:αs =M 实α1f c bh 20(7)㊀㊀常温正常使用荷载下的受压区高度x 1可由下式计算:x 1=ξh 0=1-1-2αs []h 0(8)㊀㊀计算出x 1后,可由式(9)分别计算出常温下不同荷载水平对应的钢筋拉应力σs :σs =α1f c bx 1A s(9)㊀㊀高温作用下,钢筋的屈服强度随着温度的升高而减小,当高温下钢筋的屈服强度f T y =σs 时,即:M T u =M 实,此时板底受拉钢筋在高温下屈服,钢筋混凝土板承载力丧失,达到了其耐火极限㊂高温下钢筋的屈服强度f T y 随着高温温度不断变化,目前常用的f T y 与T s 的关系如下:(1)过镇海[10]建议的计算表达式为:f T yf y =1(T s ɤ200ħ)1-0.9T s -200()/600(200ħ<T s ɤ800ħ)1200-T s ()/4000(800ħ<T s ɤ1200ħ)0(T s >1200ħ)ìîíïïïïïï(10)㊀㊀(2)Bisby [11]建议的计算表达式为:f T yf y = 1.0(0ħɤT s ɤ200ħ)1.22-1.1ˑ10-3T s (200ħ<T s ɤ400ħ)1.62-2.1ˑ10-3T s (400ħ<T s ɤ600ħ)ìîíïïïï(11)式中:T s 为钢筋温度,ħ;f T y 为高温下钢筋的屈服强度,N /mm 2㊂火灾高温作用下,当f T y=σs 时,可由式(10)或式(11)分别计算出不同荷载水平下的钢筋温度T s ,然后根据图2分别确定钢筋温度达到T s 的受火时间t ,该值即为相应荷载水平下的钢筋混凝土板的耐火极限,并将此耐火极限与前文用板底受火面受力钢筋达到593ħ为判别条件确定的耐火极限进行比较分析㊂为了使得计算结果与数值模拟结果对应,计算时采用的各项参数与数值模拟参数保持一致,如混凝土的强度等级取C30(f c =14.3N /mm 2)㊁混凝土保护层厚度c 取15mm,α1=1.0(ɤC50取1.0),钢筋选用HRB400(f y =360N /mm 2,8@200,A s =251mm 2),板宽b 取1000mm,有效高度h 0取100mm,a s =c +d /2=15+4=19,取a s =20mm㊂表2为正常使用状态下,根据构件承受的实际荷载水平来判定钢筋混凝土板的耐火极限的计算结果㊂由表2可知:钢筋混凝土板承受的荷载水平越高,其耐火极限越低㊂当荷载水平为40%~50%时,采用过镇海或Bisby 建议的钢筋高温时的屈服强度公式计算出的耐火极限,均在40~51min 范围内,该结果与根据板受火面受力钢筋温度达到593ħ为判别条件判定的耐火极限50min 基本一致㊂正常使用状态下钢筋混凝土板的耐火极限计算结果表2板承受的荷载水平40%50%60%70%式(10)钢筋屈服时温度T s /ħ605.18538.77471.92403.63耐火极限t /min 51413529式(11)钢筋屈服时温度T s /ħ583.66537.22489.47441.40耐火极限t /min4940373196建㊀筑㊀结㊀构2021年6㊀结论(1)增加混凝土保护层厚度可有效提高钢筋混凝土板的耐火极限,在实际工程中,建议钢筋的混凝土保护层厚度在耐火等级为一级㊁二级㊁三级时分别取35,20,15mm,其既能保证钢筋混凝土板在常温下的承载力和耐久性,又可保证钢筋混凝土板的耐火极限要求㊂(2)板厚度的变化对钢筋混凝土板耐火极限的影响很小,在板不是很薄的情况下,可不考虑板厚对钢筋混凝土板耐火极限的影响㊂(3)钢筋混凝土板承受的荷载水平越高,其耐火极限越低;正常使用状态下,当构件承受的荷载水平为50%左右时,根据钢筋混凝土板失去承载力得到的耐火极限与按构件受火面受力钢筋温度达到593ħ得到的耐火极限基本保持一致㊂参考文献[1]郝淑英,刘秀英,张琪昌.火灾下钢筋混凝土板保护层厚度的选取[J].武汉大学学报(工学版),2007,40(6):76-79.[2]刘利先,赵广书,邓明康.高温下钢筋混凝土板温度场数值模拟分析[J].建筑科学,2018,34(11):33-38. [3]Fire resistance tests-elements of building construction-Part1:General requirements:ISO834-1ʒ1999[S].Switzerland:The International Organization forStandardization,1999.[4]建筑构件耐火试验方法第1部分:通用要求:GB/T9978.1 2008[S].北京:中国标准出版社,2009.[5]Standard test methods for fire tests of buildingconstruction and materials:ASTM E119-20[S].AESC:ASTM International,2005.[6]建筑设计防火规范:GB50016 2014[S].北京:中国计划出版社,2014.[7]混凝土结构设计规范:GB50010 2010[S].北京:中国建筑工业出版社,2011.[8]徐彧,徐志胜,朱玛.高温作用后混凝土强度与变形试验研究[J].长沙铁道学院学报,2000(2):13-16,21.[9]杨彦克,李固华.火灾砼结构损伤评估现状与发展[J].四川建筑科学研究,1993(2):6-11. [10]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.[11]LUKE ALEXANDER BISBY.Fire behavior of fibre-reinforced polymer(FRP)reinforced or confined concrete[D].Kingston:Queenᶄs University,2003.2021 结构前沿 论坛 工程上浮事故原因分析与司法鉴定探讨成功举办㊀㊀2021年4月7日,2021 结构前沿 论坛 工程上浮事故原因分析与司法鉴定探讨在北京成功举办,论坛回应社会热点问题,采用线上线下结合的方式,现场参会人员超百人,线上累计观看3.25万人次㊂本次论坛由中冶京诚工程技术有限公司㊁中国工程建设标准化协会钢结构专业委员会㊁中国勘察设计协会结构分会主办,中国建筑标准设计研究院有限公司㊁‘建筑结构“杂志社㊁中国工程建设检验检测认证联盟承办㊂论坛邀请了中国建筑标准设计研究院有限公司副院长㊁总工程师㊁全国工程勘察设计大师郁银泉,华诚博远工程技术集团有限公司首席科学家㊁全国工程勘察设计大师王立军,中航勘察设计研究院有限公司总经理㊁总工程师㊁全国工程勘察设计大师王笃礼,中航勘察设计研究院有限公司总法律顾问檀中文,北京市建筑设计研究院有限公司副总工孙宏伟,中冶京诚工程技术有限公司结构总工程师㊁中国工程建设标准化协会钢结构专业委员会秘书长余海群,中国建筑标准设计研究院有限公司郁银泉工作室主任㊁钢结构所所长王喆,中国建筑标准设计研究院有限公司检验检测中心主任左勇志,资深鉴定人㊁贵州案司法鉴定人马德云,原最高法院审判员㊁高级法官李琪,北京大成律师事务所合伙人王文杰律师出席㊂论坛报告环节,马德云博士做了 贵州案抗浮事故司法鉴定及相关案例介绍 报告,详细介绍了贵州案件司法鉴定过程;王立军大师讲解了 建筑物的水盆效应 ,说明了水盆效应对上浮事故的影响;孙宏伟副总做了 抗浮与地下水位概念释疑 ,阐明了抗浮设计中易混淆的概念㊂沙龙环节气氛活跃㊁讨论热烈,各位嘉宾针对上浮事故中各方应该承担的责任,分别从地勘㊁设计㊁施工㊁法律多个角度发表自己的意见和建议㊂还讨论了司法案件中的专家证人㊁专家辅助人制度的作用㊂最后,余海群总工对论坛进行了总结㊂本次论坛是行业大师㊁权威专家㊁司法鉴定界和法律界知名专家跨界的盛会,对工程行业技术和法治建设融合发展具有代表性推动作用㊂论坛秉承开放原则,与会者各抒己见,可谓百家争鸣,不仅解答了行业同仁的诸多疑惑,也达成了很多共识,更重要的是提升了工程技术者的法律意识,更加有助于工程行业的良性发展㊂这次国内工程技术和法律相结合的论坛取得了圆满成功㊂07。

层间水膜对3D_打印混凝土界面性能的影响 

层间水膜对3D_打印混凝土界面性能的影响 

第42卷第7期2023年7月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.7July,2023层间水膜对3D 打印混凝土界面性能的影响芮遨宇,王㊀里,马国伟(河北工业大学土木与交通学院,天津㊀300401)摘要:混凝土材料的制备与性能优化是建筑3D 打印结构化发展与应用的基础㊂3D 打印混凝土材料的宏观力学性能㊁长期耐久性能均与界面细观结构直接相关㊂本文明确了3D 打印混凝土层间界面水分状态(水膜)的形成机制,测试了不同打印层厚条带的水膜随时间的演化规律,通过CT 扫描技术研究了层间间隔时间㊁打印层厚㊁环境状态对层间界面孔隙特征的影响,揭示了层间界面水分状态㊁层间界面孔隙特征及层间黏结性能三者之间的相互影响机制㊂结果表明:层间界面孔隙率随单位面积上层间界面水分质量的增长而降低,层间界面水分质量是较打印参数而言更直接的层间界面状态影响因素;层间水分状态和界面细观孔隙特征直接影响着3D 打印混凝土材料的宏观力学强度㊂关键词:3D 打印混凝土;层间界面;水分状态;孔隙特征;黏结强度中图分类号:TU502㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)07-2281-09Effect of Interlayer Water Film on Interfacial Characteristics of 3D Printed ConcreteRUI Aoyu ,WANG Li ,MA Guowei(School of Civil and Transportation Engineering,Hebei University of Technology,Tianjin 300401,China)Abstract :The preparation and performance optimization of concrete materials are the basis for the structural development and application of 3D printed building.The macroscopic mechanical properties and long-term durability of 3D printed concrete materials are directly related to the microstructure of interface.The formation mechanism of interlayer interface moisture state (water film)of 3D printed concrete was clarified,the evolution law of water film with time for different printing layer thickness strips was tested,the effects of time interval,printing layer height and environmental state on the pore characteristics of interlayer interface were studied by using CT scanning technology,and the interaction mechanism among interlayer interface moisture state,pore characteristics and binding performance was revealed.The results show that the interlayer interface porosity decreases with the increase of interlayer interface water mass per unit area,and the interlayer interface moisture quality is a more direct factor affecting interlayer interface state than the printing parameters.The interlayer interface moisture state and pore characteristics directly affect macroscopic mechanical properties of 3D printed concrete materials.Key words :3D printed concrete;interlayer interface;moisture state;pore characteristic;binding strength收稿日期:2023-04-06;修订日期:2023-05-06基金项目:国家自然科学基金(U20A20313);河北省自然科学基金(E2022202041);河北省研究生创新资助项目(CXZZSS2022047)作者简介:芮遨宇(1999 ),男,硕士研究生㊂主要从事3D 打印混凝土耐久性能的研究㊂E-mail:ray19990520@通信作者:王㊀里,博士,教授㊂E-mail:wangl1@ 0㊀引㊀言混凝土3D 打印是一种典型的智能建造技术,具有无模化㊁灵活化㊁智能化等优点,在土木建筑领域有着广泛的应用前景㊂在混凝土材料的可打印性能优化调控[1]㊁收缩开裂的削弱抑制[2]㊁力学各向异性的量化分析[3]以及加筋增韧的探索研究[4]等方面,国内外学者开展了大量系统的研究工作,使3D 打印混凝土技术逐渐趋于成熟[5-6]㊂目前3D 打印混凝土结构化发展迅速,已经在数百个大型项目中应用,对材料的要求也趋向于高性能化[7-8]㊂2282㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷3D打印逐层堆积的固有建造工艺使材料层间界面的力学性能和耐久性能薄弱㊂试验结果[9-10]表明,层间界面黏结强度随着层间间隔时间的增长而降低㊂Keita等[11]发现层间黏结强度降低的原因是层间表面干燥,这避免了层间水分蒸发试件的层间黏结强度在100min内损失超过20%,而处于风洞干燥环境的试件层间黏结强度降低了约50%㊂Moelich等[12]根据在泌水㊁蒸发的影响下表面水分随时间的变化情况,准确地预测了层间黏结强度可降低30%~50%㊂相关研究证明界面水分含量直接影响层间界面黏结强度㊂泵送挤压力以及挤出成型过程会使打印条带表面泌水,进而形成水分含量相对较高的区域,即水膜,这是连接上下打印层的过渡区域㊂Wolfs等[13]通过覆盖的方法降低水分散失,发现与具有相同层间间隔时间的覆盖试件相比,未覆盖试件具有更高的孔隙率㊂Keita等[11]研究发现,当在风洞中的干燥时间从2h增长到24h时,层间处高孔隙率区域的厚度提高了约400%㊂因此,材料界面处水膜状态直接影响着3D打印混凝土材料界面孔隙特征,进而影响材料的力学性能和耐久性能㊂基于上述分析,3D打印混凝土材料性能与层间界面的水分状态密切相关㊂然而,对于水膜与界面孔隙特征的关系尚缺少系统性阐述,并且层间间隔时间㊁环境温度㊁环境湿度等因素会直接导致打印条带表面水分状态发生改变㊂因此,量化表征3D打印混凝土界面处的水分状态,以及探究其对3D打印混凝土界面孔隙特征的影响,对提升3D打印混凝土材料与结构的力学性能具有重要的意义㊂1㊀混凝土界面水分含量演变机制1.1㊀界面水分含量初始状态为保证良好的挤出性和流动性,在配制3D打印混凝土时所采用的水胶比往往高于浇筑成型的混凝土水胶比,受挤压作用时更易使水分向外泌出,因而在泵送输送或者挤出成型的过程中,混凝土会在邻近管道壁或打印头的区域形成一层润滑水膜,以便材料的流动㊂该水膜的存在使层间界面处混凝土含水率较高,并且水膜厚度会随泵送压力㊁挤出压力的增加而增加,这是在打印完成时的初始界面水分状态㊂1.2㊀泌水-界面水分含量演变泌水是固体颗粒沉降产生的毛细孔隙压力通过连通孔隙将水抽吸出的现象㊂在早龄期时,混凝土尚未硬化,内部存在相互连通的孔隙网络,水分会通过孔隙网络输送到混凝土表面[14]㊂因此,打印完成后混凝土骨料在重力作用下发生的沉降会使混凝土表面泌水,导致界面水分增加㊂图1为3D打印混凝土打印条带表面水分状态演变分析图㊂如图1中标注的实线所示,在打印完成不久后,混凝土硬化程度较低,水分运输网络连通性较强,泌水速率占主导地位,导致界面水分含量逐渐增加㊂当界面水分过多时,水化反应无法完全消耗界面水分,多余水分会在界面处占据一定空间,在混凝土完全硬化后成为孔隙,使界面强度降低㊂1.3㊀蒸发-界面水分含量演变蒸汽压差会促使混凝土表面水分通过蒸发散失到外界环境中㊂如图1中标注的虚线(water evaporation)所示,随着混凝土水化反应持续进行,混凝土内部的水化反应消耗了部分水分并使混凝土基体趋于致密,导致可供水分泌出的连通孔隙数量减少,使泌水速率逐渐低于水分蒸发速率[15]㊂界面水分含量的降低会逐渐使打印条带的上表面处出现相对干燥区域,该区域中残留的水分会在骨料等固体颗粒之间形成水弯液面㊂水弯液面的半径会随着水分的散失逐渐减小,当半径变得太小而无法弥合固体颗粒间的空隙时,骨料㊁凝胶材料等固体颗粒将直接暴露在空气环境中,此时空气便可渗入㊂如果放置新的打印条带但挤压力未能充分发挥作用,在硬化后该处便会形成孔隙[12],并且由于该处界面存在相对干燥区域,不利于界面处混凝土水化反应的持续进行,会使界面附近孔隙结构粗化㊂1.4㊀界面水分含量演变3D打印混凝土材料界面水分状态的演变受泌水㊁蒸发以及水化作用的综合影响,其中水化作用对界面水分的影响主要是使泌水速率逐渐降低㊂如图1中点划线(mass of surface moisture)所示,在混凝土被挤出沉积的早期,泌水量大于蒸发量,因此界面水分含量增加㊂随着时间的增长(小于层间间隔时间),水分持续蒸发,蒸发量超过了泌水量,使得界面水分含量降低,甚至会使水分含量低于初始状态㊂基于上述分析,如果层间间隔时间小于图中关键转折点,界面水分含量较高可能会导致界面孔隙率增加;如果层间间隔时间大于第7期芮遨宇等:层间水膜对3D 打印混凝土界面性能的影响2283㊀图中关键转折点,界面水分含量较低可能会导致界面孔隙粗大㊂因此,将层间间隔时间设置在关键转折点处可降低水膜对界面的削弱作用㊂图1㊀3D 打印混凝土打印条带表面水分状态演变分析图Fig.1㊀Analysis chart for evolution of moisture state on surface of 3D printed concrete strips 2㊀界面水分含量及黏结强度表征2.1㊀原材料配合比制备3D 打印混凝土的原材料为:高贝利特硫铝酸盐水泥(high belite sulfoaluminate cement,HB-CSA),强度等级为42.5;硅灰(silica fume,SF),表观密度为2200kg /m 3,堆积密度为400kg /m 3;骨料选取石英砂(quartz sand,QS),粒径范围为40~80目(178~420μm);采用柠檬酸钠作为缓凝剂,减水剂选用聚羧酸系高效减水剂,减水率大于30%㊂使用长度为9mm㊁直径为18~20μm 的聚丙烯纤维(polypropylene fiber,PP)来调控3D 打印混凝土的抗开裂性能㊂3D 打印水泥基复合材料配合比如表1所示㊂表1㊀3D 打印水泥基复合材料配合比Table 1㊀Mix ratio of 3D printed cement-based compositeComposition PP QS SF Retarder Superplasticizer Water HB-CSA Mass fraction /%0.42 1.780.17 1.500.030.47 1.002.2㊀界面水分含量测试图2为3D 打印试件变量设置示意图㊂如图2所示,为研究打印参数对界面水分含量的影响,分别设置层间间隔时间为0㊁30㊁45min,打印层厚为10㊁15㊁30mm,环境状态可分为有风(风扇施加4~5m /s 风速)㊁无风两种㊂为测试打印条带表面实时水分质量M st ,则需对初始水分质量M i ㊁水分蒸发质量E pt ㊁材料泌水质量B pt 进行测量㊂图2㊀3D 打印试件变量设置示意图Fig.2㊀Variable setting schematic diagram of 3D printed specimen 1)初始水分质量M i 采用高吸水性材料(滤纸)吸取打印条带表面水分,通过吸水质量(M A -M B )及面积S (单位为cm 2)计2284㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷算单位面积上的M i ,计算式如式(1)所示㊂M i =M A -M B S (1)2)水分蒸发质量E pt 水分蒸发速率试验装置如图3所示㊂由图3可知,所用模具仅上端开口与外界流通,以固定蒸发面积㊂将模具置于打印喷嘴下端,依托泵送压力将模具填满,确保与实际打印效果相同㊂然后将模具顶面裸露在25ħ空气环境中,将质量损失视为t 时刻时的总水分蒸发质量E t ,其与顶面面积A 的比值即对应时刻单位面积上水分蒸发质量E pt ,计算式如式(2)所示㊂E pt =E t A (2)3)材料泌水质量B pt 自重泌水试验装置如图4所示㊂使用两个非接触式激光位移计对泌水情况进行测量,分别对准漂浮标识板和沉淀标识板来监测二者的垂直运动㊂漂浮标识板随着水分泌出而浮起,用于标识泌水水位高度㊂沉淀标识板则随混凝土表面运动,用于标识水分流失造成的沉降[16]㊂由此得出t 时刻时单位质量的3D 打印混凝土实时泌水质量B t ,而混凝土比表面积K pc 是打印条带表面积与质量的比值㊂B t 与相应打印参数下K pc 的比值,即对应时刻单位面积上的材料泌水质量B pt ,计算式如式(3)所示㊂B pt =B t K pc(3)图3㊀水分蒸发速率试验装置Fig.3㊀Water evaporation rate testdevice 图4㊀自重泌水试验装置Fig.4㊀Self-weight bleeding testdevice 图5㊀剪切试验装置Fig.5㊀Shear test device 4)表面实时水分质量M st根据打印条带表面水分初始质量M i ㊁水分蒸发质量E pt ㊁泌水质量B pt ,可得到实时水分质量M st ,计算式如式(4)所示㊂M st =M i +B pt -E pt (4)2.3㊀孔隙特征测试对从打印试件中切分出的60mm 立方体试件进行CT 扫描,获得层间界面孔隙特征㊂沿Z 向将试件的扫描模型均匀切分成1024个XY 平面的薄片,对各个薄片的孔隙率分别进行计算,获得沿Z 向任意位置处的孔隙率㊂2.4㊀黏结强度测试使用量程为1000kN 的试验机测试试件的层间黏结强度,剪切试验示意图如图5所示,加载速度为0.05MPa /s㊂通过破坏荷载F τ和剪切面积A τ来计算界面剪切强度f τ,计算式如式(5)所示㊂f τ=F τ/A τ(5)第7期芮遨宇等:层间水膜对3D 打印混凝土界面性能的影响2285㊀3㊀结果与讨论3.1㊀界面水分状态图6㊀打印条带单位面积水分蒸发质量演变规律Fig.6㊀Evolution law of water evaporation mass per unit area of printed strips 1)初始水分质量M i 经测试,本试验材料在打印层厚30㊁15㊁10mm 时所产生的表面初始水分质量分别为0.1202㊁0.1297㊁0.1328g /cm 2㊂2)水分蒸发质量E pt 对240min 内混凝土材料的水分蒸发量进行了多次测量,求得数据均值,单位面积上水分蒸发质量E pt 随时间的变化规律如图6所示㊂3)材料泌水质量B pt 图7为自重泌水试验结果㊂图7(a)展示了由激光位移计测得的水位㊁沉降及外部泌水位移量的多次测量均值,泌水数据在50min 内已不发生变化,可归因于水化反应消耗水分并使混凝土硬化㊂图7(b)展示了根据规范‘混凝土泌水现象的标准试验方法“(ASTM C232/C232M 2019)测得的累积泌水量占试样净拌合水量的百分比,即泌水率I a ㊂Yim 等[16]发现所有浇筑混凝土的I a 均在18%~40%,但本试验中测得的I a 仅为0.42%,可能是所采用的骨料尺寸较小,导致重力沉降量较少,并且3D 打印混凝土中凝胶材料占比较高,掺入了大量的硅灰等水泥替代材料,最终使材料的泌水率大幅度降低㊂多次试验求得单位面积上的泌水质量均值如图7(b)所示,可见3D 打印混凝土的泌水速率随时间的增长而降低,并显著低于水分蒸发速率㊂图7㊀自重泌水试验结果Fig.7㊀Bleeding testresults 图8㊀打印条带表面实时水分质量变化Fig.8㊀Real-time moisture quality changes on the surface of printed strips 4)表面实时水分质量M st 图8为打印条带表面实时水分质量变化㊂由于水分蒸发质量远大于材料泌水质量,因此打印条带表面水分随间隔时间的增长而减少㊂初始水膜厚度随着打印层厚的降低而提高,但由此导致的3D 打印混凝土界面水膜厚度增长并不显著,避免了水膜过度增厚带来的层间薄弱及孔隙结构粗化㊂水分蒸发占主导地位,导致水膜持续减薄,骨料㊁凝胶材料等固体颗粒直接暴露在空气环境中所引发的孔隙结构粗化是无法避免的,这是层间界面孔隙结构劣化的最主要原因㊂为了更好地简化各组试件的名称,将打印层厚以2286㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷H 表示,将层间间隔时间以T 表示,将有风和无风环境分别用W㊁N 表示,则无风环境下层厚30mm㊁层间间隔45min 的试件命名为H30T45N㊂H30T20W 组界面水分质量为单独测量所得,各组试件的层间界面水分质量数据参见表2㊂由表2可知,打印参数对层间界面水分质量具有显著影响,层间间隔时间的增长及环境风的存在都会使界面水分减少,当层间间隔为45min 时层间界面水分质量减少了25.79%,环境风的存在使层间间隔20min 试件的层间界面水分质量减少了42.07%㊂而打印层厚的降低会使界面初始水分质量增长,提高界面水分质量后,打印层厚从30mm 降低到10mm 时初始水分质量提高了10.48%㊂表2㊀各试件层间界面水分质量Table 2㊀Interlayer interface moisture mass of each specimensSpecimen Interlayer interface moisture mass /(g㊃cm -2)Specimen Interlayer interface moisture mass /(g㊃cm -2)H10T20N 0.1179(1/3initial setting time)H30T0N 0.1202(No time interval)H15T20N 0.1148(1/3initial setting time)H30T45N 0.0892(3/4initial setting time)H30T20N 0.1053(1/3initial setting time)H30T20W 0.0610(1/3initial setting time)3.2㊀界面孔隙特征3.2.1㊀间隔时间的影响图9为不同层间间隔时间试件的孔隙率沿Z 向分布图㊂将YZ 平面上的CT 扫描图作为孔隙率点线图的背景,与孔隙率曲线相互对照㊂在打印层厚㊁环境状态相同时,层间界面孔隙率随层间间隔时间的增长而显著增长,H30T45N㊁H30T20N㊁H30T0N 的层间界面孔隙率分别为6.29%㊁5.05%㊁2.50%,H30T45N 的层间界面孔隙率较H30T0N 提高了151.72%㊂主要原因为随层间间隔时间的增长,界面累计水分蒸发质量增加,导致层间界面水分含量显著降低,阻碍了层间界面处混凝土的水化反应,使界面孔隙结构粗化,层间界面更加薄弱㊂图9㊀不同层间间隔时间试件的孔隙率沿Z 向分布Fig.9㊀Porosity distribution along Z direction of specimens under different time intervals第7期芮遨宇等:层间水膜对3D 打印混凝土界面性能的影响2287㊀H30T45N㊁H30T20N㊁H30T0N 的整体孔隙率分别为4.83%㊁4.20%㊁1.10%,整体孔隙率随层间间隔时间的增加而增长㊂这可归因于两点:1)层间界面孔隙率的增长对整体孔隙率存在影响;2)基体内的水分在间隔时间内受到孔隙负压的影响而持续泌出,导致基体中水分减少,水化程度降低,在骨料等固体颗粒间形成孔隙㊂3.2.2㊀打印层厚的影响不同打印层厚试件的孔隙率沿Z 向分布图如图10所示㊂由图10可知,H30T20N㊁H15T20N㊁H10T20N 的层间界面孔隙率分别为5.05%㊁4.90%㊁4.50%,整体孔隙率分别为4.20%㊁3.49%㊁2.78%㊂在具有相同的层间间隔时间㊁环境状态时,降低打印层厚可减小材料的层间界面孔隙率㊁整体孔隙率㊂H10T20N 的层间界面孔隙率较H30T20N 降低了10.78%,可见降低打印层厚对材料性能有积极的作用㊂图10㊀不同打印层厚试件的孔隙率沿Z 向分布Fig.10㊀Porosity distribution along Z direction of specimens with different printing layer heights 在降低打印层厚时,3D 打印混凝土的挤压作用更加充分,这会带来两方面的影响:1)挤压力的提高会迫使混凝土中的水分被挤出,使层间界面水分含量增长,但是3D 打印混凝土胶凝材料占比较高,被挤出的水分较少,对层间界面的影响程度较低,所以层间界面孔隙率降低幅度较小;2)降低打印层厚会使挤压作用更加充分,由此产生的充足挤压力会使基体混凝土密实度显著提高,从而降低整体孔隙率㊂3.2.3㊀环境状态的影响不同环境状态下试件的孔隙率沿Z 向分布图如图11所示㊂由图11可知,环境风带来的影响较为显著,H30T20W㊁H30T20N 的层间界面孔隙率分别为6.21%㊁5.05%,整体孔隙率分别为5.53%㊁4.20%㊂在层间间隔时间及打印层厚相同时,环境风的存在使层间界面孔隙率及整体孔隙率均显著提升,H30T20W 的层间界面孔隙率和整体孔隙率分别较H30T20N 提高了21.07%㊁31.66%,主要原因是打印过程中环境风的存在显著增加了蒸发水分的质量,导致层间界面水分含量大幅降低,界面孔隙率显著增长,并且使基体中水分受到孔隙负压的影响而不断向混凝土表面泌出,从而降低了整体孔隙率㊂2288㊀水泥混凝土硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图11㊀不同环境状态下试件的孔隙率沿Z 向分布Fig.11㊀Porosity distribution along Z direction of specimens under different environmentalstates 图12㊀单位面积上层间界面水分质量与界面孔隙率关系Fig.12㊀Relationship between interlayer interface moisture mass per unit area and interlayer porosity 单位面积上层间界面水分质量与界面孔隙率关系如图12所示㊂由图12可知,层间界面孔隙率与界面水分质量之间存在一定的曲线关系,说明在一定程度上界面水分质量与层间界面孔隙率之间存在直接关联㊂与各种打印参数相比,层间界面水分质量是层间界面状态更直接的影响因素,直接决定了层间界面孔隙率㊂层间界面孔隙率随着单位面积上界面水分质量的增长而降低,且界面孔隙率的降低速度随界面水分质量的增长而提高㊂当层间水分质量极为接近初始界面水分质量时,界面水分质量的变化对层间界面孔隙率的影响程度最高,H30T20N 的层间界面水分质量较H30T0N 仅降低了12.47%,而层间界面孔隙率提高了100.02%㊂3.3㊀界面黏结强度剪切强度与层间界面孔隙率的关系如图13所示㊂由图13可知,层间界面孔隙率与层间界面剪切强度之间存在显著的线性关系,相关系数R 2为0.977,由此可将宏观力学强度与细观孔隙特征联系起来㊂为明确层间界面水分质量㊁层间界面孔隙率对层间界面剪切强度的影响,建立了相应的响应面,层间界面剪切强度㊁孔隙率和水分质量的关系如图14所示㊂在保持层间间隔时间㊁环境状态不变的情况下,H30T45N 的层间界㊀㊀图13㊀剪切强度与层间界面孔隙率的关系Fig.13㊀Relationship between shear strength and interlayer interfaceporosity 图14㊀层间界面剪切强度㊁孔隙率和水分质量的关系Fig.14㊀Relationship between interlayer shear strength,porosity and moisture mass㊀第7期芮遨宇等:层间水膜对3D打印混凝土界面性能的影响2289面剪切强度较H30T0N的降低了50.12%,这与孔隙率随层间间隔时间增长而增长的规律相符㊂在层间间隔时间㊁环境状态相同时,H10T20N的层间界面剪切强度较H30T20N的提高了17.37%,证明力学性能是随着打印层高的降低而提升的㊂H30T20W的层间界面剪切强度较H30T20N的低14.87%,证明环境风的存在对界面黏结确实存在削弱作用㊂由此可见,层间水分状态和界面细观孔隙特征直接影响着3D打印混凝土材料的宏观力学强度㊂4㊀结㊀论1)打印参数对层间界面水分质量具有显著影响,层间间隔时间的增长及环境风的存在都会使界面水分减少,当层间间隔为45min时层间界面水分质量减少了25.79%,环境风的存在使层间间隔为20min时试件的层间界面水分质量减少了42.07%㊂而打印层厚的降低会使界面初始水分质量增长,提高界面水分质量,打印层厚从30mm降低到10mm时初始水分质量提高了10.48%㊂2)层间界面孔隙率随着单位面积上界面水分质量的增长而降低,孔隙率与界面水分质量之间呈一定的曲线关系,与其他打印参数相比,层间界面水分质量是更直接的层间界面状态影响因素㊂并且在层间水分质量极为接近初始界面水分质量时,界面水分质量的变化对层间孔隙率的影响程度最高㊂3)层间界面水分质量直接决定了层间界面孔隙率,层间界面孔隙率与界面剪切强度之间存在显著的线性关系㊂层间水分状态和界面细观孔隙特征直接影响着3D打印混凝土材料的宏观力学强度㊂参考文献[1]㊀HOU S D,DUAN Z H,XIAO J Z,et al.A review of3D printed concrete:performance requirements,testing measurements and mix design[J].Construction and Building Materials,2021,273:121745.[2]㊀MOELICH G M,KRUGER J,COMBRINCK R.Plastic shrinkage cracking in3D printed concrete[J].Composites Part B:Engineering,2020,200:108313.[3]㊀CHEN Y N,JIA L T,LIU C,et al.Mechanical anisotropy evolution of3D-printed alkali-activated materials with different GGBFS/FAcombinations[J].Journal of Building Engineering,2022,50:104126.[4]㊀WANG L,MA G W,LIU T H,et al.Interlayer reinforcement of3D printed concrete by the in-process deposition of U-nails[J].Cement andConcrete Research,2021,148:106535.[5]㊀张㊀超,邓智聪,马㊀蕾,等.3D打印混凝土研究进展及其应用[J].硅酸盐通报,2021,40(6):1769-1795.ZHANG C,DENG Z C,MA L,et al.Research progress and application of3D printing concrete[J].Bulletin of the Chinese Ceramic Society, 2021,40(6):1769-1795(in Chinese).[6]㊀张㊀翼,朱艳梅,任㊀强,等.3D打印建筑技术及其水泥基材料研究进展评述[J].硅酸盐通报,2021,40(6):1796-1807.ZHANG Y,ZHU Y M,REN Q,et al.Progress on3D printing construction technology and its cement-based materials[J].Bulletin of the Chinese Ceramic Society,2021,40(6):1796-1807(in Chinese).[7]㊀常西栋,李维红,王㊀乾.3D打印混凝土材料及性能测试研究进展[J].硅酸盐通报,2019,38(8):2435-2441.CHANG X D,LI W H,WANG Q.Research progress of3D printed concrete materials and its performance test[J].Bulletin of the Chinese Ceramic Society,2019,38(8):2435-2441(in Chinese).[8]㊀SUN X Y,ZHOU J W,WANG Q,et al.PVA fibre reinforced high-strength cementitious composite for3D printing:mechanical properties anddurability[J].Additive Manufacturing,2022,49:102500.[9]㊀LIU H,LIU C,WU Y,et al.3D printing concrete with recycled coarse aggregates:the influence of pore structure on interlayer adhesion[J].Cement and Concrete Composites,2022,134:104742.[10]㊀ZHOU W,ZHANG Y M,MA L,et al.Influence of printing parameters on3D printing engineered cementitious composites(3DP-ECC)[J].Cement and Concrete Composites,2022,130:104562.[11]㊀KEITA E,BESSAIES-BEY H,ZUO W Q,et al.Weak bond strength between successive layers in extrusion-based additive manufacturing:measurement and physical origin[J].Cement and Concrete Research,2019,123:105787.[12]㊀MOELICH G M,KRUGER J,COMBRINCK R.Modelling the interlayer bond strength of3D printed concrete with surface moisture[J].Cementand Concrete Research,2021,150:106559.[13]㊀WOLFS R J M,BOS F P,SALET T A M.Hardened properties of3D printed concrete:the influence of process parameters on interlayeradhesion[J].Cement and Concrete Research,2019,119:132-140.[14]㊀KAYONDO M,COMBRINCK R,BOSHOFF W P.State-of-the-art review on plastic cracking of concrete[J].Construction and BuildingMaterials,2019,225:886-899.[15]㊀NIU X J,LI Q B,LIU W J,et al.Effects of ambient temperature,relative humidity and wind speed on interlayer properties of dam concrete[J].Construction and Building Materials,2020,260:119791.[16]㊀YIM H J,KIM J H,KWAK H G,et al.Evaluation of internal bleeding in concrete using a self-weight bleeding test[J].Cement and ConcreteResearch,2013,53:18-24.。

化工单元操作英文教材-流体流动现象Fluid-flow phenomena

化工单元操作英文教材-流体流动现象Fluid-flow phenomena

Bingham plastic
The rheological behavior of liquids called non-Newtonian.
o
du/dy
Figure 3 Shear stress versus velocity gradient for non-Newtonian fluids.
turbulent flow: The fluid moves erratically in form of crosscurrents and eddies.
Gas :
kinematic viscosities increase more rapidly with temperature than does the absolute viscosity.
Turbulence
It has long been known that a fluid can flow through a pipe or conduit in two different ways:
One-dimensional flow
Velocity is a vector, but only one velocity component is required. This simple situation is called Onedimensional flow.
Example: steady flow through straight pipe.
The assumptions of steady one-dimensional flow is the basis of following discussion. All we will talk about in this course belong to one dimensional steady flow

红外探测Ⅱ类超晶格技术概述(一)

第51卷 第4期 激光与红外Vol.51,No.4 2021年4月 LASER & INFRAREDApril,2021 文章编号:1001 5078(2021)04 0404 11·综述与评论·红外探测II类超晶格技术概述(一)尚林涛,王 静,邢伟荣,刘 铭,申 晨,周 朋(华北光电技术研究所,北京100015)摘 要:本文简单归纳总结了红外探测II类超晶格材料的发展历史、基本理论、相比MCT材料的优势和材料的基本结构。

通过设计61?系超晶格材料适当的层厚和不同层间应力匹配的界面可以构筑灵活合理的能带结构,打开设计各种符合器件性能要求的新材料结构的可能性(如各种同质结p i n结构,双异质结DH、异质结W、M、N、BIRD、CBIRD、p π M N、pBiBn、nBn、XBp、pMp等结构),还可以在一个焦平面阵列(FPA)像元上集成吸收层堆栈实现集成多色/多带探测。

T2SL探测器可以满足实现大面阵、高温工作、高性能、多带/多色探测的第三代红外探测器需求,尤其在长波红外(LWIR)和甚长波红外(VLWIR)及双色/多带探测上可以替代MCT。

关键词:II类超晶格;Type II;T2SL;SLS;材料结构中图分类号:TN215 文献标识码:A DOI:10.3969/j.issn.1001 5078.2021.04.002Overviewofinfrareddetectiontype IIsuperlatticetechnology(I)SHANGLin tao,WANGJing,XINGWei rong,LIUMing,SHENChen,ZHOUPeng(NorthChinaResearchInstituteofElectro Optics,Beijing100015,China)Abstract:Thedevelopmenthistory,basictheory,advantagesoverMCTmaterialsandbasicstructureofinfrareddetec tiontype IIsuperlatticematerialsaresummarizedinthepaper Throughthedesign6 1?superlatticematerialssystemofappropriatelayerthicknessandmatchinginterfacestressbetweenlayerscanbuildflexiblereasonablebandstruc ture,openthepossibilityofdesigningnewmaterialstructurethatconformtotherequirementsofthedeviceperform ance(suchasavarietyofhomojunctionp i nstructure,doubleheterojunctionDH,heterojunctionW,M,N,BIRD,CBIRD,p π M N,pBiBn,nBn,XBp,pMp,etc),alsocanintegratemultilayerabsorptionlayerstackononefocalplanearray(FPA)pixeltorealizeintegratedmulticolor/multibanddetection T2SLdetectorcanmeettherequirementsofthethird generationinfrareddetectorwithlargearray,highoperatingtemperature,highperformance,multiband/multicolordetection,especiallycanreplaceMCTinthelongwaveinfrared(LWIR),theverylongwaveinfrared(VLWIR)andthetwo color/multi banddetectionKeywords:classIIsuperlattice;type II;T2SL;SLS;materialstructure作者简介:尚林涛(1985-),男,硕士,工程师,研究方向为红外探测器材料分子束外延技术研究。

Measurement method of layer thickness for thin fil

专利名称:Measurement method of layer thickness forthin film stacks发明人:Kazuhiro Ueda,Akio Yoneyama申请号:US12292178申请日:20081113公开号:US20090180588A1公开日:20090716专利内容由知识产权出版社提供专利附图:摘要:Provided is a thin film stack inspection method capable of accurately measuring and inspecting layer thicknesses of thin film stacks. An X-ray having a long coherencelength is used as an incident X-ray and the X-ray specular-reflected from a sample placedon a goniometer is partially bent by a prism. The X-ray bent by the prism and the X-ray going straight are made to interfere with each other to obtain interference patterns. Though being thin film stacks, the sample has a portion having no thin film and thus an exposed substrate. The X-ray not bent by the prism includes an X-ray specular-reflected from the exposed substrate. By changing the incident angle from 0.01° to 1°, the interference patterns of the specular-reflected X-ray are measured. Thus, layer thicknesses are measured using a change in a phase of the X-ray reflected from a film stack interface.申请人:Kazuhiro Ueda,Akio Yoneyama地址:Kawagoe JP,Kawagoe JP国籍:JP,JP更多信息请下载全文后查看。

宁波深厚软基区公路桥梁桩基承载力计算方法

关于深厚软基区路桥差异沉降变形控制,则多集 中于过渡段软土地基的处理方法及其处理效果的探 索.李然等[10]分析了水泥搅拌桩处理桥头软基时的 处理范围、桩长变化率与差异桩长设计对消除跳车与 二次跳车现象的影响;舒晓武[11]发现天津港东疆港 区道路路基经过处理后,在长期的运营工程中产生了 严重的“波浪型”变形,并进一步分析了其机理;薛元 等[12]通过研究发现采用水泥土搅拌桩、非埋式桩板 结构可有效减小地基工后沉降;针对深厚软基区路桥 过渡段不均匀沉降直接影响行车安全及舒适度,但施 工难度大.
桩承载力影响不明显,桩长 30 m 的桩基承载力在软土厚度为 30 m 时出现明显的分界点;根据静载试验和有限元模
拟结果,回归建立了桩顶位移控制量 40 mm、60 mm 时桩的承载力公式,并通过工程实例验证了公式的可行性;提
出了深厚软基区公路桥梁的桩长优化公式及其适用条件,并给出了深厚软基区公路桥梁桩长折减系数α 取值表.
表2模型材料参数tab2materialparametersofmodel材料名称弹性模量epa泊松比黏聚力ckpa内摩擦角容重knm3桩281010020240黏土硬壳层65106035204135185淤泥质黏土33106045100115170淤泥质粉质黏土5310604290109180粉质黏土79106030300200190表3计算工况tab3calculationconditions方案软土厚度m桩径dm桩长lm10无软土5101520253035404510102030405020无软土5101520253035404509101214163022数值计算模型与计算参数的合理性验证为了验证数值计算模型与计算参数的合理性选取宁波市北仑区7根钻孔灌注桩的静载试验成果建立与7根钻孔灌注桩工况相同的数值模型对数值计算模型与计算参数进行可靠性验证

磁场对钕铁硼表面电沉积Ni镀层性能的影响

表面技术第53卷第2期磁场对钕铁硼表面电沉积Ni镀层性能的影响项腾飞1,2,3,任黄威1,周军2,张世宏3*(1.安徽工业大学 建筑工程学院,安徽 马鞍山 243002;2.中钢天源股份有限公司,安徽 马鞍山 243002;3.先进金属材料绿色制备与表面技术教育部重点实验室,安徽 马鞍山 243002)摘要:目的研究不同磁场参数对钕铁硼表面电沉积Ni镀层性能的影响。

方法以烧结钕铁硼(NdFeB)为基体,采用磁场辅助电沉积方法在其表面镀覆Ni层。

利用扫描电镜(SEM)、EDS能谱仪、X射线衍射仪(XRD)分析镀层的表面形貌、元素组成和微观结构,通过电化学工作站对Ni镀层进行耐蚀性能研究。

结果施加磁场能显著改善镀层的表面形貌,表面镀层形貌更加均匀致密;试样的耐蚀性显著提高,在平行磁场方向下,当磁场强度为0.07 T时电沉积30 min,所得Ni镀层自腐蚀电位(E corr)为–0.193 V,自腐蚀电流密度(J corr)为8.305×10–7 A·cm–2,阻抗值达到3.882×104Ω·cm2,耐蚀性最好。

结论施加磁场后,镀层性能得到改善,平行磁场作用下Ni镀层更加均匀细致,其耐蚀性最优,垂直磁场次之,均优于无磁场作用下制备的Ni镀层。

关键词:烧结钕铁硼;电沉积;磁场强度;表面形貌;耐蚀性中图分类号:TG174.441 文献标志码:A 文章编号:1001-3660(2024)02-0088-09DOI:10.16490/ki.issn.1001-3660.2024.02.008Effect of Magnetic Field on Properties of ElectrodepositedNi Coating on NdFeB SurfaceXIANG Tengfei1,2,3, REN Huangwei2, ZHOU Jun1, ZHANG Shihong3*(1. School of Civil Engineering and Architecture, Anhui University of Technology, Anhui Ma'anshan 243002, China;2. Sinosteel Tianyuan Co., Ltd., Anhui Ma'anshan 243002, China;3. Key Laboratory of Green Fabrication andSurface Technology of Advanced Metal Materials, Ministry of Education, Anhui Ma'anshan 243002, China)ABSTRACT: NdFeB is widely applied in many fields such as new energy vehicles, domestic appliances, electronics and so forth. However, the corrosion of NdFeB limits its service life in these fields. Thus, surface treatments are necessary for NdFeB, among which electrodeposition is one of the most useful techniques due to its simple process, convenient operation and low cost. In recent years, the technology of magnetic field electrodeposition (MFE) develops rapidly. Scientists find that the existence of magnetic field exhibits large effect on electrodeposition coatings. However, the MFE is rarely applied on NdFeB.Herein, the MFE technique was adopted to deposit a metallic Ni coating on the NdFeB surface.In this paper, the effect of magnetic field on the properties of the electrodeposited Ni coating on the NdFeB surface was studied systematically. Before deposition, the NdFeB was first decreased by 5 g/L sodium hydroxide, 50 g/L anhydrous sodium收稿日期:2022-09-19;修订日期:2023-06-14Received:2022-09-19;Revised:2023-06-14基金项目:国家自然科学基金(52201056);安徽省高校自然科学研究重点项目(KJ2021A0377)Fund:National Natural Science Foundation of China (52201056); Key Project of Natural Science Foundation of Anhui Provincial Department of Education (KJ2021A0377)引文格式:项腾飞, 任黄威, 周军, 等. 磁场对钕铁硼表面电沉积Ni镀层性能的影响[J]. 表面技术, 2024, 53(2): 88-96.XIANG Tengfei, REN Huangwei, ZHOU Jun, et al. Effect of Magnetic Field on Properties of Electrodeposited Ni Coating on NdFeB Surface[J]. Surface Technology, 2024, 53(2): 88-96.*通信作者(Corresponding author)第53卷第2期项腾飞,等:磁场对钕铁硼表面电沉积Ni镀层性能的影响·89·carbonate, 75 g/L anhydrous trisodium phosphate and 0.5 g/L OP emulsifier for 10 min at 70 ℃. Then, 40 mL/L nitric acid was used for derusting the resultant NdFeB sample, which was afterwards activated by 30 mL/L hydrochloric acid at ambient temperature. At last, a Ni layer was electrodeposited on the sintered NdFeB surface by magnetic field electrodeposition with ultrasound assistance. It was worth noting that the current density was firstly set as 4 A/dm2 for 1 min to pre-deposit a fresh Ni layer and then immediately adjusted to 2.5 A/dm2 and kept for 30 min. The magnetic field direction was regulated by changing the direction of the sample while the magnetic field intensity was adjusted by adding NdFeB permanent magnet material. The surface morphology of coatings was investigated with a scanning electron microscope (SEM) while the component of coatings was analyzed with an equipped energy dispersive spectrometer (EDS). Besides, the microstructure of the coatings was characterized with an X-ray diffraction (XRD) from 10° to 80° with a scanning rate of 2°/min and the thickness of the coatings was measured with a thickness gauge. The corrosion resistance of the Ni coating was studied through an electrochemical workstation.The results showed that the surface morphology of the coating could be significantly changed by applying a magnetic field, and had slight effect on the thickness of the coating. More importantly, corrosion resistance of the coating was remarkable improved. The morphology of the coating was uniform and compact; the roughness of coatings was decreased under MFE; the thickness of the coating stated at 9-11 μm. The self-corrosion potential (E corr), self-corrosion current density (J corr) and impedance value of the Ni coating electrodeposited for 30 min under the parallel magnetic field with 0.07 T were –0.193 V,8.305×10–7 A·cm–2 and 4.050×104Ω·cm2, respectively. It showed the best temperature resistance and corrosion resistance. As awhole, the parallel magnetic field shows a positive effect on the properties of the coating. A compact coating is obtained on the surface of NdFeB through the MFE, and the corrosion resistance of the sample prepared under the parallel magnetic field shows the best, followed by the sample under vertical magnetic field, which is better than that of the Ni coating prepared without magnetic field.KEY WORDS: sintered NdFeB; electrodeposition; magnetic field intensity; surface topography; corrosion resistance钕铁硼(NdFeB)作为第三代永磁材料,逐渐发展成为应用范围广、发展速度快、综合性能优的磁性材料,在新能源汽车、节能家电、消费电子、清洁能源等领域受到广泛应用,具有广阔的应用前景,但由于其稳定性和耐蚀性差,在实际应用中受到限制[1-4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Interface layer thickness effect on the photocurrent of Pt sandwiched polycrystallineferroelectric Pb ( Zr , Ti ) O 3 filmsDawei Cao, Hui Zhang, Liang Fang, Wen Dong, Fengang Zheng, and Mingrong ShenCitation: Applied Physics Letters 97, 102104 (2010); doi: 10.1063/1.3488829View online: /10.1063/1.3488829View Table of Contents: /content/aip/journal/apl/97/10?ver=pdfcovPublished by the AIP PublishingArticles you may be interested inInterface effect on the photocurrent: A comparative study on Pt sandwiched ( Bi 3.7 Nd 0.3 ) Ti 3 O 12 and Pb( Zr 0.2 Ti 0.8 ) O 3 filmsAppl. Phys. Lett. 96, 192101 (2010); 10.1063/1.3427500First-principles simulations on bulk Ta 2 O 5 and Cu / Ta 2 O 5 / Pt heterojunction: Electronic structures andtransport propertiesJ. Appl. Phys. 106, 103713 (2009); 10.1063/1.3260244Photovoltaic characteristics in polycrystalline and epitaxial ( Pb 0.97 La 0.03 ) ( Zr 0.52 Ti 0.48 ) O 3ferroelectric thin films sandwiched between different top and bottom electrodesJ. Appl. Phys. 105, 061624 (2009); 10.1063/1.3073822Separation of the Schottky barrier and polarization effects on the photocurrent of Pt sandwiched Pb ( Zr 0.20Ti 0.80 ) O 3 filmsAppl. Phys. Lett. 93, 172101 (2008); 10.1063/1.3009563Resistance dependence of photovoltaic effect in Au / SrTiO 3 : Nb ( 0.5 wt % ) Schottky junctionsAppl. Phys. Lett. 93, 172119 (2008); 10.1063/1.3009285This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: /termsconditions. Downloaded to IP:Interface layer thickness effect on the photocurrent of Pt sandwiched polycrystalline ferroelectric Pb…Zr,Ti…O3filmsDawei Cao,Hui Zhang,Liang Fang,Wen Dong,Fengang Zheng,a͒and Mingrong Shen b͒Department of Physics and Jiangsu Key Laboratory of Thin Films,Soochow University,Suzhou215006,People’s Republic of China͑Received16June2010;accepted20August2010;published online10September2010͒Based on the analysis of the photocurrent behavior of Pt sandwiched Pb͑Zr0.2Ti0.8͒O3͑PZT͒films,the experimental evidence of top Pt/PZT interface layer thickness effect on the photocurrent isreported.It was well established before that the photocurrent of metal/ferroelectricfilm is attributedto the height of Schottky contact barrier.However,our results suggest that the photocurrent ofPt/PZT interface contact is determined not only by the barrier height but also by the interface layerthickness,namely,by the built-in electricalfield at the interface layer.The mechanism behind suchphotocurrent phenomenon is proposed.©2010American Institute of Physics.͓doi:10.1063/1.3488829͔Recently,the photovoltaic effect of ferroelectric materi-als,such as Pb͑Zr,Ti͒O3͑PZT͒,1–7͑Pb,La͒͑Zr,Ti͒O3,8–10 and BiFeO3,11–14has become a research focus for their po-tential applications for the UV detection,1nondestructive op-tical reading,15and photovoltaic devices.16,17It is well estab-lished that the“bulk photovoltaic effect”is mainly originated from the remnant polarization in bulk ferroelectric materials, and the photocurrent is in proportion to the magnitude of remnant polarization.13In metal/ferroelectric/metal structure, however,the photovoltaic effect comes partly from the rem-nant polarization same as the bulk photovoltaic effect,5,14and partly from the metal/ferroelectric-film interface effect, which produces the photocurrent determined by the barrier heights of metal/ferroelectric-film interfaces.8,12In this pa-per,we report the experimental evidence of top Pt/PZT in-terface layer thickness effect on the photocurrent of ferro-electric polycrystallinefilm,which manifests that the photocurrent of Pt/PZT interface contact is determined by the built-in electricalfield in the interface layer.First,a PZTfilm,deposited on Pt/Ti/SiO2/Si substrate by a sol-gel method,was crystallized at600°C in air for 2h.Then,Pt dots as top electrode,with an area of7.88ϫ10−4cm2,were deposited by sputtering at room tempera-ture.In the upper of Fig.1,two-and three-dimensional atomic force microscopy͑AFM͒pictures show that the av-erage particle size is about50nm and the surface roughness is about20nm.The lower of Fig.1,the cross-section scan-ning electron microscope͑SEM͒image of Pt/PZT/Pt struc-ture,indicates that the thickness of PZT and Ptfilm is around 270nm and35nm,respectively.The Pt/PZT/Pt sample was cut into four parts,labeled as PZT0,PZT1,PZT10,and PZT30,respectively.PZT0was the sample in which the top Pt/PZT interface did not undergo a high temperature annealing process;PZT1,PZT10,and PZT30were the samples in which the top Pt/PZT interfaces were annealed at600°C in air for1,10min and30min, respectively.The thickness of top Pt/PZT interface layer is expected to increase with the increase in annealing time.The polarization and short-circuit photocurrent measure-ments are similar to that reported in our previous works.5–7 Figure2͑a͒shows the polarization hysteresis loops͑P-V͒in-dicating almost the same spontaneous polarization for all four samples.All samples except PZT0have an almost per-fect symmetrical P-V loop along both the voltage axes and the polarization axes.The larger coercivefield of PZT0than that of other samples implies that there are more defects or charges in top Pt/PZT interface,which is consistent with pre-viously reported results.18Consequently,the polarization re-versal needs a larger external electricfield in PZT0than that in others.Figure2͑b͒present the photocurrent versus poling volt-age͑PC-V͒loops of all PZT paring Figs.2͑a͒and2͑b͒,we canfind that the photocurrent changes greatly at the coercivefiled,similar to the polarization occurring in the P-V loops,which implies the happening of polarization re-versal.However,the symmetrical center͑PC0͒of vertical photocurrent axis in the PC-V loop is+2.29nA,Ϫ0.91nA,Ϫ0.27nA,andϪ0.07nA for PZT0,PZT1,PZT10,andPZT30,respectively.The value of PC0has been verified to be relative to the asymmetry Schottky contact between top Pt/PZT interface and bottom one.5,8a͒Electronic mail:zhfg@. b͒Electronic mail:mrshen@.FIG.1.͑Color online͒AFM surface morphology of PZTfilm and SEMcross-section picture of Pt/PZT/Pt capacitor.APPLIED PHYSICS LETTERS97,102104͑2010͒0003-6951/2010/97͑10͒/102104/3/$30.00©2010American Institute of Physics97,102104-1This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: /termsconditions. Downloaded to IP:In order to figure out the difference between top Schottky barrier height ͑␾top ͒and bottom one ͑␾bottom ͒,we measured the leakage current of all samples at 400–440K temperatures.The measurement details can be found elsewhere.7The determined values of ␾bottom are almostsame for all samples ͑ϳ0.79eV ͒,while that of ␾top is 0.31,0.45,0.64,and 0.73eV for PZT0,PZT1,PZT10,and PZT30,respectively.It can be concluded that ␾top is always lower than ␾bottom ,and the difference between ␾bottom and ␾top͑⌬␾=␾bottom −␾top ͒decreases monotonously with the in-crease in postannealing time.However,the PC 0values donot change monotonously with the increase in postannealingtime.Undoubtedly,the variation in PC 0is not consistent withthat of ⌬␾,so it cannot be simply attributed to the variationin ⌬␾in Pt/PZT/Pt capacitor.8In this case,we suggest that the postannealing not only causes the changing of Pt/PZT contact barrier but also may change the thickness of Pt/PZT interface region.In order to check this point,we performed the x-ray photoemission spectroscopy ͑XPS ͒depth profile of all Pt/PZT/Pt capacitors with an etching rate about 0.1nm/s.The results are shown in Fig.3.Here,the Pt/PZT interface layer thickness ͑d ͒is de-fined as the depth of Pt element diffusing into the PZT film͑Our reason for doing this will be discussed later ͒,and thecalculated thickness of top Pt/PZT interface layer ͑d top ͒is24.1,24.1,33.9,and 39.5nm for PZT0,PZT1,PZT10,andPZT30,respectively.It can be observed that the content ofoxygen element is enhanced at top Pt/PZT interface alongwith the decreasing Pt element content.Higher temperatureprocessing may efficiently reduce the defects,especially theoxygen vacancy at Pt/PZT interface,and result in the raisingof barrier height.6,18It is interesting that the content of Pb element increasesslightly at top interfaces of PZT films,especially in PZT10and PZT30samples,which may be due to the evaporation ofPbO during the annealing process.The presence of PbO,as asemiconductor,will result in a lower barrier height,whichmay be one of the reasons that the values of ␾top are alwayslower than that of ␾bottom .4,7As a witness,the XPS depth profile of another Pt/PZT/Pt sample annealed at 600°C in air for 60min is shown in Fig.3͑e ͒.It can be found that d top is almost the same as the thickness of bottom PZT/Pt interface layer ͑d bottom ͒,while ␾top is still a little lower than ␾bottom .Note that the d bottom of all samples are about 44.0nm.We believe that PC 0is strongly relative to Pt/PZT inter-face layer thickness.For an ideal Pt/PZT/Pt structure,the PC 0is supposed to be zero because the electric field at top interface cancel out that at bottom one due to the symmetri-cal back-to-back Schottky contacts.However,the PC 0in an actual Pt/PZT/Pt capacitor usually is not zero because of the asymmetry between top Pt/PZT interface and bottom one under different annealing conditions.The Pt/PZT interface is a disturbed layer due to the interdiffusion of Pb,Ti,Zr,O,and Pt ions.References 18and 19reported that the small amount of Pt element diffusion into the ferroelectric film will change notably the surface Fermi level at the Pt/film interface.Reference 20reported that a very thin layer ͑ϳ10nm ͒near the metallic electrode had a large concentra-tion of trapped charge ͑about 1020cm −3͒,which is two or-ders higher than that in the depletion region.20,21This layer is thinner than the depletion region and is probably responsible for the pinning of Fermi level at the metal/PZT interface.Both large carrier concentration and pinning of Fermi level result in a much larger electric field at Pt/PZT interface layer than that in the depletion region near the center of PZT film.20Figures 4͑a ͒–4͑c ͒schematically indicate the asymme-try of barrier height,electric field and interface layer thick-ness near top and bottom electrodes in Pt/PZT/Ptstructure.FIG.2.͑Color online ͒Polarization and photocurrent loops of PZTfilms.FIG.3.͑Color online ͒XPS depth profiles for ͑a ͒PZT0,͑b ͒PZT1,͑c ͒PZT10,͑d ͒PZT30,and ͑e ͒a witness Pt/PZT/Pt sample,in which top Pt/PZT interface layer was annealed at 600°C in air for 60min. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: /termsconditions. Downloaded to IP:In Fig.4͑b ͒,the red line indicates the electric field distribu-tion of Pt/PZT/Pt capacitor without the interface layer,whilethe blue line gives the one with the interface layer,where the field is mainly bounded.For discussion efficiently,we introduce a factor f =␾/d =qE eV /␮m to describe the electric field at top and bottom interfaces,and plot ␾top and d top in Fig.5͑a ͒,along with ␾bottom ͑E is the field of Schottky contact at the interface,and f is the electric force of the electron or hole in the filed ͒.The bottom electric field is almost unchanged because d bottom and ␾bottom are almost constant for all samples.Therefore,it is reasonable that the variation of PC 0is mainly attributed to top electric field,which is manipulated by top interface layer thickness.Although ␾top is lower than ␾bottom ,the electrical field at top interface layer may be greater than that at bottomone if d top is far thinner than d bottom ,as shown in Figs.4͑a ͒and 4͑b ͒.Generally,the greater the field is,the more the electron or hole excited by the light can be separated by the field,resulting in a larger photocurrent.For PZT0sample in Fig.5͑b ͒,f bottom is much larger than f top ,which can lead to a large positive PC 0.It is indicated that the contribution of bottom Pt/PZT interface to the photocurrent is more than that of top Pt/PZT interface.On the contrary,f bottom is lower than f top in PZT1,PZT10,and PZT30samples,implying that top Pt/PZT interface has a dominating influence on the photocur-rent,so a series of negative PC 0occur.Furthermore,the difference ͑⌬f =f bottom −f top ͒between f bottom and f top de-creases with the increase in postannealing time,which can lead to a lower PC 0.In Fig.5͑c ͒,it is clear that the tendency of PC 0is almost consistent with that of ⌬f .Note that the observed tendency of PC 0can be reproduced completely.In summary,the photocurrent originated from the inter-face Schottky contact effect in Pt/PZT/Pt structure is found to be determined not only by the barrier height but also by the interface layer thickness,namely by the built-in electrical field at the interface layer.We believe that those interesting phenomena on the photocurrent can help us to understand better the photovoltaic of the ferroelectric,and to present a method that the photocurrent in metal/ferroelectric/metal structure could be manipulated effectively by controlling the thickness of metal/ferroelectric interface layer.This work was supported by Grant ͑Grant No.50702036͒from National Natural Science Foundation of China.1L.Pintilie,M.Alexe,A.Pignolet,and D.Hesse,Appl.Phys.Lett.73,342͑1998͒.2L.Pintilie and M.Alexe,J.Appl.Phys.98,124103͑2005͒.3L.Pintilie,I.Vrejoiu,G.L.Rhun,and M.Alexe,J.Appl.Phys.101,064109͑2007͒.4L.Pintilie,I.Vrejoiu,D.Hesse,G.L.Rhun,and M.Alexe,Phys.Rev.B 75,104103͑2007͒.5F.G.Zheng,J.Xu,L.Fang,M.R.Shen,and X.L.Wu,Appl.Phys.Lett.93,172101͑2008͒.6J.Xu,D.W.Cao,L.Fang,F.G.Zheng,M.R.Shen,and X.L.Wu,J.Appl.Phys.106,113705͑2009͒.7D.W.Cao,J.Xu,L.Fang,W.Dong,F.G.Zheng,and M.R.Shen,Appl.Phys.Lett.96,192101͑2010͒.8M.Qin,K.Yao,Y .C.Liang,and B.K.Gan,Appl.Phys.Lett.91,092904͑2007͒.9M.Qin,K.Yao,and Y .C.Liang,Appl.Phys.Lett.93,122904͑2008͒.10M.Qin,K.Yao,and Y .C.Liang,Appl.Phys.Lett.95,022912͑2009͒.11S.R.Basu,L.W.Martin,Y .H.Chu,M.Gajek,R.Ramesh,R.C.Rai,X.Xu,and J.L.Musfeldt,Appl.Phys.Lett.92,091905͑2008͒.12S.Y .Yang,L.W.Martin,S.J.Byrnes,T.E.Conry,S.R.Basu,D.Paran,L.Reichertz,J.Ihlefeld,C.Adamo,A.Melville,Y .H.Chu,C.H.Yang,J.L.Musfeldt,D.G.Schlom,J.W.Ager,and R.Ramesh,Appl.Phys.Lett.95,062909͑2009͒.13T.Choi,S.Lee,Y .J.Choi,V .Kiryukhin,and S.W.Cheong,Science 324,63͑2009͒.14W.Ji,K.Yao,and Y .C.Liang,Adv.Mater.22,1763͑2010͒.15S.Thakoor,E.Olson,and R.H.Nixon,Integr.Ferroelectr.4,257͑1994͒.16M.Ichiki,R.Maeda,Y .Morikawa,Y .Mabune,T.Nakada,and K.Nonaka,Appl.Phys.Lett.84,395͑2004͒.17A.Kholkin,O.Boiarkine,and N.Setter,Appl.Phys.Lett.72,130͑1998͒.18R.Schafranek,S.Payan,M.Maglione,and A.Klein,Phys.Rev.B 77,195310͑2008͒.19S.Takatani,H.Miki,K.K.Abdelghafar,and K.Torii,J.Appl.Phys.85,7784͑1999͒.20I.Boerasu,L.Pintilie,M.Pereira,M.I.Vasilevskiy,and M.J.M.Gomes,J.Appl.Phys.93,4776͑2003͒.21L.Pintilie,M.Lisca,and M.Alexe,Appl.Phys.Lett.86,192902͑2005͒.FIG.4.͑Color online ͒Schematic illustrations of ͑a ͒asymmetric Schottky barriers,͑b ͒built-in field distributions:red ͑or blue ͒line indicates the elec-tric field without ͑or with ͒the interface layer and ͑c ͒top and bottom inter-face layers in Pt/PZT/Ptcapacitor.FIG.5.͑Color online ͒Top Pt/PZT interface annealing time dependent ͑a ͒barrier height ͑␾top and ␾bottom ͒and top interface layer thickness ͑d top ͒,͑b ͒top and bottom factor f =␾/d ͑f top and f bottom ͒,and ͑c ͒difference betweenf top and f bottom ͑⌬f =f bottom −f top ͒and photocurrent ͑PC 0͒. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: /termsconditions. Downloaded to IP:。

相关文档
最新文档