等差数列及其前n项和
等差数列的前n项和_教学

• (1)等差数列{an}中,若a7=m,a14=n,则a21 =________.
[解析] (1)本题考查等差数列的基础量运算. 设{an}的公差为 d,由 S2=a3 可得 d=a1=12,故 a2=a1 +d=1,Sn=na1+nn-2 1d=14n(n+1). (2)设等差数列的公差为 d,由于数列是递增数列,所以 d>0,a3=a1+2d=1+2d,a2=a1+d=1+d,代入已知条件: a3=a22-4 得:1+2d=(1+d)2-4,解得 d2=4,所以 d=2(d =-2 舍去),所以 an=1+(n-1)×2=2n-1. [答案] (1)1 14n(n+1) (2)2n-1
• 等差数列的通项公式及前n项和公式中,共涉 及五个量,知三可求二,如果已知两个条件, 就可以列出方程组解之.如果利用等差数列 的性质、几何意义去考虑也可以.体现了用 方程思想解决问题的方法.
• [变式探究] (1)在等差数列{an}中,a1=2, a2+a5=14,则a5+a6+a7=________.
• (2)等差数列{an}前9项的和等于前4项的 和.若a1=1,ak+a4=0,则k=________.
• 答案:(1)36 (2)10
解析:(1)∵a2+a5=2a1+5d=14, ∴d=2,∵a5+a6+a7=3a6=3a1+15d=36. (2)∵S9=S4,∴a1=-6d,∴d=-16, ∴ak+a4=2a1+(k+2)d=2+(-16)(k+2)=0, ∴k=10.
第二节 等差数列及其前n项和

16 ×15 所以 S1 6 =1 6 ×3+ 2 ×(-1 ) =-7 2 . 答案: -72
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
等差数列及其前n项和 结
束
]设 等 差 数 { 5.[考 点 二 列 an}的前 n 项 和 为 S n, 已知前 6项和为 36, 最后 6 项 的 和 为 18, 0 Sn=3 2 4n( >6), 求 数 列 {an}的 项 数 及 a9 +a1 0 .
突
破
点
一
突
破
点
二
突
破
点
三
课时达标检测
等差数列及其前n项和 结
束
法二:由 等 差 数 列 的 性 质 ,可 S3, S 知 S9-S6, „, 6-S3, S2 1 -S1 8成 等 差 数 列 , 设 此 数 列 公 D差 . 为 5 所以 5+2D=1 0 ,所以 D=2. 所以 a1 9 +a2 0 +a2 1 =S2 1 -S1 8 =5+6D=5+1 5 =2 0 . [答案] 20
突
破
点
一
突
破
点
二
突
破
点
三
课时达标检测
等差数列及其前n项和 结
束
]设 Sn 为 等 差 数 { 4[ .考 点 一 列 an}的前 n 项 和 , a1 2 =-8,S9=-9, 则 S1 6 =_ _ _ _ _ _ _ _ .
解析: 设等差数{ 列 an}的 首 项 为 a1, 公 差 为 d, =a1+11d=-8, a1 2 由已知, 得 9×8 S =9a1+ 2 d=-9, 9
突 破 点 一 突 破 点 二 突 破 点 三 课时达标检测
等差数列前n项和的性质及应用

密码学:等差数列 前n项和公式可用于 设计密码算法和加 密方案
计算机图形学:等差数 列前n项和公式可用于 生成等差数列曲线,用 于计算机图形学中的渲 染和动画制作
定义:等差数 列中,任意两 项的差为常数
公式: Sn=n/2*(a1+a
n)
推导:利用等 差数列的定义, 将前n项和展开,
得到 Sn=na1+n(n-
算法优化:通过减少重复计算和利用已知值来加速计算过程,从而提高了算法的效率。
应用场景:等差数列前n项和的优化算法在数学、物理、工程等领域有广泛的应用, 尤其在处理大规模数据时具有显著优势。
计算等差数列前n项和的最小 值
求解等差数列中项的近似值
判断等差数列是否存在特定性 质
优化等差数列前n项和的计算 过程
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
等差数列前n项和 是数列中前n个数 的和,记作Sn。
等差数列前n项和的 公式为:Sn = n/2 * (a1 + an),其中a1为 首项,an为第n项。
等差数列前n项和 的性质包括对称性、 奇偶性、线性关系 等。
等差数列前n项和的定义:一个数列, 从第二项起,每一项与它的前一项的 差都等于同一个常数,这个数列就叫 做等差数列。
等差数列前n项和的性质1:若 m+n=p+q,则S_m+S_n=S_p+S_q。
添加标题
添加标题
添加标题
添加标题
等差数列前n项和的公式: S_n=n/2*(2a_1+(n-1)d),其中a_1 是首项,d是公差。
第二节 等差数列及其前n项和

等差数列及其前n项和
结束
2.等差数列的有关公式 (1)通项公式:an= a1+(n-1)d .
nn-1 na1+an d =_________. 1+ (2)前n项和公式:Sn= na ____________ 2 2
3.等差数列的常用性质 (1)通项公式的推广:an=am+ (n-m)d (n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*), 则 ak+al=am+an . (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差 为 2d .
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
等差数列及其前n项和
结束
2.(2017· 合肥质检)已知等差数列{an}的前n项和为Sn,a8=1,S16 =0,当Sn取最大值时n的值为 A.7 B. 8 C.9 D.10
a1=15, 解得 d=-2,
ቤተ መጻሕፍቲ ባይዱ
(
)
a8=a1+7d=1, 解析:法一:由 16×15 S =16a1+ d=0, 2 16
等差数列及其前n项和
结束
第二节
等差数列及其前n项和
1.等差数列的有关概念 (1)定义:如果一个数列从第 2 项 起,每一项与它的前一项的
差 都等于同一个常数,那么这个数列就叫做等差数列,这 ____
个常数叫做等差数列的 公差 ,通常用字母 d 表示. a+b A= (2)等差中项: 数列 a, A, b 成等差数列的充要条件是________ 2 , 其中 A 叫做 a,b 的 等差中项 .
等差数列及其前n项和
结束
第二讲:等差数列及其前n项和

第二讲:等差数列及其前n 项和知识体系:一、等差数列1、等差数列的概念:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
定义的表达式为1,n n a a d d +-=为常数。
2、等差中项:若a 、A 、b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。
3、等差数列的通项公式及其变形: 通项公式:,其中1a 是首项,d 是公差。
通项公式的变形:(),n m a a n m d n m =+-≠注意:等差数列通项公式的应用:(1)由等差数列的通项公式1(1)n a a n d =+-,可知: ① 已知等差数列的首项和公差,可以求得这个数列的任何一项; ② 已知1,,,n a d n a ,这四个量中的任意三个,可以求得另一个量;(2)由等差数列通项公式变形可知,已知等差数列中的任意两项就可以确定等差数列中的任何一项。
4、等差数列和一次函数的关系由等差数列的通项公式1(1)n a a n d =+-可得1()n a dn a d =+-,如果设1,p d q a d ==-那么n a pn q =+,其中p ,q 是常数。
当p ≠0时,(n ,a )在一次函数y=px+q 的图像上,即公差不为零的等差数列的图像是直线y=px+q 上的均匀排开的一群孤立的点。
当p=0时,n a q =,等差数列为常数列,此时数列的图像是平行于x 轴的直线(或x 轴)上的均匀排开的一群孤立的点。
等差数列的单调性:当d >0时,数列{}n a 为递增数列;当d <0时,数列{}n a 为递减数列;当d =0时,数列{}n a 为常数列; 二、等差数列的前n 和:1、等差数列的前n 项和:等差数列的前n 项和公式11()(1)22n n n a a n n S na d +-==+; 等差数列前n 项和公式与函数的关系:由1(1)2n n n S na d -=+可得21()22n d dS n a n =+-,设1,22d da b a ==-,则有2n S an bn =+。
第二节 等差数列及其前n项和

末页
第二节
等差数列及其前n项和
结束
[解] (1)证明:当 n≥2 时,an=Sn-Sn-1=-2SnSn-1,① ∴Sn(1+2Sn-1)=Sn-1. 由上式知若 Sn-1≠0,则 Sn≠0. ∵S1=a1≠0, 由递推关系知 Sn≠0(n∈N*), 1 1 由①式得S - =2(n≥2). Sn-1 n
数学
首页
上一页
下一页
末页
第二节
等差数列及其前n项和
结束
解析:根据已知条件,得到 am 和 am+1,再根据等差数列的定义 得到公差 d,最后建立关于 a1 和 m 的方程组求解.由 Sm-1=-2,Sm=0,Sm+1=3,得 am=Sm-Sm-1=2,am+1=Sm+1 -Sm=3,所以等差数列的公差为 d=am+1-am=3-2=1, am=a1+m-1d=2, 由 1 S =a1m+2mm-1d=0, m a1+m-1=2, a1=-2, 得 解得 1 a1m+2mm-1=0, m=5. 答案:C
结束
[类题通法]
1.判断等差数列的解答题,常用定义法和等差中项法,而 通项公式法和前 n 项和公式法主要适用于选择题、填空题中的 简单判断. 2.用定义证明等差数列时,常采用两个式子 an+1-an=d 和 an-an-1=d,但它们的意义不同,后者必须加上“n≥2”, 否则 n=1 时,a0 无定义.
下一页
末页
第二节
等差数列及其前n项和
结束
1.要注意概念中的“从第 2 项起”.如果一个数列不是从 第 2 项起, 而是从第 3 项或第 4 项起, 每一项与它前一项的差是 同一个常数,那么此数列不是等差数列.
2.注意区分等差数列定义中同一个常数与常数的区别.
高考数学(理)总复习讲义: 等差数列及其前n项和

第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d ❶(n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d ❷.(2)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (3)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2❸. ,d >0⇔{a n }为递增数列, d =0⇔{a n }为常数列, d <0⇔{a n }为递减数列.当d ≠0时,等差数列{an }的通项公式a n =dn +(a 1-d )是关于d 的一次函数. 当d ≠0时,等差数列{an }的前n 项和S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 是关于n 的二次函数. [熟记常用结论]1.若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . 2.若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . 3.若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.4.若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. 6.若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.7.关于等差数列奇数项和与偶数项和的性质.(1)若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (2)若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.8.两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n =S 2n -1T 2n -1.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( ) 答案:(1)× (2)√ (3)× (4)√ 二、选填题1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4 解析:选B 设公差为d .∵a 1+a 5=2a 3=10,∴a 3=5, 又∵a 4=7,∴d =2.故选B.3.等差数列{a n }的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于( ) A .1 B.53 C .-2D .3解析:选C ∵S 3=6=32(a 1+a 3),且a 3=a 1+2d ,a 1=4,∴d =-2,故选C.4.已知等差数列-8,-3,2,7,…,则该数列的第100项为________. 解析:依题意得,该数列的首项为-8,公差为5,所以a 100=-8+99×5=487. 答案:4875.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________.解析:∵a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37, ∴m =37. 答案:37考点一等差数列基本量的运算[基础自学过关][题组练透]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.(2019·西安质检)已知等差数列{a n }的前n 项和为S n ,且a 3·a 5=12,a 2=0.若a 1>0,则S 20=( )A .420B .340C .-420D .-340解析:选D 设数列{a n }的公差为d ,则a 3=a 2+d =d ,a 5=a 2+3d =3d ,由a 3·a 5=12,得d =±2,由a 1>0,a 2=0,可知d <0,所以d =-2,所以a 1=2,故S 20=20×2+20×192×(-2)=-340.4.(2019·西安八校联考)设数列{a n }是等差数列,且a 2=-6,a 6=6,S n 是数列{a n }的前n 项和,则( )A .S 4<S 3B .S 4=S 3C .S 4>S 1D .S 4=S 1解析:选B 设{a n }的公差为d ,由a 2=-6,a 6=6,得⎩⎪⎨⎪⎧ a 1+d =-6,a 1+5d =6,解得⎩⎪⎨⎪⎧a 1=-9,d =3.于是,S 1=-9,S 3=3×(-9)+3×22×3=-18,S 4=4×(-9)+4×32×3=-18,所以S 4=S 3,S 4<S 1,故选B.[名师微点]等差数列基本运算的常见类型及解题策略(1)求公差d 或项数n .在求解时,一般要运用方程思想. (2)求通项.a 1和d 是等差数列的两个基本元素.(3)求特定项.利用等差数列的通项公式或等差数列的性质求解.(4)求前n 项和.利用等差数列的前n 项和公式直接求解或利用等差中项间接求解. [提醒] 在求解数列基本量问题中主要使用的是方程思想,要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.考点二等差数列的判定与证明[师生共研过关][典例精析]若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.[解] (1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1, 因为S n ≠0,所以1S n -1S n -1=2,又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,所以S n =12n .当n ≥2时, a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎨⎧12,n =1,-12n (n -1),n ≥2.[变式发散]1.(变设问)本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解:因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2, 所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1).又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ·⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1),所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.2.(变条件)将本例条件“a n +2S n S n -1=0(n ≥2),a 1=12”变为“S n (S n -a n )+2a n =0(n ≥2),a 1=2”,问题不变,试求解.解:(1)证明:当n ≥2时,a n =S n -S n -1且S n (S n -a n )+2a n =0, 所以S n [S n -(S n -S n -1)]+2(S n -S n -1)=0, 即S n S n -1+2(S n -S n -1)=0, 因为S n ≠0,所以1S n-1S n -1=12.又1S 1=1a 1=12,故数列⎩⎨⎧⎭⎬⎫1S n 是以首项为12,公差为12的等差数列. (2)由(1)知1S n =n 2,所以S n =2n ,当n ≥2时,a n =S n -S n -1=-2n (n -1).当n =1时,a 1=2不适合上式,故a n =⎩⎪⎨⎪⎧2,n =1,-2n (n -1),n ≥2. [解题技法]等差数列的判定与证明方法[提醒] 如果要证明一个数列是等差数列,则必须用定义法或等差中项法.判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[过关训练]1.已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n,设b n =a n -2n3n ,求证:数列{b n }为等差数列,并求{a n }的通项公式.证明:因为b n +1-b n =a n +1-2n +13n +1-a n -2n3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n 3n +1=1, 所以{b n }为等差数列, 又b 1=a 1-23=0,所以b n =n -1, 所以a n =(n -1)·3n +2n .2.已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1. (1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)证明:因为1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,所以b n +1-b n =13,所以数列{b n }是等差数列. (2)由(1)及b 1=1a 1-1=12-1=1, 知b n =13n +23,所以a n -1=3n +2,所以a n =n +5n +2.考点三等差数列的性质与应用[师生共研过关][典例精析](1)(2018·咸阳二模)等差数列{a n }的前n 项和为S n ,若a 4,a 10是方程x 2-8x +1=0的两根,则S 13=( )A .58B .54C .56D .52(2)已知等差数列{a n }的前10项和为30,它的前30项和为210,则前20项和为( ) A .100 B .120 C .390D .540(3)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________.[解析] (1)∵a 4,a 10是方程x 2-8x +1=0的两根, ∴a 4+a 10=8,∴a 1+a 13=8, ∴S 13=13×(a 1+a 13)2=13×82=52.(2)设S n 为等差数列{a n }的前n 项和, 则S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+(S 30-S 20),又等差数列{a n }的前10项和为30,前30项和为210, ∴2(S 20-30)=30+(210-S 20),解得S 20=100.(3)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d =6,∴d =1. 故S 2 0192 019=S 11+2 018d =-2 014+2 018=4, ∴S 2 019=4×2 019=8 076.[答案] (1)D (2)A (3)8 076[解题技法]一般地,运用等差数列性质可以优化解题过程,但要注意性质运用的条件,如m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *);数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列;⎩⎨⎧⎭⎬⎫S n n 也成等差数列.等差数列的性质是解题的重要工具. [过关训练]1.(2019·聊城模拟)设等差数列{a n }的前n 项和为S n ,若S 13=104,a 6=5,则数列{a n }的公差为( )A .2B .3C .4D .5解析:选B 设等差数列{a n }的公差为d . 因为S 13=104,所以13(a 1+a 13)2=104,所以13a 7=104,解得a 7=8.因为a 6=5,所以d =a 7-a 6=8-5=3.2.(2018·宁德二检)已知等差数列{a n }满足a 3+a 5=14,a 2a 6=33,则a 1a 7=( ) A .33 B .16 C .13D .12解析:选C 设等差数列{a n }的公差为d , 因为a 3+a 5=14,所以a 2+a 6=14,又a 2a 6=33,所以⎩⎪⎨⎪⎧ a 2=3,a 6=11或⎩⎪⎨⎪⎧a 2=11,a 6=3.当⎩⎪⎨⎪⎧a 2=3,a 6=11时,d =11-36-2=2,所以a 1a 7=(a 2-d )(a 6+d )=13;当⎩⎪⎨⎪⎧a 2=11,a 6=3时,d =3-116-2=-2,所以a 1a 7=(a 2-d )(a 6+d )=13. 综上,a 1a 7=13,故选C.3.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a 11b 11=________.解析:由等差数列前n 项和的性质, 得a 11b 11=S 21T 21=2×213×21+1=2132.答案:2132考点四等差数列前n 项和的最值问题[师生共研过关][典例精析]在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] 法一 通项法 设等差数列{a n }的公差为d .由3a 2=11a 6,得3×(13+d )=11×(13+5d ),解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得132≤n ≤152.因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7×(13-2×7+15)2=49.法二 二次函数法 设等差数列{a n }的公差为d .由3a 2=11a 6,得3×(13+d )=11×(13+5d ),解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] 49[解题技法]求数列前n 项和的最值的方法(1)通项法:①若a 1>0,d <0,则S n 必有最大值,其n 的值可用不等式组⎩⎪⎨⎪⎧a n ≥0,a n +1≤0来确定;②若a 1<0,d >0,则S n 必有最小值,其n 的值可用不等式组⎩⎪⎨⎪⎧a n ≤0,a n +1≥0来确定.(2)二次函数法:等差数列{a n }中,由于S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d2n ,可用求函数最值的方法来求前n 项和的最值,这里应由n ∈N *及二次函数图象的对称性来确定n 的值.(3)不等式组法:借助S n 最大时,有⎩⎪⎨⎪⎧S n ≥S n -1,S n ≥S n +1(n ≥2,n ∈N *),解此不等式组确定n的范围,进而确定n 的值和对应S n 的值(即S n 的最值).[过关训练]1.已知等差数列{a n }的前n 项和是S n ,若S 15>0,S 16<0,则S n 的最大值是( ) A .S 1 B .S 7 C .S 8D .S 15解析:选C 由等差数列的前n 项和公式可得S 15=15a 8>0,S 16=8(a 8+a 9)<0,所以a 8>0,a 9<0,则d =a 9-a 8<0,所以在数列{a n }中,当n <9时,a n >0,当n ≥9时,a n <0, 所以当n =8时,S n 最大,故选C.2.(2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. 解:(1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)由(1)得S n =n (a 1+a n )2=n 2-8n =(n -4)2-16, 所以当n =4时,S n 取得最小值,最小值为-16.[课时跟踪检测]一、题点全面练1.等差数列{a n }中,a 4+a 8=10,a 10=6,则公差d =( ) A.14 B.12 C .2D .-12解析:选A 由a 4+a 8=2a 6=10,得a 6=5,所以4d =a 10-a 6=1,解得d =14.2.(2019·沈阳质量监测)在等差数列{a n }中,若S n 为{a n }的前n 项和,2a 7=a 8+5,则S 11的值是( )A .55B .11C .50D .60解析:选A 设等差数列{a n }的公差为d ,由题意可得2(a 1+6d )=a 1+7d +5,得a 1+5d =5,则S 11=11a 1+11×102d =11(a 1+5d )=11×5=55,故选A. 3.(2018·泉州期末)等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 6+a 9=27,则数列{a n }的前9项和S 9等于( )A .99B .66C .144D .297解析:选A 由等差数列的性质可得a 1+a 7=2a 4,a 3+a 9=2a 6,又∵a 1+a 4+a 7=39,a 3+a 6+a 9=27,∴3a 4=39,3a 6=27,解得a 4=13,a 6=9,∴a 4+a 6=22,∴数列{a n }的前9项和S 9=9(a 1+a 9)2=9(a 4+a 6)2=9×222=99. 4.(2019·广州五校联考)设等差数列{a n }的前n 项和为S n ,若a m =4,S m =0,S m +2=14(m ≥2,且m ∈N *),则a 2 019的值为( )A .2 020B .4 032C .5 041D .3 019 解析:选B 由题意得⎩⎪⎨⎪⎧ a m =a 1+(m -1)d =4,S m =ma 1+m (m -1)2d =0,S m +2-S m =a m +1+a m +2=2a 1+(m +m +1)d =14,解得⎩⎪⎨⎪⎧ a 1=-4,m =5,d =2,∴a n =-4+(n -1)×2=2n -6,∴a 2 019=2×2 019-6=4 032.故选B.5.(2019·长春质检)等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时n 的值为( )A .6B .7C .8D .9解析:选C 由d >0可得等差数列{a n }是递增数列,又|a 6|=|a 11|,所以-a 6=a 11,即-a 1-5d =a 1+10d ,所以a 1=-15d 2,则a 8=-d 2<0,a 9=d 2>0,所以前8项和为前n 项和的最小值,故选C.6.设等差数列{a n }的前n 项和为S n ,若a 6=2a 3,则S 11S 5=______. 解析:S 11S 5=112(a 1+a 11)52(a 1+a 5)=11a 65a 3=225. 答案:225 7.等差数列{a n }中,已知S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10=________.解析:设公差为d ,∵S 99-S 77=2,∴9-12d -7-12d =2, ∴d =2,∵a 1=-9,∴S 10=10×(-9)+10×92×2=0. 答案:08.(2018·广元统考)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+n ,则a 1+a 22+…+a n n =________.解析:当n =1时,a 1=2⇒a 1=4, 又a 1+a 2+…+a n =n 2+n ,①所以当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+(n -1)=n 2-n ,② ①-②得a n =2n ,即a n =4n 2,所以a n n =4n 2n =4n , 则⎩⎨⎧⎭⎬⎫a n n 构成以4为首项,4为公差的等差数列. 所以a 1+a 22+…+a n n =(4+4n )n 2=2n 2+2n . 答案:2n 2+2n9.(2018·大连模拟)已知数列{a n }的各项均为正数,其前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.解:(1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,所以a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,所以两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数矛盾,所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为等差数列.(2)由(1)知a 1=3,数列{a n }的公差d =1,所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2.10.已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65.解:(1)由题意知(2a 1+d )(3a 1+3d )=36,将a 1=1代入上式,解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4. 即所求m 的值为5,k 的值为4.二、专项培优练(一)易错专练——不丢怨枉分1.若{a n }是等差数列,首项a 1>0,a 2 018+a 2 019>0,a 2 018·a 2 019<0,则使前n 项和S n >0成立的最大正整数n 是( )A .2 018B .2 019C .4 036D .4 037解析:选C 因为a 1>0,a 2 018+a 2 019>0,a 2 018·a 2 019<0,所以d <0,a 2 018>0,a 2 019<0,所以S 4 036=4 036(a 1+a 4 036)2=4 036(a 2 018+a 2 019)2>0,S 4 037=4 037(a 1+a 4 037)2=4 037·a 2 019<0,所以使前n 项和S n >0成立的最大正整数n 是4 036. 2.(2019·武汉模拟)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为( )A .-10B .-12C .-9D .-13解析:选B 设等差数列{a n }的公差为d ,∵a 3+a 7=36,∴a 4+a 6=36,又a 4a 6=275,联立,解得⎩⎪⎨⎪⎧ a 4=11,a 6=25或⎩⎪⎨⎪⎧ a 4=25,a 6=11,当⎩⎪⎨⎪⎧ a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,∴a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧ a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,∴a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12.3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析:由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n-10≥0,得n ≥5,∴当n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.答案:130(二)交汇专练——融会巧迁移4.[与方程交汇]若等差数列{a n }中的a 3,a 2 019是3x 2-12x +4=0的两根,则log 14a 1 011=________.解析:因为a 3和a 2 019是3x 2-12x +4=0的两根,所以a 3+a 2 019=4.又a 3,a 1 011,a 2 019成等差数列,所以2a 1 011=a 3+a 2 019,即a 1 011=2,所以log 14a 1 011=-12. 答案:-125.[与不等式恒成立交汇]设等差数列{a n }的前n 项和为S n ,且S 5=a 5+a 6=25.(1)求{a n }的通项公式;(2)若不等式2S n +8n +27>(-1)n k (a n +4)对所有的正整数n 都成立,求实数k 的取值范围.解:(1)设公差为d ,则5a 1+5×42d =a 1+4d +a 1+5d =25, ∴a 1=-1,d =3.∴{a n }的通项公式a n =3n -4.(2)由题意知S n =-n +3n (n -1)2,2S n +8n +27=3n 2+3n +27,a n +4=3n ,则原不等式等价于(-1)n k <n +1+9n对所有的正整数n 都成立. ∴当n 为奇数时,k >-⎝⎛⎭⎫n +1+9n 恒成立; 当n 为偶数时,k <n +1+9n恒成立. 又∵n +1+9n ≥7,当且仅当n =3时取等号,∴当n 为奇数时,n +1+9n在n =3上取最小值7, 当n 为偶数时,n +1+9n 在n =4上取最小值294, ∴不等式对所有的正整数n 都成立时,实数k 的取值范围是⎝⎛⎭⎫-7,294.。
等差数列及其前n项和知识点讲解+例题讲解(含解析)

等差数列及其前n 项和一、知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 小结:1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30, 解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 答案 B3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4 解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.答案 S 5考点一 等差数列基本量的运算【例1】 (1)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15 解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4.法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.答案 (1)C (2)B【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于()A.3B.4C.log 318D.log 324(2)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)A (2)30考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23. =2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27 解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4. (2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110三、课后练习1.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.答案 B2.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1), 所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0, ∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 1304.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81, ∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9,∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。