函数连续 函数可微 函数可导 偏导数存在 偏导数连续之间的关系
(整理)二元函数连续性、偏导数及可微性的讨论.

西安文理学院数学系本科毕业论文开题报告注:此表前4项由学生填写后,交指导教师签署意见,经主管系主任审批后,才能开题。
西安文理学院数学系本科毕业论文进度表分类号:西安文理学院数学系学士学位论文二元函数连续性、偏导数及可微性的讨论系院名称数学系指导老师胡洪萍学生姓名韩晓莉学生学号 021********专业、班级数学与应用数学06级2班提交时间二〇一〇年五月二十一西安文理学院数学系二元函数连续性、偏导数及可微性的讨论韩晓莉(西安文理学院 数学系,陕西 西安 710065)摘要: 本文对多元函数微分学中连续、偏导数及可微三个概念之间的关系作了较为详细的论述,并给出了简洁全面的证明,同时给出相应的反例加以说明,用实例说明了它们的无关性与在一定条件下所具有的共性.关键词: 二元函数;连续;偏导数;可微多元函数微分学的内容与一元函数微分学的内容大体上是平行的,但在注意多元函数与一元函数的共性的同时,特别要注意多元函数所具有的特性.二元函数的连续性、偏导数及可微性是数学分析中的一个重要概念,在一般的教材中对于该部分内容的介绍比较粗略,比较浅显,本文就二元函数连续性、偏导数及可微性在教材相关内容的基础上进行进一步的探讨、研究,对教材内容做一些适当的补充和扩展,为后继课程的学习奠定基础.1 二元函数连续、偏导、可微的定义定义1 设f 为定义在点集2D R ⊂上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点).对于任给的正数ε,总存在相应的正数δ,只要0(;)P U P D δ∈,就有0()(),f P f P ε-< 则称f 关于集合D 在点0P 连续,也称f 在点0P 连续.若f 在D 上任何点都关于集合D 连续,则称f 为D 上的连续函数.定义2 设函数()y x f z ,=在点),(00y x 的某一邻域内有定义,当y 固定在0y ,而x 在0x 处有增量x ∆时,相应地函数有增量()()0000,,y x f y x x f -∆+如果极限()()xy x f y x x f x ∆-∆+→∆00000,,lim存在,则称此极限为函数()y x f z ,=在点),(00y x 处对x 的偏导数.如果函数()y x f z ,=在区域D 内每一点()y x ,处对x (或对y )的偏导数都存在,那么这个偏导数就是x ,y 的函数,称它为函数()y x f z ,=对自变量x (或对y )的偏导函数.定义3 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,对于()0P U 中的点()()y y x x y x P ∆+∆+=00,,,若函数f 在点0P 处的全增量可表示为 ()()()ρο+∆+∆=-∆+∆+=∆y B x A y x f y y x x f z ,,00,其中A,B 是仅与点0P 有关的常数,22y x ∆+∆=ρ,()ρο是较ρ高阶的无穷小量,则称函数f 在点0P 处可微,并称上式中关于x ∆,y ∆的线性函数A x ∆+B y ∆为函数f 在点0P 的全微分,记作()y B x A y x df ∆+∆=00, .2 二元函数的连续性一元函数若在某点存在左导数和右导数,则这个一元函数必在这点连续,但对于二元函数()y x f ,来说,即使它在某点()000,y x P 既存在关于x 的偏导数()00,y x f x ,又存在关于y 的偏导数()00,y x f y ,()y x f ,也未必在点()000,y x P 连续.不过,我们却有如下定理:定理1 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f ,0作为y 的一元函数在点y =0y 连续,()y x f x ,在()0P U 内有界,则()y x f ,在点()000,y x P 连续.证明 任取()y y x x ∆+∆+00,∈()0P U , 则()()0000,,y x f y y x x f -∆+∆+= ()()()()00000000,,,,y x f y y x f y y x f y y x x f -∆++∆+-∆+∆+ (1) 由于()y x f x ,在()0P U 存在,故对于取定的y y ∆+0, ()y y x f ∆+0,作为x 的一元函数在以0x 和0x +x ∆为端点的闭区间上可导,从而据一元函数微分学中的拉格朗日中值定理,存在θ∈(0 ,1) ,使()()()x y y x x f y y x f y y x x f x ∆∆+∆+=∆+-∆+∆+000000,,,θ将它代入(1) 式, 得()()0000,,y x f y y x x f -∆+∆+= ()()()000000,,,y x f y y x f x y y x x f x -∆++∆∆+∆+θ . (2) 由于()∈∆+∆+y y x x 00,θ()0P U ,故()y y x x f x ∆+∆+00,θ有界,因而当()()0,0,→∆∆y x 时, 有()y y x x f x ∆+∆+00,x ∆→0.又据定理的条件知,()y x f ,0在y =0y 连续,故当()()0,0,→∆∆y x 时, 又有()()0000,,y x f y y x f -∆+→0.所以, 由(2) 知, 有lim →∆→∆y o x [()()0000,,y x f y y x x f -∆+∆+] = 0.这说明()y x f ,在点()000,y x P 连续.推论1 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f ,0作为y 的一元函数在点y =0y 连续,()y x f x ,在点()000,y x P 连续,则()y x f ,在点()000,y x P 连续.证明 由于()y x f x ,在点()000,y x P 连续,故()y x f x ,必在点()000,y x P 的某邻域内有界,因而据定理1 ,()y x f ,在点()000,y x P 连续.推论2 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义. 若()y x f x ,在()0P U 有界, ()00,y x f y 存在,则()y x f , 在点()000,y x P 连续.证明 由于()00,y x f y 存在,故()y x f ,0作为y 的一元函数在点y =0y 连续,因而据定理1 ,()y x f ,在点()000,y x P 连续.推论3 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 内有定义,若()y x f x ,在点()000,y x P 连续, ()00,y x f y 存在,则()y x f ,在点()000,y x P 连续.证明 由于()y x f x ,在点()000,y x P 连续,故()y x f x ,必在点()000,y x P 的某邻域内有界. 又由于()00,y x f y 存在,故()y x f ,0作为y 的一元函数在点y =0y 连续,因而据定理1 ,()y x f ,在点()000,y x P 连续. 同理可证如下的定理2及其推论.定理2 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 有定义,()y x f y ,在()0P U 内有界,()0,y x f 作为x 的一元函数在点x =0x 连续,则()y x f ,在()000,y x P 连续.推论1 设函数()y x f z ,=在点()000,y x P 的某邻域内()0P U 有定义, ()y x f y ,在点()000,y x P 连续, ()0,y x f 作为x 的一元函数在点x =0x 连续,则()y x f ,在点()000,y x P 连续.推论2 设函数()y x f z ,=在点()000,y x P 的某邻域内()0P U 有定义,()y x f y ,在()0P U 内有界, ()00,y x f x 存在,则()y x f ,在点()000,y x P 连续.推论3 设函数()y x f z ,=在点()000,y x P 的某邻域()0P U 有定义, ()y x f y , 在点()000,y x P 连续, ()00,y x f x 存在,则()y x f ,在点()000,y x P 连续. 3 二元函数()y x f ,在点()00,y x 偏导与可微的关系定理3 若二元函数()y x f ,在点()y x P ,可微,则f 在该点关于每个自变量的偏导数存在且为y x f f ,.证明 如果函数在点()y x P ,可微,()∈∆+∆+y y x x P ,0P 的某个邻域,则()ρο+B∆+A∆=∆y x z 总成立,当y ∆=0,上式仍成立, 此时,x ∆=ρ,()()()x x y x f y x x f ∆+A∆=-∆+ο,,,()()x x f xy x f y x x f =∆-∆+→∆,,lim所以x f 存在,同理可证y f 存在.注意 函数()y x f ,在某点()y x ,可微,()y x f ,在该点偏导数必存在;但()y x f ,在某点()y x ,偏导数存在,函数在该点却不一定可微. 例1 证明函数()y x f ,=xy 在原点()0,0存在两个偏导数但不可微.证明 由于()0,0x f =()()xf x f x ∆-∆→∆0,00,lim0 =xx ∆→∆0lim 0=0 ()0,0y f =()()yf y f y ∆-∆→∆0,0,0lim=yy ∆→∆0lim 0=0所以函数在原点两个偏导数存在.下证函数在原点不可微,用反证法,设函数在原点可微,于是 df =()0,0x f x ∆+()0,0y f y ∆=0f ∆=f (0+x ∆,0+y ∆)-f (0,0)=y x ∆∆ 特别取x ∆=y ∆,有f ∆=y x ∆∆=2x ∆=x ∆ 22y x ∆+∆=ρ=2x ∆ 所以xx dff x ∆∆=-∆→∆→2limlimρρ=21≠0这说明df f -∆比ρ不是高阶无穷小,(当0→ρ时)此与可微的定义矛盾,故函数()y x f z ,==xy 在原点()0,0不可微.4 二元函数()y x f ,在点()00,y x 可微与连续的关系定理4 若二元函数()y x f ,在其定义域内一点()y x ,可微,则f 在该点必然连续.证明 事实上()ρο+B∆+A∆=∆y x z ,0lim 0=∆→z ρ,()()[]()y x f z y x f y y x x f y x ,,lim ,lim 00=∆+=∆+∆+→→∆→∆ρ故f 在()y x ,连续.注意 函数()y x f ,在某点()y x ,可微,则()y x f ,在该点连续;但()y x f ,在某点()y x ,连续,函数在该点却不一定可微.例2 证明函数()y x f ,=22sin y x +在()0,0点连续,但在该点不可微. 证明 ()200,R y x ∈∀,有()()2202200sin sin ,,y x y x y x f y x f +-+=- =22sin2cos 2202222022y x y x y x y x +-++++≤22022y x y x +-+ ()()2020y y x x -+-≤则ε∀>0,εδ=∃ ,当()()2020y y x x -+-<δ时,有()()00,,y x f y x f -<ε 则f 在()00,y x 连续,即在()0,0点连续. 又因为()()xx x f x f x x ∆∆=∆-∆→∆→∆sin lim 0,00,lim00不存在()()y y y f y f y y ∆∆=∆-∆→∆→∆sin lim0,0,0lim 00不存在 所以f 在()0,0点不存在偏导数,即在该点不可微. 5 二元函数()y x f ,在点()00,y x 连续、偏导、可微的关系对于二元函数可微的充分性条件,一般的数学分析教材如华东师范大学编的《数学分析》是这样叙述的:[]1定理 若函数()y x f z ,=的偏导数在点()00,y x 的某邻域内存在,且x f 与y f 在点()00,y x 处连续,则函数f 在点()00,y x 可微.关于二元函数可微的充分性条件,如果完全放弃对两个偏导数的连续性要求,从另一个条件出发,仍可得到可微的充分条件的另一命题.定理5 若函数()y x f z ,=在点()000,y x P 的邻域G 内()y x f x ,连续,()00,y x f y 存在,则函数f 在点()00,y x 可微.证明 对于邻域G 内任意一点()y y x x ∆+∆+00,,函数有全增量 z ∆=()()0000,,y x f y y x x f -∆+∆+=()()()()00000000,,,,y x f y y x f y y x f y y x x f -∆++∆+-∆+∆+由于一元函数()y y x f ∆+0,在点()y y x ∆+00,的邻域G 内满足微分中值定理条件,有()()()x y y x x f y y x f y y x x f x ∆∆+∆+=∆+-∆+∆+000000,,,θ(0<θ<1)已知()y x f x ,在点()000,y x P 连续,故有()x y y x x f x ∆∆+∆+00,θ=()x x y x f x ∆+∆α00,(0lim 0=→αρ,22y x ∆+∆=ρ)又由于()00,y x f y 存在,故一元函数()y x f ,0在0y 可导,于是有()()()y y y x f y x f y y x f y ∆+∆=-∆+β000000,,, (0lim 0=→βρ)从而有z ∆=()()0000,,y x f y y x x f -∆+∆+ =()()y x y y x f x y x f y x ∆+∆+∆+∆βα0000,,而 ρβραρβαy x yx ∆⋅+∆⋅≤∆+∆ 0→+≤βα (0→ρ)或 ()ροβα=∆+∆y x ,于是 ()()()ρο+∆+∆=∆y y x f x y x f z y x 0000,, 即函数f 在点()00,y x 可微.注意 这个条件是可微的充分条件并非必要条件,即()y x f z ,=在()00,y x 的邻域G 内()00,y x f y 存在但()y x f x ,不连续,但()y x f ,在点()00,y x 也可微.例3 设函数()y x f ,=()⎪⎩⎪⎨⎧++,0,1sin 2222y x y x 002222=+≠+y x y x ,讨论()y x f ,在原点 (1)()0,0y f 是否存在 (2)x f 是否连续 (3)是否可微.解 (1)由定义知()0,0y f =()()yf y f y ∆-∆→∆0,0,0lim=yy y y ∆∆∆→∆2201sinlim=0 所以()0,0y f 是否存在.(2)因为当022≠+y x 时,()y x f ,偏导数存在,故()⎪⎩⎪⎨⎧⎪⎪⎭⎫⎝⎛++-+=,0,1cos 11sin 2,222222y x y x y x x y x f x 002222=+≠+y x y x , 而()y x f x y x ,lim 00→→不存在,故()y x f ,在原点不连续.(3)因为()22221siny x y x z ∆+∆∆+∆=∆,01sinlim lim2==-∆→→ρρρρρdzz所以()y x f ,在原点可微.对于二元函数()y x f ,在某点()00,y x 的连续性与偏导数存在,两者之间没有必然的联系,即()y x f ,在某点()00,y x 偏导数存在与否,与其在该点是否连续无关.例4 证明函数()y x f ,=22y x +(圆锥)在原点的连续性,但偏导数不存在.证明 因为()()()()()220,0,0,0,lim,limy x y x f y x y x +=→→=0 =()0,0f 所以()y x f ,在原点连续.又因为()()xf x f x f x x x ∆-∆=∆∆→∆→∆0,00,lim lim 00=x x x ∆∆→∆0lim=xx x ∆∆→∆0lim此极限不存在,因此()y x f ,在原点关于x 的偏导数不存在,同理可证,()y x f ,在原点关于y 的偏导数也不存在.例5 证明函数()y x f ,=⎪⎩⎪⎨⎧+,0,22y x xy002222=+≠+y x y x ,在原点存在偏导数但不连续.证明 由偏导数的定义有()()()xf x f f x x ∆-∆=→∆0,00,lim 0,00 =xx ∆-→∆00lim 0=0同理可证()0,0y f =0,即在原点关于x 与y 的偏导数存在. 又因为当动点()y x ,沿直线mx y =而趋于定点()0,0时,由于此时()()21,,m mmx x f y x f +==所以()()()()mx x f y x f x mxy y x ,lim ,lim 00,0,→=→==21mm+ 此结果说明动点沿不同斜率m 的直线趋于定点时,对应得极限值也不同,故在原点没有极限,从而不连续.以上两例说明()y x f ,在某点()00,y x 偏导数存,()y x f ,在点()00,y x 可以不连续;()y x f ,在某点()00,y x 连续,()y x f ,在点()00,y x 偏导数也可能不存在.即()y x f ,在某点()00,y x 偏导数存在与否,与其在该点是否连续无关.结束语本文以上的讨论说明了函数()y x f ,在某点()00,y x 的连续、偏导数及其在该点是否可微之间的关系,它们虽然没有直接的联系,但当偏导数存在且连续时,其可微性、连续性都存在了.[参考文献][1] 华东师范大学数学系. 数学分析(下)[M] . 北京: 高等教育出版社,2001: 100 – 112[2] 吉米多维奇. 数学分析习题集[M] . 北京: 人民教育出版社, 1958: 62-78[3]马振民. 数学分析的方法与技巧选讲[M]. 兰州: 兰州大学出版社, 1999: 36-54.[4] 裴礼文. 数学分析中的典型问题与方法[M]. 北京: 北京高等教育出版社, 1993: 86-97.[5]华东师范大学数学系. 数学分析[M] . 北京: 人民教育出版社, 1981:137-160.[6] 李超. 有关多元函数连续性的几个新结论[J]. 韶关学院学报(自然科学版).2002,23(6): 1-6.[7] 周良正,王爱国. 偏导数存在,函数连续及可微的关系[J]. 高等函授学报(自然科学版).2005,19(5): 1-4.[8] 何鹏,余文辉,雷敏敛. 二元函数连续、可偏导、可微等诸条件间关系的研究[J]. 南昌高专学报. 2005,61(6): 1-2.[9] 黄梅英. 浅谈二元函数可微性[J]. 三名师专学报. 2000,17(1): 1-5.[10] 龚俊新. 二元函数连续、偏导、可微之间的关系[J]. 湖北师范学院学报(自然科学版).2000,20(3): 1-3.Dual function continuity, partial derivative anddifferentiability discussionHAN Xiao-li(Department of Mathematics, Xi’an University of Arts and Science, Xi’an710065,China)Abstract:This article to the function of many variables differential calculus in continuously, between the partial derivative and the differentiable three concept's relations has made a more detailed elaboration, and has given the succinct comprehensive proof, simultaneously gives the corresponding counter-example to explain, explained with the example their independency with the general character which has under the controlled condition.Key words:dual function; continuously;partial derivative; differentiable致谢在论文完成之际,我要特别感谢我的指导老师胡洪萍老师,感谢她的热情关怀和悉心指导。
高等数学可微可导连续有什么联系

高等数学可微可导连续有什么联系
在高等数学中,连续、可微和可导都是描述函数的性质的概念。
它们之间有如下联系:
1. 连续性与可微性的联系:若一个函数在某一点处可微,则它在该点处也是连续的。
这是因为可微性要求函数在某一点附近能够通过线性近似来描述,而线性近似的过程本质上是一个连续的过程。
2. 可导性与连续性的联系:若一个函数在某一点处可导,则它在该点处也是连续的。
这是因为可导性要求函数在某一点附近能够通过切线来描述,而切线在该点处存在且连续。
3. 可微性与可导性的联系:在一些情况下,可微和可导是等价的概念。
例如,如果一个函数在某一段区间内可微,则它在该段区间内也是可导的,并且导数等于函数的导函数。
这是因为可微性和可导性都关注函数在微小区间内的行为,而在这种情况下,它们的定义是相容的。
需要注意的是,虽然可微通常意味着可导,但可导不一定意味着可微。
例如,函数f(x) = |x|在x=0处是不可微的,但是在该
点是可导的。
另外,可微性和可导性也与函数的定义域和值域有关,需要根据具体情况判断它们之间的关系。
知识点五(多元函数微分学及其应用)

(3)连续、偏导数存在和可微之间的关系在点处连续、偏导数存在、可微、存在连续的偏导数之间的关系是:在点处存在连续的偏导数在点处可微在点处连续在点处偏导数存在.3、多元复合函数求导法(1)一元函数与多元函数复合的情形如果函数及都在点可导,函数在对应点具有连续偏导数,则复合函数在点可导,且有.(2)多元函数与多元函数复合的情形如果函数及都在点具有对及对的偏导数.函数在对应点具有连续的偏导数,则复合函数在点的两个偏导数存在,且有,.这里有两个自变量和两个中间变量,随着自变量个数与中间变量个数的变化,链导法公式也因之而异,但如果能搞清楚复合函数结构中哪些是自变量,哪些是中间变量以及它们的个数,则就抓住了复合函数求导的关键.如果自变量只有一个,不论中间变量的个数是多少,所求得的导数就是全导数.值得注意的是,对自变量兼作中间变量的情形,求导时往往容易弄混.例如下面的情形:,则复合函数对,的偏导数为,.这里与是不同的,是将复合函数中的看成不变而对的偏导数,是把中的及都看成不变而对的偏导数.与也有类似的区别.读者如能领会此点,就不难正确理解公式中的偏导符号的意义了.4、隐函数的求导公式(1)若是由方程所确定的一元隐函数.则且.(2)若是由方程所确定的二元隐函数.则.求隐函数的一阶导数或偏导数时,首先要认清公式中或中哪个为自变量,哪个为因变量,然后套用公式,值得注意的是,求二阶偏导数不能用上面的公式.5、偏导数的应用(1)偏导数的几何应用①设空间曲线方程为 .则曲线上点处的切线方程为法平面方程为.②空间曲线的方程为.则曲线在点处的切线方程为,法平面方程为.③空间曲线为则曲线在点处切线方程为.法平面方程为.④若曲面方程为.则在点的切平面方程为法线方程为.⑤曲面方程为.则曲面在点处的切平面方程.在点处的的法线方程为.(2)偏导数在经济上的应用主要表现为求边际成本、边际利润和交叉弹性,读者应注意其内在的经济意义.6、方向导数与梯度一般地,方向导数是单侧的,偏导数是双侧的,如函数沿着方向的方向导数存在,但不存在.若在点可微,则在该点它沿任何方向的方向导数均存在,且=(其中,分别为与轴和轴正向的交角,为的方向余弦)且,.梯度是一个向量,梯度的方向是方向导数变化最快的方向,梯度的模为方向导数的最大值.7、多元函数的极值(1)多元函数极值的概念与一元函数完全一样,函数在一点取得极值的含义就是必须大于(或小于)它在的某个邻域上的所有值,只是一元函数中的邻域是一维的区间,而二元函数是二维平面区域.可导函数在取得极值的必要条件是,.由于它们仅仅是必要条件,所以满足,的点不一定是极值点,但是可以肯定,凡不满足这两个条件的点就一定不会是极值点.换句话说,即这两个条件虽然不能用来肯定极值点,但却可起到筛选极值点的作用.因此,我们又引出驻点概念,并给出判定极值点的充分条件.(2)多元函数最值与拉格朗日乘数法在实际问题中,需要我们解决的往往是求函数在特定的有界闭区域上的最大值与最小值.我们知道,在有界闭区域上连续函数必有最大值与最小值,它们既可以在闭域内部取得,也可在边界上取得.与一元函数一样,如果在闭域内取得,则它一定也是极大值或极小值.值得注意的是,函数的最大值或最小值也可在函数不可导的点处取得.例如函数在原点处不可导,但它在原点得最大值1. 因此,求连续函数在有界闭域上的最大值、最小值的方法是:①计算出函数在区域内所有驻点、不可导的点(即所有的临界点)处的值;②将①中的这些值与区域边界上函数的最值一起加以比较,其中最大者就是最大值,最小者就是最小值.③在求最大、最小值的实际问题中,目标函数的各自变量之间往往还有附加的约束条件,这就形成了条件极值的概念.一般说来,条件极值问题可以化为无条件极值问题来处理,方法是利用约束条件将目标函数中多余的自变量消去,使之成为求另一个新的目标函数的无条件极值问题.但这种转化往往有一定的困难,这时我们可引入所谓拉格朗日乘数,它与目标函数及约束条件中的函数构成拉格朗日函数,把其中的乘数也看成是一个变量,然后按无条件极值写出求极值的必要条件,由此即可得到一组求解驻点的联立方程组:拉格朗日乘数法的优点在于引进了拉格朗日乘数后,可以把中的变量都当作自变量,然后按无条件极值写出形式完全对称的必要条件.因此,这个方法还便于推广到有多个约束条件的情形.。
多元函数偏导数连续和可微的关系

多元函数偏导数连续和可微的关系一、前言多元函数是数学中的重要概念,它在物理、经济学、工程学等众多领域都有广泛的应用。
而多元函数偏导数连续和可微的关系是多元函数研究中的一个重要问题,本文将详细介绍这个问题。
二、多元函数偏导数的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数的定义。
对于一个二元函数$f(x,y)$,它在点$(x_0,y_0)$处对$x$求偏导数,记为$\frac{\partial f}{\partial x}(x_0,y_0)$,表示当$y$固定在$y_0$时,$f(x,y)$对$x$的变化率。
同理,它在点$(x_0,y_0)$处对$y$求偏导数,记为$\frac{\partial f}{\partial y}(x_0,y_0)$,表示当$x$固定在$x_0$时,$f(x,y)$对$y$的变化率。
对于一个$n(n\geqslant3)$元函数$f(x_1,x_2,\cdots,x_n)$,它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数,记为$\frac{\partial f}{\partial x_i}(x_{10},x_{20},\cdots,x_{n0})$,表示当$x_j(j\neq i)$固定在$x_{j0}(j\neq i)$时,$f(x_1,x_2,\cdots,x_n)$对$x_i$的变化率。
三、多元函数偏导数连续的定义在介绍多元函数偏导数连续和可微的关系之前,我们需要先了解多元函数偏导数连续的定义。
对于一个$n(n\geqslant2)$元函数$f(x_1,x_2,\cdots,x_n)$,如果它在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数存在且连续,那么称$f(x_1,x_2,\cdots,x_n)$在点$(x_{10},x_{20},\cdots,x_{n0})$处对$x_i(i=1,2,\cdots,n)$求偏导数连续。
一元函数连续可微可导三者关系

一元函数连续可微可导三者关系一元函数的连续、可微和可导是数学中常用的概念,它们在函数研究和应用中起到了重要的作用。
本文将从人类的视角出发,以自然、流畅的语言描述一元函数连续、可微和可导三者之间的关系。
在数学中,一元函数是指只有一个自变量的函数。
连续是指函数在区间上的每个点都存在极限,并且极限值与函数在该点的函数值相等。
可微是指函数在某一点附近存在切线,并且函数在该点的函数值与切线的斜率之差趋近于零。
可导是指函数在某一点存在导数,并且导数等于切线的斜率。
一元函数的连续、可微和可导三者之间存在着紧密的联系。
首先,如果一个函数在某一点可导,那么它在该点必然连续。
这是因为可导性要求函数在该点存在切线,而切线与函数图像之间的差距随着自变量的变化趋近于零,从而保证了函数在该点的连续性。
如果一个函数在某一点可微,那么它在该点必然可导。
这是因为可微性要求函数在该点附近存在切线,而切线的斜率就是函数在该点的导数。
因此,可微性保证了函数在该点的可导性。
连续性是可微性和可导性的基础。
如果一个函数在某一点连续,那么它在该点必然可微和可导。
这是因为连续性要求函数在该点存在极限,而可微性和可导性要求函数在该点存在切线。
因此,连续性是可微性和可导性的前提条件。
一元函数的连续、可微和可导三者之间存在着密不可分的关系。
它们相互依存、相互制约,共同构成了一元函数的重要特性。
在数学研究和应用中,连续、可微和可导的性质常常被用来分析和描述函数的行为,从而帮助我们理解和解决实际问题。
例如,在物理学中,连续性、可微性和可导性的概念被广泛应用于描述物体的运动和变化。
通过对物体的位置、速度和加速度等参数进行连续、可微和可导的分析,我们可以推导出物体的运动规律,进而预测物体的未来位置和速度。
这对于研究和应用物理学具有重要的意义。
一元函数的连续、可微和可导是数学中重要的概念,它们之间存在着密切的联系。
连续性是可微性和可导性的前提条件,可微性和可导性是连续性的推论和深化。
二元函数的连续、偏导数、可微之间的关系

摘要 (1)关键词 (1)Abstract (1)Key words (1)引言 (1)1二元函数连续、偏导数、可微三个概念的定义 (1)2二元函数连续、偏导数、可微三个概念之间的关系 (2)二元函数连续与偏导数存在之间的关系 (2)二元函数连续与可微之间的关系 (3)二元函数可微与偏导数存在之间的关系 (3)二元函数可微与偏导数连续之间的关系 (4)二元函数连续、偏导数、可微的关系图 (6)参考文献 (7)致谢 (8)二元函数的连续、偏导数、可微之间的关系摘要 一元函数可微与可导等价,可导必连续.但二元函数并非如此,以下文章给出了二元函数连续、偏导数、可微之间的关系,并给出了简单的证明,且用实例说明了它们之间的无关性和在一定条件下所具有的共性.关键词 二元函数 连续 偏导数 可微The Relationship among Continuation, Partial Derivativesand Differentiability in Binary FunctionAbstract Unary function differentiable with derivative equivalent, will be continuously differentiable. But the dual function is not the case, the following article gives a continuous function of two variables, partial derivatives, can be said the relationship between them, and gives a simple show, and illustrated with examples related between them and under certain conditions have in common..Key words binary function continuation partial derivatives differentiability引言 二元函数的偏导数存在、函数连续、可微是二元函数微分学的三个重要概念.对于学习数学分析的人来说,必须弄清三者之间的关系,才能学好、掌握与之相关的理论知识.本文详细讨论这三者之间的关系.1 二元函数连续、偏导数、可微三个概念的定义定义1 设f 为定义在点集2D R ⊂上的二元函数,0D P ∈(0P 或者是D 的聚点,或者是D 的孤立点),对于任给的正数ε,总存在相应的正数δ,只要0,)(D P U P δ⋂∈,就有0)||()(f P f P ε<-,则称f 关于集合D 在点0P 连续.定义2 设函数(,),(,)z f x y x y D =∈,若00,)(y D x ∈且0,)(y f x 在0x 的某一邻域内有定义,则当极限00000000(,))(,)(,limlimx x x f x y f x y f x x y x x∆→∆→+-=∆∆∆∆存在时,则称这个极限为函数f 在点00,)(y x 关于x 的偏导数,记作0(,)|x y fx∂∂.定义3 设函数(,)z f x y =在点000,)(y P x 某邻域0()U P 内有定义,对于0()U P 中的点00,)(,)(y P x y x x y ++=∆∆,若函数f 在点0P 处的全增量可表示为0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+,其中A 、B 是仅与点0P 有关的常数,()ορρ=是较ρ高阶的无穷小量,则称函数f 在点0P 处可微.2 二元函数连续、偏导数、可微三个概念之间的关系二元函数连续与偏导数存在之间的关系例[1]122,(,)(0,0)(,)0,(,)(0,0)xyx y x yf x y x y ⎧≠⎪+=⎨⎪=⎩在(0,0)偏导数存在但不连续. 证明 因为 00(,0)(0,0)00(0,0)limlim 0x x x f x f f x x→→--===, 同理可知 (0,0)0y f =. 所以 (,)f x y 在(0,0)偏导数存在. 因为220,0limx y xyx y →→+ 极限不存在,所以 (,)f x y 在(0,0)不连续.例2[2](,)f x y =在(0,0)点连续,但不存在偏导数. 证明 因为0,00,lim (,)lim0(0,0)x y x y f x y f →→→→===,所以(,)f x y =在(0,0)点连续,因为00(,0)(0,0)(0,0)lim x x x f x f f x →→-== ,该极限不存在,同理 (0,0)y f 也不存在.所以(,)f x y =在点(0,0)连续,但不存在偏导数.此二例说明: 二元函数连续与偏导数存在不等价,偏导数存在不一定连续,连续不一定偏导数存在.这与一元函数不同.一元函数中,可导一定连续,连续不一定可导. 二元函数连续与可微之间的关系定理1[3] 若(,)z f x y =在点(,)x y 可微,则(,)z f x y =在点(,)x y 一定连续. 证明 (,)z f x y =在点(,)x y 可微,0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+ (1)所以 当0,0x y ∆→∆→时,有0z ∆→,即 (,)z f x y =在该点连续.例3[4]证明(,)(0,0)(,)0,(,)(0,0)x y f x y x y ≠==⎩在(0,0)点连续,但在(0,0)点不可微.证明 令cos ,sin x r y r θθ==,则(,)00x y r →⇔→.因为2cos sin |||cos sin |0(0)r r r r r θθθθ==≤→→,所以(,)f x y 在(0,0)点连续.按偏导数定义00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx ∆→∆→∆-===∆∆, 同理 (0,0)0y f = .若(,)f x y 在点(0,0)可微,则(0,0)(0,0)(0,0)(0,0)x y z dz f x y f f x f y ∆-=+∆+∆--∆-∆=应是ρ=较高阶的无穷小量. 因为220limlimz dzx yx y ρρρ→→∆-∆∆=∆+∆ 该极限不存在,所以(,)f x y 在点(0,0)不可微.此例说明: 二元函数在某点连续,不一定可微,但可微一定连续.这与一元函数有相同的结论.二元函数可微与偏导数存在之间的关系定理2[5] 若二元函数f 在其定义域内一点00,)(y x 处可微,则f 在该点关于每个自变量的偏导数都存在,且(1)式中的0000,),,)((x y A f y B f y x x ==.证明 因为 (,)z f x y =在点(,)x y 可微,则0000)(,)(,()A z f x x y y f x y x B y ορ++=∆=∆∆-∆+∆+.若令上式中0y ∆= ,则0000(,)(,)(||)z f x x y f x y A x x ο=+∆∆-=∆+∆, 所以 000000(,)(,)(||)lim lim x x A xf x x y f x y x A x ο∆→∆→=∆+∆-∆+=∆. 即A zx=∂∂.类似可证B z y =∂∂. 例4[6]设2222222,0(,)0,0x y x y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩,则(,)f x y 在点(0,0)偏导数存在,但在该点不可微.解 事实上(1)0(,0)(0,0)(0,0)lim0x x f x f f x →-==,(0,)(0,0)(0,0)lim0y y f y f f y→-==,故 (,)f x y 在点(0,0)偏导数存在. (2)因为200,limlimx y f dfρρ→∆→∆→∆-=,此时若令y k x ∆=∆,则230,0,lim limx y x y ∆→∆→∆→∆→=此极限显然不存在,所以0limf dfρρ→∆-不存在,所以 (,)f x y 在点(0,0)不可微.此例说明: 二元函数中,偏导数存在不一定可微;可微则偏导数存在.这与一元函数中,可微与可导等价有区别. 函数可微与偏导数连续之间的关系定理3[7] 若二元函数(,)z f x y =的偏导数在点00(,)x y 的某邻域内存在,且x f 与yf 在点00(,)x y 处连续,则函数f 在点00(,)x y 处可微.证明 我们把全增量0000,)(,)(y f x y z f x x y ++-∆=∆∆00000000[,),)][,)(,)](((y y y f x y f x x y f x y f x y =++-+++-∆∆∆∆在第一个括号里,它是函数0,)(y f x y +∆关于x 的偏增量;在第二个括号里,则是函数0(,)f x y 关于y 的偏增量.对它们分别应用一元函数的拉格朗日中值定理,得 010002,),(()x y y y z f x x y x f x y y θθ++++∆=∆∆∆∆∆ 12,10θθ<< (2) 由于x f 与y f 在点00(,)x y 处连续,因此有 01000,)(,)(x x y x y f x x y f θα++=+∆∆, (3)00200,(,)()y y y x y f x y f θβ++∆= ,(4)其中 当0,0x y ∆→∆→时,有0,0αβ→→. 将(3) ,(4)代入(2)式,则得0000(,)(,)x y x y x y z f x f y x y αβ=+∆∆∆+∆+∆. 所以 函数f 在点00(,)x y 处可微.例5[8]22()sin (,)(0,0)(,)0,(,)(0,0)x y x y f x y x y ⎧+≠⎪=⎨⎪=⎩在(0,0)处可微,但(,)x f x y 与(,)y f x y 均在(0,0)处不连续.解因为220,0lim ()sin0(0,0)x y x y f →→+==,所以 (,)f x y 在(0,0)处连续.00(,0)(0,0)(0,0)lim 0x x x f x f f x→→-===,同理 (0,0)0y f =.当220x y +≠时,0,0lim 2sinx x y f x →→=极限不存在,故(,)x f x y 在点(0,0)不连续. 同理可证(,)y f x y 在(0,0)处不连续.lim0f dfρρρ→→∆-==,所以(,)f x y 在(0,0)处可微.此例说明 二元函数偏导数连续并不是可微的必要条件.由此可知定理3是可微的充分条件.由此引出定理4,降低函数可微的条件.定理4[9] 若(,)f x y 在0()U P 内(,)x f x y 存在,且(,)x f x y 在00(,)o P x y 连续,(,)y f x y 在0P 存在,证明:f 在0P 可微.证明 0000(,)(,)f f x x y y f x y ∆=+∆+∆-00000000[(,)(,)][(,)(,)]f x x y y f x y y f x y y f x y =+∆+∆-+∆++∆- 由已知 (,)x f x y 存在,且在0(,)o x y 连续,有0000010(,)(,)(,)x f x x y y f x y y f x x y y xθ+∆+∆-+∆=+∆+∆∆11(,)(0)xf x y x x αα=∆+∆→,因为 0000000(,)(,)lim(,)y y f x y y f x y f x y y∆→+∆-=∆,所以 00000022(,)(,)(,)(0)y f x y y f x y f x y y y αα+∆-=∆+∆→ , 又因 1212||||||0x yααααρ∆+∆≤+→,所以 f 在点0P 可微. 注 此定理中(,)x f x y 与(,)y f x y 互换,结论仍然成立. 二元函数连续、偏导数、可微的关系如图二元函数连续二元函数偏导数存在二元函数可微二元函数偏导数连续参考文献[1]常庚哲,史济怀,数学分析[M].北京:高等教育出版社,:97[2]刘文灿,刘夜英,数学分析[M].西安:陕西人民出版社,:116[3]朱正佑,数学分析[M].上海:上海大学出版社,:188[4]黄玉民,李成章,数学分析[M].北京:科学出版社,:61-62[5]华东师范大学数学系. 数学分析(第二版)[M].北京:高等教育出版社,110[6]周良金,王爱国,函数连续及可微的关系[J].高等函授学报,19(5):35[7]陈纪修,於崇华,金路,数学分析(第二版)[M].北京:高等教育出版社,:142-143[8]刘新波,数学分析选讲[M].哈尔滨:哈尔滨工业大学出版社,:151[9]《大学数学名师导学丛书》编写组,数学分析名师导学[M].北京:中国水利水电出版社,2004:147-148致谢感谢老师对本论文从选题、构思、资料收集到最后定稿的各个环节给予的指引和教导,使我对分段函数的分析性质有了更深刻的认识,并最终得以完成毕业论文,对此我表示衷心的感谢,老师严谨的治学态度、丰富渊博的知识、敏锐的学术思维、精益求精的工作态度、积极进取的科研精神以及诲人不倦的师者风范是我毕生的学习楷模.通过这一阶段的努力,我的毕业论文已接近尾声,作为一个本科生的毕业论文,由于经验的匮乏,难免有许多考虑不周全的地方,如果没有老师的亲切关怀和悉心指导,完成本次毕业论文将变得十分困难.老师平日工作繁多,但在这篇论文的写作过程中,老师不辞辛劳,多次就论文中许多核心的问题做深入细致的探讨并给我提出切实可行的指导性建议,才最终得以完成本次毕业论文.老师的这种一丝不苟的负责精神,使我深受感动.在此,请允许我向尊敬的老师表示真挚的谢意.最后,还要感谢我的辅导员在这四年来对我的帮助与鼓励,以及院系的所有领导对我的栽培与支持.并向在百忙中抽出时间对本论文进行评审,并提出宝贵意见的各位老师表示衷心的感谢,致以最崇高的敬意.。
浅谈函数的连续、可导、可微的关系

【 0
处 偏 导 数 存 在 但 不 可 微 …。 = 广( ) + , 其
=
2 + y 2 : 0
△ △ 。 O
证明: 由于 函数 y = f ( x ) 在 点 处 可 导 , 有 l i m ( ) , 由函数极 限与无穷 t J , 的关 系 得
= 0, 于 是
。
.
关 系 得
= 广( ) + 0 【 , 其 中 l i m o 【 = 0于 是 l i m A y =l i m
【 , ’ ( ) ・ + 0 【 ・ 】 = 0, 因此 , 函数 y ( ) 在 该 点 处 必 连
续。
,
0 ) , 故 函数在 点 ,l i m
( ) , 得 l i m
△ 0 龇
。
l O + h x ; O ) _ l f O , O ) 一 =l 解 : ( 0 , 0 ) =l i m f i m 0 - 0 , 同理 ,
△ — △ _ ÷ 加 o
‘
’
= ( ) 。 缸 + 仅。 ,
。
( 0 , 0 ) = 0 , 但l i m 二 ( Q ) : 蛆 : ) :
的关键 , 本 文就 函数 的连 续 、 可 导、 可 微 的 关 系进 行 归 纳 整 理 , 有利 于更 准确 地理解 函数 的连 续、 可 导、 可 微 的
关系。
【 关键词】 函数 ; 连续; 可导 ; 可微
0 引 言
函数 的连续 、 可导 、 可 微 的关 系 是 高 等 数 学 中 微 分 学 的 重 难 点 。准 确 把 握 三 者 的关 系 是 学 好 微 分 学 的 关
, 即极
二元函数的连续偏导可微

二元函数的连续性、偏导及可微之间的联系二元函数连续性、偏导数存在性、及可微的定义 1.二元函数的连续性定义 设f 为定义在D 上的二元函数,0P D ∈(它或者是D 的聚点,或者是D 的孤立点) ,对于任给的正数ε,总存在相应的正数δ,只要()0;P P D δ∈⋂,就有()()0f P f P ε-<, 则称f 在P 点连续2.二元函数的偏导数定义 设函数(,)z f x y =在点000(,)P x y 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x ∆ 时,相应地函数有增量x z ∆=0000(,)(,)f x x y f x y +∆-如果 00000(,)(,)limx f x x y f x y x∆→+∆-∆存在,则称此极限为函数z (,)f x y =在点000(,)P x y 处对x 的偏导数,记作00(,)x f x y 或()00,x y fx ∂∂对y 的偏导数同理 3.二元函数的可微性定义 设函数(,)z f x y =在点()000,P x y 的某邻域()0U P 内有定义,对于()0U P 中的点()00,(,)P x y f x x y y =+∆+∆,若函数f 在0P 处的全增量z ∆可表示为:()()0000(,),z f x x y y f x y A x B y o ρ∆=+∆+∆-=∆+∆+, (1)其中AB 是仅与点P 0有关的常数,ρ=,()o ρ是较高阶的无穷小量,则称函数f 在点P 0可微.并称(1)中A x B y ∆+∆为f 在点P 0的全微分,记作000(,)P dz df x y A x B y ==∆+∆说明:1)A 、B 是与x ∆y ∆无关的常数,但与0P 可能有关;2) dz 是z ∆的线性主部0lim0z dzρρ→∆-=二元函数连续性、偏导数存在性、及可微的联系多元函数是一元函数的推广,因此它保留着一元函数的许多性质,但也有些差异,这些差异主要是由多元函数的“多元”而产生的.对于多元函数,我们着重讨论二元函数,在掌握了二元函数的有关理论和研究方法之后,在将它推广到一般的多元函数中去.本文将通过具体实例来讨论二元函数连续性、偏导数存在性、及可微的联系. 一、二元函数连续性与偏导存在性间的关系偏导存在不一定连续,反之连续不一定有偏导存在 1)函数(,)f x y 在点000(,)p x y 连续,但偏导不一定存在. 例1.证明函数(,)f xy =(0,0)连续偏导数不存在.证明:∵(,)(0,0)(,)lim (,)lim0(0,0)x y x y f x y f →→===,故函数(,)f x y =(0,0)连续.由偏导数定义:001,(0,0)(0,0)(0,0)limlim 1,x x x x f x f f x x ∆→∆→∆>⎧+∆-===⎨-∆<∆⎩故(0,0)x f 不存在.同理可证(0,0)y f 也不存在.2)函数(,)f x y 在点000(,)P x y 偏导存在,但不一定连续.例 2.证明函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处(0,0)x f ,(0,0)y f 存在,但不连续证明 : 由偏导数定义:00(0,0)(0,0)(0,0)lim lim 0x x x f x f f x x→∆→+∆-==∆=∆ 同理可求得(0,0)0y f =∵22(,)(0,0)(,)(0,0)lim (,)lim ()1(0,0)0x y x y f x y x y f →→=+=≠=故函数22,0(,)1,0x y xy f x y xy ⎧+==⎨≠⎩在点(0,0)处不连续.综上可见,二元函数的连续性与偏导存在性间不存在必然的联系. 二、二元函数的可微性与偏导间的关系1.可微性与偏导存在性1) 可微则偏导存在(可微的必要条件1)若二元函数(,)f x y 在其定义域内一点000(,)P x y 处可微,则f 在该点关于每个自变量的偏导都存在,且000000(,)(,)(,)x y df x y f x y dx f x y dy =+注1 定理1的逆命题不成立,2)偏导存在,不一定可微.例3证明函数22220(,)0,0x y f x y x y +≠=+=⎩在原点两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)lim lim 0x x x f x f f xx ∆→∆→+∆--===∆∆同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性. 用反证法.若函数f 在原点可微,则[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦应是较ρ=2200lim lim f df x y x y ρρρ→→∆-∆∆=∆+∆ 当动点(,)x y 沿直线y mx =趋于(0,0)时,则(,)(0,0)2222(,)(0,0)lim lim 11x y y mxx y xy m mx y m m →=→==+++ 这一结果说明动点沿不同斜率m 的直线趋于原点时,对应的极限值也不同.因此所讨论的极限不存在.故函数f 在原点不可微.例4. 22220(,)0,x y f x y x y +≠=+=⎪⎩在(0,0)处两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.[](0,0)(0,0)(0,0)(0,0)x y f df f x y f f dx f dy ⎡⎤∆-=+∆+∆--+=⎣⎦为此考察极限limf dfρρρ→→∆-=当动点(,)x y 沿直线y =趋于时,则(,)(0,0)(,)limlim x y y mxx y →=→==0≠因此f 在原点不可微例5. 证明函数2222222,0(,)0,0x y x y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)两个偏导存在,但不可微.证明 由偏导数定义:00(0,0)(0,0)00(0,0)limlim 0x x x f x f f x x∆→∆→+∆--===∆∆ 同理可求得(0,0)0y f =下面利用可微的定义来证明其不可微性.(0,0)(0,0)0,x y df f dx f dy =+= 222(,)(0,0)x yf f x y f x y ∆∆∆=∆∆-=∆+∆从而()222230,(0,0)222limlimlim0()()x y x y f dfx y x y x y x y ρρρρ→→∆∆→∆∆∆-∆∆∆+∆==≠=∆+∆取因此f 在原点不可微注:本题还可以说明连续不一定可微例6.证明函数2222322222,0(,)()0,0x y x y f x y x y x y ⎧+≠⎪=⎨+⎪+=⎩在(0,0)连续,且两个偏导数都存在但不可微.证明(1)∵223222()x y x y ≤+∴0,4,εδεδε∀>∃=<<∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2)又00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而222220limlim ()()f dfx y x y x y ρρρ→→∆-∆∆=∆=∆∆+∆取不存在 故 f 在原点不可微注:本题还可以说明连续不一定可微2. 偏导连续与可微1)偏导连续,一定可微.(可微的充分条件)若二元函数(,)z f x y =的偏导在点000(,)P x y 的某邻域内存在,且x f 与y f 在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 可微.注2 偏导连续是函数可微的充分而非必要条件.2)可微,偏导不一定连续例7.证明函数()222222221sin ,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有222222121(,)2sincos x x f x y x x y x y x y =-+++222222121(,)2sin cos y y f x y y x y x y x y =-+++ (1)当y=x 时,极限2200111lim (,)lim(2sin cos )22x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 200(,0)(0,0)1(0,0)limlim sin 0x x x f x f f x x x→→-===200(0,)(0,0)1(0,0)lim lim sin 0y y y f y f f y y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=2222222211(,)(0,0)()sinsin ((,):0)f f x y f x y x y x y x y ρρ∆=-=+=∀+≠+ 从而2221sin1limlimlim sin0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例8. 证明函数()2222220(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有(,)2x f x y x =(,)2y f x y y = (1)当y=x时,极限00lim (,)lim(2x x x f x x x →→=不存在,则(,)x f x y 在(0,0)点间断.同理可证(,)y f x y 在(0,0)点间断.(2)∵00(,0)(0,0)(0,0)limlim 0x x x f x f f x x→→-===00(0,)(0,0)(0,0)lim lim 0y y y f y f f y y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=(,)(0,0)(,)f f x y f f x y ∆=-=从而201cos1limlimlim cos0f dfρρρρρρρρρ→→→∆-===即函数(,)f x y 在点(0,0)可微.例9.证明函数2222221sin ,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在点(0,0)处可微,但(,)x f x y ,(,)y f x y 在(0,0)处不连续.证明 22(,),0x y x y ∀+≠,有22222222121(,)sin cos ()x x y f x y y x y x y x y =-+++22222222121(,)sin cos ()y xy f x y x x y x y x y =-+++(1)当y=x 时,极限2200111lim (,)lim(sin cos )222x x x f x x x x x x→→=-不存在,则(,)x f x y 在(0,0)点不连续.同理可证(,)y f x y 在(0,0)点不连续.(2)∵ 00(,0)(0,0)(0,0)limlim00x x x f x f f x→→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===则(0,0)(0,0)0,x y df f dx f dy =+=221(,)(0,0)sinf f x y f x y x y ∆=∆∆-=∆∆∆+∆从而()22,1limlimx y f dfx y ρρ→∆∆→∆-=∆+∆=0即函数(,)f x y 在点(0,0)可微.三、二元函数的连续性与可微性间的关系 1)可微,一定连续(可微的必要条件2)二元函数(,)f x y 在000(,)P x y 可微,则必然连续,反之不然.2)连续,不一定可微例10.证明函数3222222,0(,)0,0x x y f x y x yx y ⎧+≠⎪=+⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵322222,x x x x x y x y=⋅≤++ ∴0,,,x y x εδεδδε∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)(0,0)limlim 1x x x f x f xf xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0),x y df f x f y x =∆+∆=∆(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而20limf dfρρρ→→∆-=不存在即函数(,)f x y 在点(0,0)不可微. 注:本题也可以说明偏导存在但不一定可微.例11.证明函数222222sin(),0(,)0,0x y xy x y x y f x y x y +⎧+≠⎪+=⎨⎪+=⎩在(0,0)连续,且偏导存在但不可微. 证明:(1)∵22sin(),222x y x y x y x y xy xy x y xy ++++≤⋅=≤+∴0,,,2x yx y εδεδδε+∀>∃=<<<当时, ∴(,)(0,0)lim (,)0(0,0)x y f x y f →==故函数(,)f x y 在点(0,0)连续.(2) 00(,0)(0,0)0(0,0)lim lim 0x x x f x f f xx →→-===00(0,)(0,0)(0,0)lim lim 00y y y f y f f y→→-===(3) (0,0)(0,0)0,x y df f x f y =∆+∆=(,)(0,0)(,)f f x y f f x y ∆=∆∆-=∆∆从而0limf dfρρρ→→∆-=取y k x ∆=∆则23320022221sin (1)limlim (1)(1)x f dfk kx k k xk k ρρ→∆→∆-++=⋅=++ 不存在 故函数(,)f x y 在点(0,0)不可微.注:本题也可以说明偏导存在但不一定可微. 例12 .证明函数(,)f x y xy =在点(0,0)连续,但它在点(0,0)不可微.证明:(1)∵00lim (,)lim 0(0,0)x x y y f x y xy f →→→→===故函数(,)f x y xy =在点(0,0)连续.例13.证明函数222222,0(,)0,0xy x y x yf x y x y ⎧+≠⎪+⎪=⎨⎪⎪+=⎩在(0,0)连续 ,但不可微.证明:(1)∵2222222222x y xyx y x y x y++≤=++ ∴00lim (,)0(0,0)x y f x y f →→== 故函数(,)f x y 在点(0,0)连续.(2)不可微见例4综上所述二元函数连续性、偏导存在性及可微性间的关系如图所示:偏导连续可微连续 偏导存在补充1.确定α的值,使得函数()222222221sin ,0(,)0,0x y x y x y f x y x y α⎧++≠⎪+=⎨⎪+=⎩在点(0,0)处可微.2.设函数2222(,)sin 0(,)0,0g x y x y f x y x y ⎧+≠⎪=⎨⎪+=⎩, 证明:(1)若(0,0)0g =,g 在点(0,0)处可微,且(0,0)0dg =,则 f 在点(0,0)处可微,且(0,0)0df =.(2)若g 在点(0,0)处可导,且f 在点(0,0)处可微,则(0,0)0df =.3.确定正整数α的值,使得函数()22220(,)0,0x y x y f x y x y α⎧++≠⎪=⎨⎪+=⎩在点(0,0)处(1)连续,(2)偏导存在,(3)存在一阶连续偏导.4.设函数222222,0()(,)00,0px x y x y f x y p x y ⎧+≠⎪+=>⎨⎪+=⎩,试讨论它在(0,0)点处的连续性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即设y=f(x)是一个单变量函数,如果y在x=x0处存在导数y′=f′(x),则称y在x=x[0]处可导。
如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导定义:
(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若[f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
(2)若对于区间(a,b)上任意一点(m,f(m))均可导,则称f(x)在(a,b)上可导。
连续函数可导条件:函数在该点的左右偏导数都存在且相等。
即就是一个函数在某一点求极限,如果极限存在,则为可导,若所得导数等于函数在该点的函数值,则函数为连续可导函数,否则为不连续可导函数2、连续
函数连续必须同时满足三个条件:函数在x0处有定义;x->x0极限limf(x)存在;x->x0时limf(x)=f(x0)
定理有:函数可导必然连续;不连续必然不可导。
定义:设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy 有关系Δy=A×Δx+ο(Δx)
其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A×Δx
当x= x0时,则记作dy∣x=x0.
可微条件:
必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在。
充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
4、可积函数定义
如果f(x)在[a,b]上的定积分存在,我们就说f(x)在[a,b]上可积。
即f(x)是[a,b]上的可积函数。
函数可积的充分条件
定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。
定理3设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。
可积的必要条件:
被积函数在闭区间上有界。
总结:
对于一元函数:
函数连续不一定可导例如y=|x|
可导一定连续即连续是可导的必要不充分条件,可导是连续的充分不必要条件
函数可导必然可微
可微必可导即可导是可微的必要充分条件。