机械零件设计和计算准则

合集下载

陈立德第五版-机械设计基础 第1章机械设计概述

陈立德第五版-机械设计基础 第1章机械设计概述
在原有机械的基础上重新设计或进行局部改造。
一、设计机械零件的基本要求
工作可靠并且成本低廉;
零件的工作能力是指零件在一定的工作条件下抵抗可能出现的失效的能力,对载荷而言称为承载能力。
设计机械零件要注意以下几点:
(1)合理选择材料,降低材料费用;
(2)保证良好的工艺性,减少制造费用;
(3)尽量采用标准化、通用化设计,简化设计过程从而降低成本。
产品规划 设计任务书 原理方案设计 原理方案图 结构方案设计 总体布局设计 总装配图 施工设计 试制、实验、批 量生产、销售
由设计人员构思出多种可行方案进行分析比较,从中优选出一种方案。
设计结果以工程图及计算书的形式表达出来。
经过加工、安装及调试制造出样机,对样机进行试运行或在生产现场试用。
机械设计的内容与过程
市场调查 可行性研究 …… 功能分析 原理方案设计 …… 主参数匹配设计 主结构构形设计 …… 人机工程设计 外观设计 …… 产品部件设计 产品零件设计 …… 技术文档 样机试制 性能试验 定型批产 ……
使用功能要求 经济性要求 可靠性要求 劳动保护要求-操作方便、工作安全 造型美观、减少污染 其它专用要求
二、机械设计的基本要求
机械设计的基本要求

一部机器的质量基本上决定于设计质量,机器的设计阶段是决定机器好坏的关键。它是一个创造性的工作过程,同时也是一个尽可能多地利用已有的成功经验的工作。
§1.1 机械设计的基本要求 §1.2 机械设计的内容与过程 §1.3 机械零件的失效形式及设计计算准则 §1.4 机械零件的接触强度 §1.5 机械零件的标准化 §1.6 现代机械设计理论概述
第1章 机械设计概述
1.1 机械设计的基本要求
机械设计包括以下两种设计:

邱宣怀《机械设计》(第4版)(名校考研真题 机械零件的工作能力和计算准则)【圣才出品】

邱宣怀《机械设计》(第4版)(名校考研真题 机械零件的工作能力和计算准则)【圣才出品】

一、填空题1.若一零件的应力循环特性,,N/mm 2,此时为( ),=0.5r +a 70σ=m σ为( ),为( )。

[中南大学2000研]max σmin σ【答案】210N/mm 2;280N/mm 2;140N/mm 2【解析】根据题意可得min max max min a =0.5702r σσσσσ⎧=⎪⎪⎨-⎪==⎪⎩解得:N/mm 2;N/mm 2max 280σ=min 140σ=则平均应力:。

2max min m 210/2N mm σσσ+==2.支承定轴线齿轮传动的转轴,轴横截面上某点的弯曲应力循环特性r =______;而其扭转应力的循环特性r =______。

[国防科技大学2001研]【答案】;1-0【解析】支承定轴线齿轮传动的转轴,受方向不变的径向载荷。

因此,轴横截面上既分布有拉应力,也有压应力。

随着轴的转动,拉压应力交变,所以轴所受的弯曲应力为对称循环变应力,其应力循环特性。

而转轴所受的切向力方向也是恒定不变的,但大1r =-小是周期性变化的。

因此,扭转应力是脉动变化的。

故扭转应力的循环特性。

0r =3.变应力可由______产生,变应力特性可用______等五个参数中的任意两个来描述。

[北京航空航天大学2001研]4.额定载荷是指______;计算载荷是指______。

[国防科技大学2002研]【答案】在工作平稳、载荷均匀等理想条件下,根据理论计算确定的载荷考虑实际工作中存在各种误差因素;将额定载荷修正后用于零件设计计算的载荷5.当单向转动的轴上作用力方向不变的径向载荷时,轴的弯曲应力为______循环变应力,扭转剪应力为______循环变应力(运转不平稳)。

[中南大学2002研]【答案】对称;脉动【解析】轴上作用径向载荷时,轴的弯曲应力部分为压应力,部分为拉应力。

又因为轴单向转动时,压应力区和拉应力区交变,所以轴的弯曲应力随时间正负交变,为对称循环应力。

但是轴所受的扭转剪应力方向是始终不变的,所以为脉动循环变应力。

机械零件设计计算的最基本计算准则是

机械零件设计计算的最基本计算准则是

机械零件设计计算的最基本计算准则是
1.强度计算:强度是零件能够承受的外部载荷或力的能力。

强度计算
包括计算零件的应力、应变,以及使用适当的材料和尺寸来确保零件能够
承受设计要求下的最大载荷。

2.刚度计算:刚度是指零件在受力时的变形能力。

刚度计算需要考虑
零件的材料特性、几何形状和加载条件,以确定零件的刚度是否满足设计
要求。

3.疲劳计算:疲劳是指零件在循环载荷下发生破坏的现象。

疲劳计算
需要考虑零件的循环载荷条件和材料的疲劳强度,以确定零件的寿命和安
全系数。

4.运动学计算:运动学计算用于确定零件在运动过程中的位移、速度
和加速度。

这些计算对于设计机械系统的运动性能至关重要。

5.热传导计算:热传导计算用于确定零件在热传递过程中的温度分布
和热流。

这些计算可用于设计散热器和热交换器等零件。

6.流体力学计算:流体力学计算用于设计液压、气动和流体系统中的
零件。

这些计算包括液流、气流和水流等的流动性能分析。

7.结构优化计算:结构优化计算用于优化零件的材料使用和几何形状,以提高零件的性能和效率。

以上只是机械零件设计计算的一些基本准则。

实际的设计过程中,可
能还需要考虑其他因素,如成本、制造可行性等。

设计者需要根据具体的
设计要求和条件进行综合考虑,并进行相应的计算和分析。

机械零件设计概论

机械零件设计概论

2. 塑料 塑料的比重小,易于制成形状复杂的零件, 而且各种不同塑料具有不同的特点,如耐蚀性、绝热 性、绝缘性、减摩性、摩擦系数大等,所以近年来在 机械制造中其应用日益广泛。 3.其它非金属材料:皮革、木材、纸板、棉、丝等。
各种材料的化学成分和力学性能可在相关国标、行标 和机械设计手册中查得。
选用原则: 优选碳素钢,其次是硅、锰、硼、钒类合金钢。
将零件的型式、规格、实验方法 、质量鉴定及标号等标准化,在 机械制造中具有重大意义。设计人员在设计时如无特殊要求,就应 当采用国家标准。
(二)机械零件设计中的标准化
零件的标准化,就是通过对零件的尺寸、结构要素、材料性能、检 验方法、设计方法、制图要求等,制定出各种各样的大家共同遵守 的标准。 1、标准化的内容 标准化工作包括三方面的内容,即标准化、系列化和通用化,简称 为机械产品的“三化”。 1)、标准化 是指对机械零件种类、尺寸、结构要素、材料性质、检验方法、公 差配合和制图规范等制定出相应的标准,供设计、制造时共同遵照 使用。 2)、系列化 将同一类产品的主要参数、型式、尺寸、基本结构等依次分档,制 成系列化产品,以较少的规格品种满足用户的广泛要求。 3)、通用化 将用途、结构相近的零部件(如轴承、螺栓等),经过统一后实现 互换。
(三)、我国标准化的分类
标准层次:国际标准、国家标准、行业标准、企业标准
代号为 ISO
GB J号) -××××(为 批准年代) 强制性国标必须严格遵照执行,否则就是违法。
推荐性国家标准:代号为GB/T ××××-××××,这类标准 占整个国标中的绝大多数。如无特殊理由和特殊需要,必须遵守这 些国标,以期取得事半功倍的效果。
1.退火 退火是将钢加热到一定温度,保温一段时间,然后工件随 炉温缓慢冷却。退火可消除因锻造、焊接等产生的内应力,降低硬 度以改善切削加工性能。

第2章机械零件的工作能力和计算准则

第2章机械零件的工作能力和计算准则

复合应力计算安全系数为:
s sca [s] s 2 2 2 ( ) s
或: sca

s s s s
2 2
[s]
3.允许少量塑性变形的零件(可按 1.5 s 作为极限应 力)
这类零件可按允许一定塑性变形时的载荷进行强度计算。 看课本图2.3,受弯矩M的简支梁,用塑性材料制成时,随 着弯矩M的增大,由(a)到(c)变化,到(c)图时材料 全部屈服。此时梁承受的弯矩计为 M lim ,因此,可以按 进行强度计算。 M lim
第2章 机械零件的工作能力 和计算准则
1.失效:机械零件丧失工作能力或达不到设 计要求的性能时,称为失效。 有人平时不说“失效”,而说“坏了”,是 不准确的。有些零件看上去没有“坏”但 已经失效了。 2.常见的失效形式
零件失效表现在强度问题、刚度问题、表面 失效和其他方面。
零件的失效形式有: 1)断裂; 2)过大塑性变形; 3)过量的弹性变形; 4)表面失效(工作表面的过度磨损或损伤 等); 5)其他形式(联接的松弛、摩擦传动的打滑 等)。
单位接触线载荷。B为接触线长度。
F P B
(2)两球接触
1 3 6F 2 2 1 1 1 2 E E2 1
2
F Hmax 2
H max
1
1 2 E1、E2 两接触体材料的弹性模 量 1、 2 两接触体材料的泊松比
式中 : 相应的强度条件可表示为:
σ、τ——零件的最大工作应力。其中σ为 正应力,可由拉伸、压缩、弯曲等产生;τ 为切应力,可由扭转、剪切等产生; 2.[σ]、[τ]——许用正应力、许用切应力; 3.σlim、τlim——材料的极限正应力、极限 切应力; 4.[Sσ],[Sτ]——对应于正应力、切应力的许 用安全系数。

第一章精密机械设计的基础知识

第一章精密机械设计的基础知识
静应力: 表面压碎 ——脆性材料, 表面塑性变形——塑性材料
变应力:疲劳点蚀——齿轮、滚动轴承的常见失效形式。
多数出现疲劳点蚀(局部应力大于许用强度)——在循环应力作用下接触表面产生疲劳裂纹,裂纹扩展导致表面小块 金属脱落。点蚀又分:扩张性点蚀(产生于硬度大的材料);局限性点蚀(产生于软载荷小的材料),疲劳点蚀使零件表 面失去正确形状、降低工作精度、产生噪声和振动、降低零件使用寿命。
在表面接触应力作用下的零件强度称 为接触强度
计算依据:弹性力学的赫兹公式
1)表面接触强度(应力)
(1)两圆柱体接触
2021/9/23
Hmax Hmax
F
1 b
2a 2
F
20
H
F
1Eµ 112
1µ22 E2
δH ——最大接触应力; Fμ——接触线单位长度上的应力,=F/b; ρ——两圆柱体在接触处的综合曲率半径。
B)对变应力情况下的强度:零件失效形式主要为疲劳断裂 (先形成初始裂纹---扩展直到断裂),它不仅与应力的大 小有关,还与应力循环次数有关。因此提出疲劳极限用 δrN的概念 特别是 当r=一定时,应力循环N次后,材料不发生疲劳破坏时
2021/9/2的3 最大应力称为表示。N—δrN关系图为应力疲劳曲线15
应力-应变图
2021/9/23
14
2)将零件在载荷作用下的实际安全系数sδ、sτ与许用安全 系数 [sδ]、[sτ]比较,其强度条件为
sδ=δlim/δ< [sδ]、sτ=τlim/τ< [sτ]
1)
A)对静应力情况下的强度:可以使用以上两种判断方法。 对塑性材料制成的零件取材料的屈服极限δs、τs作为零 件的极限应力;对脆性材料制成的零件取材料的强度极 限sb、τb作为零件的极限应力。

机械零件设计的一般步骤

机械零件设计的一般步骤
在设计时对零件进行计算所依据的准则,无疑地是与零件的失效形式紧密地联系在 一起的。概括地讲,大体有以下准则:
(一)强度பைடு நூலகம்则
强度准则就是指零件中的应力不得超过允许的限度。即: σ≤σlim
其中:σlim 为材料的极限应力,对于脆性材料:σlim=σB(强度极限),对于塑 性材料:σlim=σS(屈服极限)。
(四)振动稳定性准则
机器中存在着很多周期性变化的激振源。例如:齿轮的啮合,滚动轴承中的振动, 滑动轴承中的油膜振荡,弹性轴的偏心转动等。如果某一零件本身的固有频率与上述激 振源的频率重合或成整数倍关系时,这些零件就会发生共振,以致使零件破坏或机器工 作关系失常等。所谓振动稳定性,就是说在设计时要使机器中受激振作用的各零件的固 有频率与激振源的频率错开。例如,令 f 代表零件的固有频率,fp 代表激振源的频率, 则通常应保证如下的条件:
0.85f>fp 或 1.15f<fp 如果不能满足上述条件,则可改变零件及系统的刚性,改变支承位置,增加或减少 辅助支承等办法来改变 f 值。 把激振源与零件隔离,使激振的周期性改变的能量不传递到零件上去;或采用阻尼 以减小受激振动零件的振幅,都会改善零件的振动稳定性。 (五)可靠性准则 如有一大批某种零件,其件数为 N0 在一定的工作条件下进行试验。如在 t 时间后仍 有 N 件在正常地工作,则此零件在该工作环境条件下工作 t 时间的可靠度 R 可表示为: R=N/N0 如果试验时间不断延长,则 N 将不断地减小,故可靠度也将改变。这就是说,零件 的可靠度是一个时间的函数。若在时间 t 到 t+dt 的间隔中,又有 dN 件零件发生破坏, 则在此 dt 时间间隔内破坏的比
率 f(t)定义为: 式中 f(t)称为失效率,负号表示 dN 的增大将使 N 减小。分离变量并积分,得:

机械零件计算的管理分析准则设计.pptx

机械零件计算的管理分析准则设计.pptx
机械零件整体断裂中,80%属于疲劳断裂
2.表面破坏
表面磨粒磨损、胶合、疲劳点蚀、腐蚀磨损、表面压溃、表面塑性流动等
3.变形量过大
弹性变形 塑性变形
4.破坏正常工作条件引起的失效
有些零件只有在一定的工作条件下才能正常地工作。如带传动和摩擦 轮传动,高速转动的零件
▪ 同一种零件发生失效的形式可能有数种
齿轮的失效形式有:轮齿折断、齿面点蚀、齿面胶合、齿面磨损、齿 面或齿体塑性变形、齿轮其他部分的破坏 ▪ 主要失效形式将由零件的材料、具体的结构及工作条件等决定
▪ 工作能力
零件不发生失效时的安全工作的限度 ▪ 同一种零件可能有数种不同的失效形式,显然,起决定作用的将是承载
能力中的较小值
二、机械零件的计算准则
▪ 计算准则——用于计算并确定零件基本尺寸的主要依据
▪ 常用的计算准则有:
1.强度准则
强度是零件在载荷作用下抵抗整体断裂、表面接触疲劳及塑性变形的 能力
2.刚度准则
[ ]
[
]
刚度是指零件在载荷作用下抵抗弹性变形的能力
y [y]
3.寿命准则
影响零件寿命的主要失效形式:腐蚀、磨损、疲劳
腐蚀寿命、磨损寿命 没有提出实用有效的或通行的定量计算的方法
▪ 第Ⅱ段:正常使用阶段 失效的发生是随机性的,失效率则表现为一常数
▪ 第Ⅲ段:损坏阶段 由于长时间的使用而使零件发生磨损、疲劳等原因,使失效率急剧增加
第二节 静应力下机械零件的强度计算
一、载荷及应力的分类
1.载荷的分类
▪ 静载荷
大小和方向不随时间变化或变化缓慢的载荷
▪ 变载荷
随时间作周期性变化或非周期性变化的载荷
•平均应力:
m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



名义载荷:理想工作条件下的载荷
计算载荷:作用于零件的实际载荷,考虑各种附加载荷

计算载荷=K ×名义载荷
载荷系数
机械设计基础——机械零件设计和计算概论
二、应力


静应力:不随时间改变或变化缓慢的应力 变应力:随时间作周期性或非周期性变化的应力 变应力:稳定变应力(随时间作周期性)、不稳定变应力 (非周期性循环变应力)
机械设计基础——机械零件设计和计算概论
五、机械零件现代设计方法


优化设计:
模拟设计:
CAD/CAM
有限元 优化与仿真结合
机械设计基础——机械零件设计和计算概论
6-2 机械零件的工作能力准则
一、机械零件常见失效形式
二、工作能力准则 三、强度准则 四、刚度准则 五、耐磨性准则
六、振动稳定性准则
针对失效形式:断裂、疲劳破坏、残余变形
典型零部件:轴、齿轮、 带轮等
机械设计基础——机械零件设计和计算概论
四、刚度准则

刚度:材料抵抗弹性变形的能力 刚度准则:实际变形量≤许用变形量 倾角条件:θ≤[θ]
弯曲刚度:挠度条件: y ≤[y]
扭曲刚度:扭角条件:j ≤ [j]

针对失效形式:过大的弹性变形
三、机械零件设计过程

零件设计时的共性: 受力分析、 失效形式 设计准则、 设计计算
工作原理、结构、 类型、应用场合

过程: 1、拟订零件的设计简图 2、确定载荷的大小及位置 3、选择材料 4、根据失效形式选用判定条件,设计出零件的主要参数 5、绘制零件工作图
机械设计基础——机械零件设计和计算概论
机 械 零 件
通用 零件
联接件:螺栓、键、花键 支承件:轴、轴承
其它:联轴器、弹簧、机架
专用零件:水轮机叶片、活塞、曲轴,飞机螺旋桨
机械设计基础——机械零件设计和计算概论
二、机械零件设计基本要求
1、满足功能要求,能够准确实现预定的功能 2、工作可靠,在预定的工作期限内不能失效 3、经济性要求
机械设计基础——机械零件设计和计算概论
四、机械零件传统设计方法

理论设计(半经验设计):
尺寸
校核计算
强度条件(或刚度) 设计计算

强度条件(或刚度)


类比设计: 与已有的同类产品进行比较来设计新产品。这种方法在 工程实际中用得较多,特点是节省时间,较可靠 经验设计: 根据实践中归纳出的经验公式和经验数据进行设计,缺 乏创新 模型实验设计: 用于大型、复杂零件的设计
m

稳定变应力:对称循环变应力、 脉动循环变应力、非对称循环变 应力
max min

t
t
机械设计基础——机械零件设计和计算概论
应力参数

m
max min

以正应力为例 最大应力: max= m+a 最小应力: min 应力幅: a max min a 2 平均应力: m 循环特征: r
振动稳定性准则:0.85f >fp 或 1.15f<fp 针对失效形式:共振产生的工作失常




典型零部件:轴等
机械设计基础——机械零件设计和计算概论
七、耐热性准则

高温引起承载能力降低、蠕变,也会造成热变形、 附加热应力,破坏正常的润滑条件,改变零件间 的间隙,降低精度等 耐热性准则:工作温度低于许用值

n
F

例如轴可能的失效形式:
断裂、塑性变形、过大弹性变形、共振
机械设计基础——机械零件设计和计算概论
二、工作能力准则




工作能力:不失效条件下零件的安全工作限度 这个限度通常是以零件承受载荷的大小来表示,所以又 常称为“承载能力” 如: 吊钩最大起重量——50 kN 工作能力或承载能力——50 kN 工作能力准则:衡量零件工作能力的指标 对零件设计,针对其主要失效形式选择适 合的工作能力准则进行设计 具体有:强度准则、刚度准则、耐磨性准 则、振动稳定性准则、耐热性准则


针对失效形式:零件表面破坏 典型零部件:齿轮、轴承、链等
机械设计基础——机械零件设计和计算概论
六、振动稳定性准则

共振:当机器的自振频率与周期性干扰力变化频 率相同或整数倍时,就会发生共振,此时振幅急 剧增大,导致零件破坏或机器工作条件失常等 振动稳定性:机器工作时振幅不能超过许可值
典型零部件:轴、蜗杆等
机械设计基础——机械零件设计和计算概论
五、耐磨性准则

耐磨性:零件抗磨损的能力 磨损是相当复杂的物理化学过程 影响磨损的因素包括载荷的大小和性质、滑动速度、润滑 剂的化学性质和物理性质等 具体有:磨粒磨损、粘着磨损、疲劳磨损、腐蚀磨损、冲 蚀磨损、微动磨损 耐磨性准则: P
50 kN

机械设计基础——机械零件设计和计算概论
三、强度准则

机械零件工作能力的最基本准则 强度:材料抵抗断裂或残余变形的能力 强度准则:工作应力≤许用应力 σ≤ [σ] 或 τ≤ [τ]
正应力: [ ]
lim S
lim S
极限应力
剪应力: [ ]

机械设计基础——机械零件设计和计算概论
6-1 机械零件机械零件设计概述
一、机械零件分类 二、机械零件设计基本要求 三、机械零件设计过程 四、机械零件传统设计方法
机械设计基础——机械零件设计和计算概论
一、机械零件分类
机器:机械、机构的总称
构件——运动的单元 零件——制造的单元 传动件:齿轮、蜗杆、带、链


针对失效形式:高温引起的润滑不良、蠕变

典型零部件:蜗杆、齿轮、滑动轴承等
机械设计基础——机械零件设计和计算概论
6-3 许用应力和安全系数
一、载荷
二、应力
三、极限应力
四、许用应力和安全系数
机械设计基础——机械零件设计和计算概论
一、载荷

载荷:作用于零件上的力或力矩 工作载荷:机器正常工作时所受的实际载荷
七、耐热性准则
机械设计基础——机械零件设计和计算概论
一、机械零件常见失效形式
失效:丧失工作能力或达不到设计要求的性能,不仅仅指 破坏 常见主要失效形式有: 断裂:如轴、齿轮轮齿发生断裂 表面点蚀:工作表面片状剥落 强度问题 塑性变形:零件发生永久性变形 过大弹性变形 刚度问题 表面破坏 耐磨性问题 过大振动和噪声、过热等
r
t

max min m 2
相关文档
最新文档