实用回归分析ppt课件

合集下载

回归分析实例PPT课件

回归分析实例PPT课件
通过各种统计检验来评估 模型的拟合效果,如残差 分析、R方检验、F检验等。
线性回归分析的应用
预测
使用线性回归模型来预测因变 量的值,基于给定的自变量值

解释变量关系
通过线性回归分析来了解自变 量与因变量之间的数量关系和 影响程度。
控制变量效应
在实验或调查中,控制自变量 的影响,以观察因变量的变化 情况。
模型的建立和检验
模型的建立
首先需要收集数据,并进行数据 清洗和预处理,然后选择合适的 自变量和因变量,建立逻辑回归
模型。
模型的检验
通过多种检验方法对模型进行评 估,包括参数估计、假设检验、 模型诊断等,以确保模型的准确
性和可靠性。
模型的优化
根据检验结果对模型进行调整和 优化,包括参数调整、变量筛选
详细描述
收集产品在过去一段时间的销售数据,包括销售额、销售量等,作为自变量, 将未来某一段时间的产品销量作为因变量,建立回归模型。通过模型预测未来 产品销量,为企业制定生产和销售计划提供依据。
实例三:疾病风险预测
总结词
基于个人健康数据和疾病历史,建立回归模型预测疾病风险。
详细描述
收集个人的健康数据和疾病历史,包括血压、血糖、胆固醇等生理指标以及家族 病史等信息,作为自变量,将未来患某种疾病的风险作为因变量,建立回归模型 。通过模型预测个人患某种疾病的风险,为预防和早期干预提供参考。
线性关系的假设
自变量x与因变量y之间存在线性关系, 即随着x的增加(或减少),y也相应 地增加(或减少)。
模型的建立和检验
01
02
03
数据收集与整理
收集相关数据,并进行必 要的整理和清洗,以确保 数据的质量和可靠性。

《回归分析专题》PPT课件

《回归分析专题》PPT课件

改进阶段
{预测带
} 置信带
C.I. = 置信区间 (95%置信度表示所有数据的平均值都位于此带内) P.I. = 预测区间 (95%置信度表示单个数据点位于此带内)
编辑ppt
19
SIXSSIIGXMASIMIPGLEMMEANT
会话窗口中的信息与早期生成的信息相同……
改进阶段
无法否定Ho: 接受Ha:

编辑ppt
20
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
课堂练习:
您相信我们的家电所占据的展示厅面积的大小会影响销售量。您已经收集了过去12个月内 ,多个零售点销售量与总的占地面积方面的数据。现在,您希望分析这些数据,看占地面 积是否确实与年销售量存在某种关系。
在Minitab输入以下数据:
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
单变量回归
编辑ppt
1
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
单变量回归
目的: 介绍作为实证模型建立方法的回归分析,以模拟具有连续响应变量“ Y” 的过程。 (定义:‘实证’-基于观测值或事实)
目标:
• 确定何时使用回归,以及为什么使用。
改进阶段
附录
编辑ppt
23
SIXSSIIGXMASIMIPGLEMMEANT
改进阶段
回归术语
r: R-Sq:
R-Sq(Adj): 估计值的 标准误差 回归均方 (MS回归) F-比率:
p-值:
多重回归的相关系数(r)。越接近+/-1,模型拟合越好。‘ 0’表示无线性关系。
相关系数的平方(R2)。R2的值越接近100%,说明可能存在关系,由模型解释的 变差的百分比越高。

高中信息技术浙教版:回归分析教学课件(共17张PPT)

高中信息技术浙教版:回归分析教学课件(共17张PPT)
判断摄氏温度和华氏温度之间是否符合线性关系。
如符合,请通过回归分析计算出摄氏温度和华氏温度之间的线性回归方程。

本课小结
拓展链接——最小二乘法
最小二乘法是一种机器学习的优化技术,其将残差平方之和最小化作为目标
,找到最优模型来拟合已知的观测数据,使得模型所预测的数据与实际数据之间
误差的平方和最小,一般有线性最小二乘法和非线性最小二乘法两种方法。
用线性最小二乘法来解决线性回归模型存在封闭形式(closed-formsolution)

之间

差的绝对值|-y|,将这个差的绝对值作为对应的真实值(即y)和模型预测值(即

)

之间的误差,这个误差通常称为“残差”。
2而不是|-y|引作为“残差”。这样
为了计算方便,在实际中一般使用(-y)


对于给定的n组(x,y)数据,可用不同的a和b来刻画这n组数据所隐含的y=ax+b关
系。对于这些不同的参数,最佳回归模型是最小化残差平方和的均值,即要求n
1

组(x,y)数据得到的残差平均值 σ(෤ − y)2最小。
从残差的定义可看出,残差平均值最小只与参数a和b有关,最优解即使得残
差最小所对应的a和b的值。
2.5.2回归分析中参数计算
可通过最小二乘法(leastsquare)来求解使得残差最小的a和b。
型称为回归模型。
一旦确定了回归模型,就可以进行预测等
分析工作,如从碳排放量预测气候变化程度、
从广告投人量预测商品销售量等。
2.5.1回归分析的概念
二氧化碳浓度在逐年缓慢增加,→二氧化碳浓度=a*年份+b
设时间年份为x、二氧化碳浓度为y,即y=ax+b。

应用统计方法第四章-回归分析PPT课件

应用统计方法第四章-回归分析PPT课件
应用统计方法第四章-回归分 析ppt课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • 回归分析的注意事项
01
回归分析概述
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来描述这种关系。
它通过分析因变量对自变量的依赖程 度,来预测因变量的未来值或解释因 变量的变异。
影响
共线性会导致回归系数不 稳定,降低模型的预测精 度和可靠性。
解决方法
通过剔除不必要的自变量、 使用主成分分析等方法来 降低共线性的影响。
05
回归分析的注意事项
数据质量与预处理数据完整性源自确保数据集中的所有必要 信息都已收集,没有遗漏 或缺失值。
数据准确性
核实数据的准确性,并处 理任何错误或异常值。
回归分析的分类
线性回归分析
研究自变量和因变量之间线性关系的回归分析。
多元回归分析
研究多个自变量与一个因变量之间关系的回归分析。
ABCD
非线性回归分析
研究自变量和因变量之间非线性关系的回归分析,如多 项式回归、指数回归、对数回归等。
一元回归分析
研究一个自变量与一个因变量之间关系的回归分析。
回归分析的应用场景
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关系的 数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)
最小二乘法估计
最小二乘法
01
通过最小化预测值与实际值之间的残差平方和来估计回归参数

自变量的选择与逐步回归实用回归分析ppt课件

自变量的选择与逐步回归实用回归分析ppt课件

§5.2 所有子集回归
准则2 赤池信息量AIC达到最小
设回归模型的似然函数为L(θ,x), θ的维数为p,x为样本,在 回归分析中样本为y=(y1,y2,…yn)′,则AIC定义为:
AIC=-2lnL(θˆ L ,x)+2p 其中θˆ L 是θ的极大似然估计,p 是未知参数的个数。
§5.2 所有子集回归
βˆ p (Xp X p )-1 Xpy
ˆ
2 p
n
1 p
1 SSEp
§5.1 自变量选择对估计和预测的影响
二、自变量选择对预测的影响
关于自变量选择对预测的影响可以分成两种情况: 第一种情况是全模型正确而误用了选模型; 第二种情况是选模型正确而误用了全模型式。
§5.1 自变量选择对估计和预测的影响
(一)全模型正确而误用选模型的情况
性质 1. 在 xj与 xp+1, …,xm的相关系数不全为 0 时,选模型回归系数的 最小二乘估计是全模型相应参数的有偏估计,即
E(ˆ jp ) jp j (j=1,2, …,p)。
§5.1 自变量选择对估计和预测的影响
(一)全模型正确而误用选模型的情况 性质 2. 选模型的的预测是有偏的。 给定新自变量值x0p (x01, x02,, x0m ) ,因变量新值为 y0=β0+β1x01+β2x02+…+βmx0m+ε0 用选模型的预测值为
(ˆ 0p ,ˆ 1p ,,ˆ pp )
全模型的最小二乘参数估计为βˆ m (ˆ 0m ,ˆ 1m ,,ˆ mm )
这条性质说明 D(ˆ jp ) D(ˆ jm ), j 0,1,, p 。
§5.1 自变量选择对估计和预测的影响
(一)全模型正确而误用选模型的情况

回归分析应用PPT课件

回归分析应用PPT课件

回归分析的应用场景
A
经济预测
通过分析历史数据,预测未来的经济趋势,如 股票价格、GDP等。
市场营销
通过研究消费者行为和购买历史,预测未 来的销售趋势和客户行为。
B
C
医学研究
研究疾病与风险因素之间的关系,预测疾病 的发生概率。
科学研究
在各种科学领域中,如生物学、物理学、化 学等,回归分析被广泛应用于探索变量之间 的关系和预测结果。
06 回归分析的局限性
多重共线性问题
总结词
多重共线性问题是指自变量之间存在高 度相关关系,导致回归系数不稳定,影 响模型预测精度。
VS
详细描述
在回归分析中,如果多个自变量之间存在 高度相关关系,会导致回归系数的不稳定 性,使得模型预测精度降低。这种情况在 数据量较小或者自变量较多的情况下更容 易出现。为了解决这个问题,可以采用减 少自变量数量、使用主成分分析等方法。
预测能力评估
使用模型进行预测,并比较预 测值与实际观测值之间的误差
,评估模型的预测能力。
03 多元线性回归分析
多元线性回归模型
01
确定因变量和自变 量
在多元线性回归模型中,因变量 是我们要预测的变量,而自变量 是影响因变量的因素。
02
建立数学模型
03
模型参数解释
通过最小二乘法等估计方法,建 立因变量与自变量之间的线性关 系式。
回归分析可以帮助我们理解数据的内在规律,预测未来的趋势,并优化决 策。
回归分析的分类
01
一元回归分析
研究一个自变量和一个因变量之间的关系。
02
多元回归分析
研究多个自变量和一个因变量之间的关系。
03
线性和非线性回归分析

应用统计学:回归分析PPT课件

应用统计学:回归分析PPT课件

03
使用方法
通过菜单和对话框选择分析方法,导入数据,设置参数,运行分析并查
看结果。
Stata软件介绍
适用范围
Stata(Statistical Data Analysis) 是一款适用于各种统计分析和数 据管理的软件,尤其适用于回归 分析。
特点
功能强大、命令语言简洁,支持多 种数据管理操作,提供多种统计分 析方法,结果输出详细且可视化效 果好。
使用方法
通过命令行输入分析命令,导入数 据,设置参数,运行分析并查看结 果。
R软件介绍
适用范围
R(Software for Statistical Computing)是一款开源的统 计软件,适用于各种统计分析,
包括回归分析。
特点
功能强大、社区活跃、可扩展性 强,支持多种编程语言和数据可 视化工具,提供丰富的统计函数
分层回归分析的基本思想是将多个自变量分为若干个层次,每个层次内 部的自变量之间存在较强的相关性,而不同层次的自变量之间相关性较
弱。
分层回归分析在生态学、社会学、医学等领域有广泛应用,例如研究不 同层次的人口特征对健康状况的影响、研究不同层次的社会经济因素对 犯罪率的影响等。
主成分回归分析
主成分回归分析的基本思想是将多个自变量进行主成 分分析,得到少数几个主成分,这些主成分能够反映 原始数据的大部分变异,然后利用这些主成分进行回 归分析。
线性回归模型
线性回归模型是回归分析中最常用的一种模型,其形式为 (Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)。
其中 (Y) 是因变量,(X_1, X_2, ldots, X_p) 是自变量,(beta_0, beta_1, ldots, beta_p) 是回归系数,(epsilon) 是误差项。

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并在变化幅度不大的一条带子内.
****如果残差都落在变化幅度不大一条带子内,
也就可以说明回归模型满足基本假设.
2
5.1 残差与残差图
一、残差概念与残差图
e
0
x
(b)
****y观测值的方差并非相同,随x增加而增加. 【消除异方差】
3
5.1 残差与残差图
一、残差概念与残差图
e
0
x (c)
****y与x之间并非线性关系. 可能y与x是曲线关系 可能y存在自相关

ei
ˆ
学生化残差
SREi ˆ
ei 1 hii
ZREi / SREi 3 观测数据判定为异常值
存在y的异常观测值,普通/标准化/学生化残差都不适用
11
5.3 异常值与强影响值
当数据中存在关于 y 的异常观察值时,异常值把回归线拉向 自己,使异常值本身的残差减少,而其余观察值的残差增大,这时 回归标准差ˆ 也会增大,因而用“3σ ”准则不能正确分辨出异常值。 解决这个问题的方法是改用删除残差。
12
5.3 异常值与强影响值
删除残差的构造思想是: 在计算第 i 个观察值的残差时,用删除掉这第 i 个观察值的 其余 n-1 个观察值拟合回归方程,计算出第 i 个观察值的删除 拟合值 yˆ (i) ,这个删除拟合值与第 i 个值无关,不受第 i 个值是否 为异常值的影响,第 i 个观察值的删除残差为:
i 1 n
xiei 0
i 1
8
5.2 残差的性质
二、改进的残差
9
5.3 异常值与强影响值
异常值分为两种情况: 一种是关于因变量y异常; 另一种是关于自变量x异常。
10
5.3 异常值与强影响值
一、关于因变量y的异常值
在残差分析中,认为超过 3ˆ 的残差为异常值。
标准化残差
ZREi
n i 1
hii

p+1 n
——判断为强影响点
15
5.3 异常值与强影响值
二、关于自变量x的异常值
SPSS 软件计算出的是中心化杠杆值 chii,也就是自变量中心化后 生成的帽子矩阵的主对角线元素,由参考文献[2]可知,
chii=hii-1/n
n
因此, chii =p,中心化杠杆值 chii 的平均值是 i 1
20
5.3 异常值与强影响值
RES-残差e
DRE-删除残差
ZRE-标准化残差
SRE –学生化残差SREi
SDR –删除学生化残差SRE(i)
COO-库克距离Dii
LEV-中心化杠杆值chii
21
5.3 异常值与强影响值
22
5.3 异常值与强影响值
异常录入 重新核实数据 的错误
2.数据测量误差 3.数据随机误差 4.缺少重要自变量 5.缺少观测数据
重新测量数据 删除或重新观测异常值数据 增加必要的自变量
增加观测数据,适当扩大自变 量取值范围
6.存在异方差
采用加权线性回归
7.模型选用错误,线性模型不适用 改用非线性回归模型
23
删除第19组数据
对本例的数据,通过核实认为不存在登记误差和测量误差。 删除第 19 组数据,用其余 30 组数据拟合回归方程,发现 第 12 组数据的删除学生化残差增加为 SRE(12)=3.125,仍然存在 异常值现象,因而认为异常值的原因不是由于数据的随机误差。 实际上本例数据存在异方差,应该采用加权最小二乘回归。
5.1 残差与残差图
一、残差概念与残差图
残差 ei yi yˆi yi ˆ0 ˆ1xi 误差项 i yi 0 1xi
残差ei是误差项i的估计值。
1
5.1 残差与残差图
一、残差概念与残差图
e
0
x
(a)
****一般认为,如果一个回归模型满足所给出的
基本假定,所有残差应在e=0附近随机变化,
可以证明:
e(i) yi yˆ(i)
e( i )

ei 1 hii
13
5.3 异常值与强影响值
第 i 个观察值的删除学生化残差,
SRE(i)

SREi

n n
p 1 p2

SREi2 n p
2
1
2
用 SP SS 软件可以直接计算出删除学生化残差 SRE(i)的数值, | SRE(i)|>3 的观测值即判定为异常值。
14
5.3 异常值与强影响值
二、关于自变量x的异常值
杠杆值
hii

1 n

(xi x )2 Lxx
var(ei ) (1 hii ) 2
回归的杠杆值hii也是表示自变量的第i次观测值与 自变量平均值之间距离的远近。
杠杆值大的样本点称为强影响点。
hii

2(3)h ,
其中h =
1 n
1 n
p
ch
n
chii
i 1

n
chii 2(3)ch
——判断为强影响点
16
5.3 异常值与强影响值
强影响点不一定是y的异常值点,不能单纯 根据杠杆值hii的大小判断强影响点是否异 常
利用Cook距离,来判断强影响点是否为y
的异常值点.
Di (
p
ei2
1)ˆ
2

(1
hii hii
)
2

17
5.3 异常值与强影响值
三、异常值实例分析
例5.1 做异常值的诊断分析。
分别计算 普通残差ei, 学生化残差SREi, 删除残差e(i), 删除学生化残差SRE(i), 杠杆值chii, 库克距离Di
18
5.3 异常值与强影响值
19
5.3 异常值与强影响值
24
5.3 异常值与强影响值
四、异常值问题补充
学生化删除残差、杠杆值、Cook距离——识别异常值
采取的措施: 1. 不能简单的剔除,有时异常观测值是正确的,它说明回 归模型的失败,失败的原因可能是遗漏了一个重要变量,或 者选择了不正确的回归函数形式. 2.如果异常值数据时准确的,但是找不到对它合理的解释, 与剔除这个观测值相比,一个更稳健的方法是抑制它的影响. 3.最小绝对离差和法是一种稳健估计方法,它具有对异常值 和不合适模型不敏感性质.
0
6
5.2 残差的性质
一、残差的性质
性质2 var(ei ) (1 hii ) 2
其中, hii

1 n

(xi x)2 Lxx
称为杠杆值
靠近x附近的点相应的残差方 差较大,
远离x附近的点相应的残差方 差较小.
7
5.2 残差的性质
一、残差的性质 性质3. 残差满足约束条件:
n
ei 0
4
5.1 残差与残差图
一、残差概念与残差图
e
1 3 57 0
2 46 8
x
(d)
****蛛网现象(y具有自相关)
5
5.2 残差的性质
一、残差的性质 性质1 E (ei)=0
证明: E(ei ) E( yi ) E( yˆi )
(0 1xi ) E(ˆ0 ˆ1xi )
相关文档
最新文档