数控直流电流源的设计
数控直流电流源设计报告

数控直流电流源作品功能简介:在电子作品的设计、应用或测试中,一个稳定、精度高的电源尤为重要,为直流电源的应用更是广泛。
本作品就是为其它设计的应用或测试提供一个稳定性高、精度高的直流电流源。
本组的作品的设计方向就是稳定性高、精度高、纹波小、驱动能力强。
本作品有两个个主要功能:功能一:输出20到2000mA的稳定电流,并且步进值可调(1mA、5mA、10mA、100mA)。
功能二:可实时测试并显示负载上的电流值。
功能三:有相应的提示功能。
(一) 方案论证与比较从控制论的角度来看,某一系统要达到较高的控制精度,必须采用闭环控制。
闭环的电流控制系统可以由如下的原理框图来表示:由上述原理框图可以知道,数控直流电流源的设计主要考虑三个方面的问题:电流控制器设计、功率放大电路设计和电流检测方法。
此外,从电子系统设计的角度,还需考虑系统电源的设计。
1.电流控制器设计电流控制可以有多种方案,如基于PWM 技术的开关电源方案、基于模拟器件的模拟反馈压控方案、以及基于微控制器的数字反馈数控方案。
方案一:基于PWM 技术的开关电源方案。
通过PWM 技术来调节开关电源的电压输出,控制PWM 信号的调制脉宽就可以控制输出电压,从而达到控制输出电流的目的。
该方案适合要求高功率输出的交流系统,同时电源效率上具有很大的优势,但是开关电源必然引入纹波噪声,在高精度要求的直流系统中,对滤波电路的要求非常高,难以实现。
题目对电流精度及纹波要求很高,该方案难以胜任。
方案二:基于模拟器件的模拟反馈压控方案。
该方案采用三极管或集成运放,组成电流串联负反馈电路,三级管或运放工作在深度负反馈状态下,具有良好的压控恒流特性。
典型的电路结构如图2所示。
图2中,Re 相当于取样电阻,输出R L 上的电流通过Re 在运放的输入端形成负反馈,由运放的虚短虚断,忽略三极管的基极电流,则可得到输出电流I L 的表达式:图2 模拟反馈压控方案典型电路I L =Vi / Re ⑴ 此方案实质上是由模拟器件作为了控制器,调节速度快,系统的跟随性好,即动态性能优越;但是,由于模拟器件固有的非线性特性,式⑴的精确度受到影响,电流控制稳态图1 闭环电流控制系统原理框图性能不够良好。
(数控加工)数控直流电流源设计报告精编

(数控加工)数控直流电流源设计报告数控直流电流源一、设计任务和技术要求1.设计壹个数控直流电流源。
2.输出电流0~99mA,手动步进1mA增、减可调,误差不大于0.01mA。
3.具有输出电流大小的数码显示。
4.负载供电电压+12V,负载等效阻值100Ω。
5.电路应具有对负载驱动电流较好的线性控制特性。
6.设计电路工作的直流供电电源电路。
二、系统原理概述本设计要求设计出壹个数控的直流电源,且且输出电流为0~99mA,能够手动控制增减。
在此采用数模转换的原理,只要产生和0~99mA电流相对应的数字量(我们取数字量为0~99),再使用D/A转换器转换为模拟电压量,最后再用V/I转换器将电压量转换为和电压量相对应的电流量即可。
为控制输出电流手动步进为1mA增、减可调,我们只要保证数字量(0~99)——电压量(0~9.9V)——电流量(0~99mA)相对应,通过控制数字量手动增减步进为1可调即可。
综上,整个系统的原理框图如图壹所示:图一系统原理框图三、方案论证1.直流稳压电源电路单元小功率稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成。
如图二所示:图二稳压电源组成示意图方案壹:输出可调的开关电源开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护和过流保护,可是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因此在本设计中不适合此方案。
方案二:由固定式三端稳压器组成由固定式三端稳压器(7805、7812、7912)输出脚V0、输入脚V i和接地脚GND组成,它们的输入端接电容能够进壹步滤波,输出端接电容能够改善负载的瞬间影响,且且此电路也比较稳定,实现简单。
因此在此采用方案二,电路原理图如图三所示:图三固定三端式直流稳压电源电路2.手动增减数字量产生单元方案壹:74LS163为可预置的4位二进制同步加法计数器。
采用俩片74LS163运用反馈清零或者反馈置数法构成十进制计数器,再将俩片73LS163构成2位十进制加法计数器。
数控直流电流源设计

数控直流电流源设计一.总体设计方案经初步分析设计要求,得出总体电路由以下几部分组成:电源模块,控制模块(包括AD、DA转换)恒流源模块,键盘模块,显示模块。
以下就各电路模块给出设计方案。
1 控制部分方案方案一:采用FPGA作为系统的控制模块。
FPGA可以实现复杂的逻辑功能,规模大,稳定性强,易于调试和进行功能扩展。
FPGA采用并行输入输出方式,处理速度高,适合作为大规模实时系统的核心。
但由于FPGA集成度高,成本偏高,且由于其引脚较多,加大了硬件设计和实物制作的难度。
方案二:采用单片机作为控制模块核心。
单片机最小系统简单,容易制作PCB,算术功能强,软件编程灵活,方便的实现程序的更新,自由度大,较好的发挥C语言的灵活性,可用编程实现各种算法和逻辑控制,同时其具有功耗低、体积小、技术成熟和成本低等优点。
基于以上分析,选择方案二,利用MSP430单片机将电流步进值或设定值通过换算由D/A转换,驱动恒流源电路实现电流输出。
输出电流经处理电路作A/D转换反馈到单片机系统,通过补偿算法调整电流的输出,以此提高输出的精度和稳定性。
在器件的选取中,D/A转换器选用12位优质D/A转换芯片 TLV5618,直接输出电压值,且其输出电压能达到参考电压的两倍,A/D转换器则可直接使用430单片机开发板内部的ADC12直接编程进行使用。
2.恒流源模块设计方案方案一:由三端可调式集成稳压器构成的恒流源;这样设计的电路结构简单,调试方便,价格便宜,但是精密的大功率数控电位器难购买。
方案二:由数控稳压器构成的恒流源;方案三:采用集成运放的线性恒流源;该恒流源输出的电流与负载无关, 通过使用两块构成比较放大环节,功率管构成调整环节,利用晶体管平坦的输出特性和深度的负反馈电路可以得到稳定的恒流输出和高输出阻抗,实现了电压—电流转换。
综合考虑,采用方案三3 显示模块设计方案方案一:使用LED数码管显示。
数码管采用BCD编码显示数字,对外界环境要求低,易于维护。
数控直流源的设计

简易数控直流电流源摘要基于STC89C52单片机作为整机的控制单元,通过功率放大电路、ICL7107电压测量等设计实现了一个简易数控直流电源。
其电压可预置,步进为0.1V,输出电压范围 0—9.9V。
输出电流为500mA。
步进调节输出电压幅度、预置电压和实测电压均可通过数码管显示。
本系统调整速度快,效率高,通用,输出纹波小等优点。
关键字:数控直流源步进加减功率放大数码管显示1引言在常规电路中,我们一般使用普通的自制电源。
输出电压V 15 。
然而却没有数码显示、电压预置和步进增减功能。
基于此,我们本次设计一个直流电流源。
该电源设计满足以下基本要求:(1)输出电压:范围0-9.9V ,步进0.1V 。
纹波不大于10mV ;(2)输出电流:500mA ;(3)输出电压值由数码管显示;(4)由“+”、“-”两键分别控制输出电压步进增减;(5)为实现上述几部件工作,自制一稳定直流电源,±15V 、± 5V 输出。
系统的设计框图如图1所示图(1)总体设计框图2方案设计2. 系统设计2.1设计思路采用单片机作为控制器的简易数控直流电源设计方案框图如图一所示。
STC89C52完成系统的数控功能。
运放电路为功率放大单元的输入级,通过OTL 电路进行功率放大。
ICL7107和数码管为实际电压测量的反馈单元,为了达到设计的要求,我们需进行功率放大和显示电压。
本次设计的关键在于对DAC0832的控制和ICL71017的应用。
2.2方案比较与选择通过以上分析我们拟定如下方案:方案一:此方案采用传统的调整管方案,主要采用一套计数器完成系统的控制功能,其中二进制计数器的输出经过D/A变换后去控制误差放大的基准电压,以控制输出步进。
十进制计数器通过译码后驱动数码管显示输出电压值,为了使系统工作正常,必须保证双计数器同步工作。
从而,难以控制单片机。
方案二:此方案的控制部分采用STC89C52单片机,输出部分采用ICL7107与数码管结合。
数控直流电流源

C1 C2
C3 C4
Uin
1
V7 IN
80
5
VOUT
3
GND
C1 C2
C3 C4
R
RL
2 1
2
LM317构成电流源电路
LM3 17
Uin
3 VIN
VOUT 2
ADJ
C1 C2
C3 C4
U0 R1
R2
UO
(1
R2 ) 1.25 R1
电子系统设计-数控直流电流源设计
基本电流源电路
Uin 1K
Vout
Vref D 256
(mV ),取R
1
若I 5mA, D、Vref为多少?
电子系统设计-数控直流电流源设计
数控方案
+5
Vcc 20 I LE 1 9
7
6
5
P0
4
16
15
14
13
P2. 7 1 2
/W R 1 8 17
IC 3
ls b DI0 DI1 DI2 DI3 DI4 DI5 DI6 msb DI7
I=Uin/R
R1 Uin
1 0K R3 1 0K
U2 B
5
LM3 58
7
6
RL
R I
R2
5 U5
6 U6
1 0K B
7
R4 1 0K
Iout U1 U2 R
U5
U in
U2 2
,U6
U1 2
U5 U6,Uin U1 U2
Iout Uin R
R
U1 Io u t
U2 RL
浅谈数控直流电流源的设计与实现

浅谈数控直流电流源的设计与实现
在电子设备中经常用到稳定性好、精度高、输出可预置的直流电流源。
本文设计的数控直流电流源能够很好地降低因元器件老化、温漂等原因造成的输出误差,输出电流在20mA~2000mA可调,输出电流可预置、具有“+”、“-”步进调整、输出电流信号可直接显示和语音提示等功能。
硬件电路采用凌阳单片机SPCE061A为控制核心,利用闭环控制原理,加上反馈电路,使整个电路构成一个闭环,在软件方面主要利用PID算法来实现对输出电流的精确控制。
该系统可靠性高、体积小、操作简单方便、人机界面友好。
系统硬件实现方案
本设计采用单片机作为主要控制部件,通过键盘预置输出电流值并采用液晶模块实时显示。
整个系统硬件部分由微控制器、电压-电流转换、键盘、显示、直流稳压电源和语音提示等模块组成。
系统组成框图如图1所示。
图1 数控直流电流源的基本模块方框图
微控制器是整个系统的核心,负责整个系统的运作。
为了实现简化硬件电路、系统性能稳定可靠,便于实现语音播报、键盘设置和信息的实时显示等功能的协调,通过多种方案论证后,微控制器选用凌阳公司的SPCE061A,该单片机内部集成有ADC、DAC、PLL、AGC、DTMF、LCD-Driver等电路(与IC型号有关)。
它采用精简指令集(RISC),指令周期均以CPU时钟数为单位。
另外,它还兼有DSP功能,内置16位硬件乘法器和加法器,并配备有DSP拥有的特殊指令,大大加速了各种算法的运行速度。
同时可以在。
数控直流电流源的设计

《关于单片机数控直流的电流源设计》要:本文介绍了基于单片机的数控直流电流源设计方案,给出了硬件组成及软件系统。
本系统以单片机AT89S52为核心部件,由键盘、显示、D/A及A/D转换,V/I转换、功率放大等模块组成。
采用负反馈闭环控制系统,单片机实时将预置值和实测值进行比较、调整控制,提高了电流源的输出精度。
所设计的数控直流电流源采用PID算法实现了量程可选、输出可调、步进精确、纹波电流极小的功能,而且可将输出电流预置值、实测值在LED上同时显示。
经实验证明具有较高的控制精度。
关键词:单片机,电流源,数控,V/I变换0引言低纹波、高精度稳定直流电流源是一种非常重要的特种电源,在现代科学研究和工业生产中得到了越来越广泛的应用。
普通电流源往往是用电位器进行调节,输出电流值无法实现精确步进。
有些电流源虽能实现数控但输出电流值往往比较小,且所设定的输出电流值是否准确不经测试无法知道等等[1,2]。
为此,结合单片机技术及V/I变换电路,采用反馈调整控制方案设计制作了一种新型的基于单片机高精度数控直流电流源。
它可实现以下功能:(1)具有多个量程,用户可根据实际需要选定。
(2)输出电流值可精确预置,最小步进为1mA,最大输出电流2000mA。
(3)纹波电流极小,小于0.1mA。
(4)LED可同时显示预置电流值、实测电流值及当前量程档,便于用户操作及进行误差分析。
1 硬件系统设计根据数控直流电流源的要求,由于要求有较大的输出电流范围和较精确的步进要求以及较小的纹波电流,所以不适合采用简单的恒流源电路FET和恒流二极管,亦不适合采用开关电源的开关恒流源,否则难以达到输出范围和精度以及纹波的要求[3]。
根据系统要求采用D/A转换后接运算放大器构成的功率放大,控制D/A的输入从而控制电流值的方法。
系统的原理框图如图1所示。
图1 系统的原理框图1.1 数控部分设计(1)89S52单片机基本系统:数控部分的核心采用89S 52。
数控直流电流源设计

摘要:本次主要任务是使用Proteus、Multisim、PSPICE、TINA-TI、Matlab等电路仿真软件,设计仿真一个简易数控恒流源电路方案以微控制器为核心,设计一数字式直流电流控制系统,实现了可控的恒电流源.系统以89c52单片机为控制核心,通过12位D/A MAX5822控制输出电流、12位A/D MAX1241对输出电流进行检测,利用电流串连负反馈特性采用OP07和达林顿管组成的恒流源,实现一种宽范围、高精度、低纹波、带负载能力强的直流电源。
此外,该电流源可以通过键盘进行预置调整设定值,且输出通过LCD显示。
本次仿真所用的软件主要是Proteus与Multisim。
关键词:数控直流电流源 89C52 MAX5822 MAX1241 仿真目录1.设计任务与要求 (2)1.设计任务与要求 (3)1.1任务 (3)1.2要求 (3)2. 方案论证与比较 (4)2.1. 数控模块 (4)2.2.恒流源电路模块 (4)3 系统硬件组成及各部分的原理分析 (5)3.1数控电流输出及测量模块 (5)3.1.1数控电流输出 (5)3.1.2 测量电流输出 (6)3.2键盘与显示电路 (7)3.3恒流源电路 (7)3.4供电电路 (9)4 系统软件设计 (9)4.1软件的结构 (9)4.1软件流程图 (10)5电路各部分的仿真结果 (11)5.1显示和按键控制电路仿真 (11)5.2 DA转换仿真 (11)5.3 AD转换仿真 (12)5.4恒流源电路仿真 (13)6设计总结 (14)7附录 (15)1.设计任务与要求1.1任务设计并制作数控直流电流源。
输入交流200~240V,50Hz;输出直流电压≤10V1.2要求用仿真软件对电路进行设计并仿真,使其满足以下要求:1、基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控直流电流源的设计
数控直流电流源设计是一种电源研发中不可或缺的一种技术。
数控电源设计的基本原理是以数字信号为控制信号,通过模数转换器将信号进行处理,并在输出端通过运放和功率器件实现电源输出。
数控直流电流源设计通常有多种实现方案,下面我们将对数控直流电流源的设计方案和基本要点进行介绍。
一、数控直流电流源的设计方案1. 数控直流电流源通过电压降进行电流调节在设计中,可以将一个负载电阻串联在直流电源输出端,用操作信号控制电压降,从而在电阻上产生稳定的电流。
不同电源的电压调整范围不同,具体电源需要合理选择电压控制元件并加以调节。
2. 数控直流电流源采用二极管式恒流源技术该方法的设计基于二极管的固有特性,二极管正向电流与其正向电压成指数关系,某种程度上追求了电流不随负载电阻和电源电压的变化而发生改变的目的。
3. 数控直流电流源采用电压转换及限流技术该技术基于集回控制回路和恒压限流控制回路于一身。
输入时,集成回路不变,恒压限流回路负责输出电流的保护和限制,保证负载操作安全可靠。
二、数控直流电流源的基本要点在设计数控直流电流源的时候,需要考虑以下要点:1. 电源适应范围。
在选择模拟
电源芯片之前,需要考虑需要连接的负载电流大小、所需合适的输出电流、输出电压和功率等因素。
2. 稳定性。
电源的稳定性是评价数控直流电流源优劣的重要指标。
电阻、电容组成的稳压、稳流回路是保证电源稳定性的有效手段。
3. 真实性。
在设计中,需要考虑到负载电流变化所产生的响应状况并给出合适的解决方法。
在许多情况下,需要对设计方案进行优化和调整,以达到输出电流的更为真实性。
4. 安全性。
电源在工作过程中需要考虑对安全的保护。
对于短路保护、过载保护和过热保护等方面需要进行设计。
5. 控制模式。
需要考虑到数控直流电流源的控制模式。
包括区间控制、精密控制、PID控制、阶梯控制等模式,具体的应选取相应的模式根据需求需按体制进行设计。
总结:数控直流电流源设计是非常有挑战性的,需要精密技术,高质量的工程人员和一定的实践经验。
在实际工作中,根据不同的电源特征来设计有效的电源控制方案是必须的。
从这些基本要点的考虑上能够更好地实现电源的设计,有效地提高电源的稳定性和真实性,保障电源的工作安全和可靠性,最终满足研发的实际需求。