不等式知识点北师大八年级

合集下载

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结

北师大版八年级下册数学各章知识要点总结北师大版八年级下册数学各章学问要点总结北师大版八年级数学下册各章学问要点总结第一章一元一次不等式和一元一次不等式组一、一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。

1、能使不等式成立的未知数的值,叫做不等式的解. 2、不等式的解不唯一,把全部满意不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共局部。

6、等式根本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.根本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、不等式的根本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(注:移项要变号,但不等号不变。

)性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变.不等式的根本性质、若a>b,则ac>bc;、若a>b,c>0则ac>bc,若cc,则a>c四、一元一次不等式与一次函数五、一元一次不等式组※1.定义:由含有一个一样未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共局部叫做不等式组的解集.假如这些不等式的解集无公共局部,就说这个不等式组无解.几个不等式解集的公共局部,通常是利用数轴来确定.※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共局部,(3)写出这个不等式组的解集.两个一元一次不等式组的解集的四种状况(a、b为实数,且a找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取一样的字母,字母的指数取较低的;(3)取一样的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有“-”先提取“-”,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a+2ab+b或a-2ab+b的式子称为完全平方式.六、分解因式的方法:1、提公因式法。

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)

第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。

初二下数学______不等式知识点北师大版

初二下数学______不等式知识点北师大版

初二下数学不等式知识点北师大版I不等式是指表示不等关系的式子。

(比如a>b,3>2)(通常用大于(>)小于(<)或者大于等于(》)和小于等于(《)连接)II不等式的基本性质:性质1:如果a>b,那么a+c>b+c或者a-c>b-c(不等式两边同时加上或减去一个数不等式不变号)性质2:如果a>b,c>0,那么ac>bc,如果a>b,c<0,那么ac<bc.( 不等式两边同时乘以或者除以一个正数,不等式不变号;不等式两边同时乘以或者除以一个负数,不等式要变号)性质3:如果a>b,b>c,那么a>c(不等式的传递性).性质4:如果a>b>0,c>d>0,那么ac>bd.性质5.如果a>b,c>d,则a+c>b+d 想想a>b,c<d又会有什么结论?III解一元一次不等式的一般方法顺序:(1)去分母(运用不等式性质2、3)(2)去括号(括号内每一项要变号)(3)移项(运用不等式性质1)(移项需要变号)(4)合并同类项。

(同类项系数相加减字母不改变)(5)将未知数的系数化为1 (运用不等式性质2、3)(6)有些时候需要在数轴上表示不等式的解集IV不等式的解集:一个有未知数的不等式的所有解,组成这个不等式的解集。

例如,不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有非零实数。

.一元一次不等式的解集将不等式化为ax>b的形式(1)若a>0,则解集为x>b/a(2)若a<0,则解集为x<b/aV数轴:规定原点,正方向,单位长度的直线叫做数轴。

VI一元一次不等式组:(1)一般的,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。

(2)一元一次不等式组中各个不等式的解集的公共部分(解集的交集),叫做这个一元一次不等式组的解集。

北师大版八年级数学下册课件《 不等式的解集》

北师大版八年级数学下册课件《 不等式的解集》
XXX学校
2.3 不等式的解集
班级:X年级X班
北师大版 八年级 数学 下册
导入新知
思考:我们在燃放烟花时,为了确保安全,我们需要 注意哪些呢?
在安全距离、引火线的燃烧速度和燃放着离 开的速度为一定时,还应注意引火线的长度,那引火 线究竟需要多长呢?这节课我们一起讨论一下吧!
素养目标
3.能正确地在数轴上表示出不等式的解集, 领悟数形结合思想. 2.准确掌握不等式的解集在数轴上的表示 方法. 1.理解不等式的解、解集和解不等式的概念.
(
)
A. x≤-4
B. x≥-5
C. x≤-6
D. x≥-7
巩固练习
变式训练
下列4种说法:
5
①x= 4
是不等式4x-5>0的解;②x5=
2
个解;5
4
③x> 是不等式4x-5>0的解集;
是不等式4x-5>0的一
④x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也
是它的解集. B
其中正确的有(
用不等式表示图中所示的解集.
x<2
x≤2
x≥ -7.5
连接中考
(2020•株洲)下列哪个数是不等式2(x-1)+3<0的
ห้องสมุดไป่ตู้
一个解(A )
A.-3
- 1 B.
2
1 3
C.
D.2
课堂检测
基础巩固题
1.判断下列说法是否正确?
( 1 ) x=2 是 不 等 式 x+3<4 的×解 ;



(2) (

等 )
不等式解集的表示

北师版八年级下册不等式初步知识点+练习

北师版八年级下册不等式初步知识点+练习

不等式初步知识点1:不等式概念不等式:用不等号(“>”、“<”、“≥”、“≤”或“≠”)表示大小关系的式子,叫做不等式常见不等号读法:常见不等关系的描述:(1)a不大于b,___________________.(2)a 的数量不少于b,___________________.(3)a为非负数,___________________.(4)小明至少有70元钱,设钱数为a元,___________________.(5)某儿童的身高bm不超过1.2m,___________________.(6)a的2倍与1的差不等于0,___________________.总结:列不等式的步骤:①找关键字,判断用什么不等号;②列不等式.例1、下列给出四个式子,①x>2;②a≠0;③5<3;④a≥b,其中是不等式的是()A.①④B.①②④C. ①③④D.①②③④练1-1、下列式子:①-3<0,②4x+3y>0,③x=3,④x²-y+1,⑤x≠5,⑥x-3<y+2,其中是不等式的有____.例2、根据题意列不等式:(1)x的2倍大于1;
(2)a与b的差是非负数;
(3) a 的2倍与7的和小于-2.知识点2:不等式的解集解集:把满足一个不等式的未知数的值,称为这个不等式的一个解,如:3,3.5,4都是不等式2x≥4的解,这样的解有无数个,我们把满足一个不等式所有解,称为这个不等式的解集.
用数轴表示不等式的解集应记住以下规定:①大于向右画,小于向左画;②有等号(≥,≤)画实心点;③无等号(>,<)画空心圈.
常见不等式解集在数轴上表示如下:练习:在数轴上表示下列不等式:(1)x<3; (2)x≥-2.例3、(1)下列选项中是不等式2x+1>3的解的是()A.-4B.-2C.0D.2(2)已知x=-2是不等式ax ²-bx+c>0的解,则下列式子正确的是( )A.4a-2b+c>0B.4a +2b+c>0C.-4a-2b+c>0D.-4a +2b +c>0 练3-1、(1)下列数中哪些是不等式3x-5≥0的解:-1、0、1、2、3、4;(2)若x=-1是不等式ax ²+bx+c>0的解,则a-b+c____0.例3、在数轴上表示下列不等式的解集:(1)x<-2; (2)x ≥1.练4-1、在数轴上表示下列不等式的解集:(1)x>2.5; (2)x<-2.5; (3) x ≥3.练 4-2、不等式的解集在数轴上表示如下图所示,则该不等式可能是_________.知识点三:不等式性质不等式的性质1: 不等式的两边加(或减)同一个数(或式子),不等的方向不变。

不等式的基本性质教学课件--北师大版初中数学八年级(下)

不等式的基本性质教学课件--北师大版初中数学八年级(下)

(2) 1 x
3
<
1 y (不等式的基本性质 2 )
3
(3)-x > -y (不等式的基本性质 3 )
(4)x-m < y-m (不等式的基本性质 1 )
3、下列各题是否正确?请说明理由
(1)如果a>b,那么ac>bc
×
(2)如果a>b,那么ac2 >bc2
×
(3)如果ac2>bc2,那么a>b

a c
>
b c
a c
<
b c
知识讲授
不等式的基本性质 3 :
不等式的两边都乘(或除以)同一个负数, 不等号的方向 改变 .
即:若a b且c 0, 则a c<b c , 若a b且c 0,则a c> b c ,
ac <
b c
a c
>
b c
例题讲授
例1 将下列不等式化成“x>a”或“x<a”的情势:
-4<3 -4×2< 3×2 -4÷2< 3÷2 -4×(-2)> 3×(-2)
-4÷(-2)> 3÷(-2)
6×0 = 3×0
知识讲授
不等式的基本性质 2 :
不等式的两边都乘(或除以)同一个正数,不 等号的方向 不变 .
即:若a b且c 0, 则a c> b c , 若a b且c 0,则a c<b c ,
2
能力提升
1、单项选择:
(1)由 x>y 得 ax>ay 的条件是(B )
A.a ≥0 B.a > 0 C.a< 0 D.a≤0 (2)由 x>y 得 ax≤ay 的条件是( D ) A.a>0 B.a<0 C.a≥0 D.a≤0

北师大版八年级下册数学.不等式的解集课件

北师大版八年级下册数学.不等式的解集课件
第二章 一元一次不等式与 一元一次不等式组
2.3 不等式的解集

学习目标
❖ 1.理解不等式的解及解集的意义. ❖ 2.会判断所给未知数的值是不是不等式的解,
同时会求简单不等式的解. ❖ 3.会运用不等式和数轴两种方法表示不等式
的解集. ❖ 4.通过视察、分析、探索不等式的解集的含
义,体会数形结合的数学思想的应用.
(1)x>4
-3 -2 -1 0 1 2 3 4 5 6 7 8
(2)x<-1
-3 -2 -1 0 1 2 3 4 5 6 7 8
(3)x≥-2 (4)x≤6
-3 -2 -1 0 1 2 3 4 5 6 7 8 -3 -2 -1 0 1 2 3 4 5 6 7 8
3、填空
❖ 1)方程2x=4的解有( 1 )个,不等式
(3)-2x-2 > -10 解:两边同时加2得:
-2x > -8 两边同时除以-2得:
x<4
-1 0 1 2 3 4 -1 0 1 2 3 4
随堂练习
1、判断正误:
(1)不等式x-1>0有无数个解 ( √ )
(2)不等式2x-3 ≤0的解集为 x ≥ 2/3( ×)
2、将下列不等式的解集分别表示在数轴上:
-3 -2 -1 0 1 2 3 4 5 6 7 8
-3 -2 -1 0 1 2 3 4 5 6 7 8
例题 根据不等式的基本性质求不等式的解集, 并把解集表示在数轴上.
(1)x-2≥ -4 解:两边同时加2得:
x ≥ -2
(2)2x ≤ 8 解:两边同时除以2得:
x ≤4
-3 -2 -1 0 1 2
燃放礼花时,为了确保安全,人在 点燃导火线后要在燃放前转移到10米 以外的安全区域,已知导火线的燃烧速 度为0.02m/s,人离开的速度为 4 m/s,那么导火线的长度应是多少厘米?

第5讲 一元一次不等式八年级数学下册同步讲义(北师大版)

第5讲 一元一次不等式八年级数学下册同步讲义(北师大版)

第5讲一元一次不等式1.掌握不等式的基本性质并能正确运用它们将不等式变形;2.理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;3.掌握解一元一次不等式的方法和步骤并准确地求出不等式的解集.知识点01 不等式的相关概念1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.【知识拓展】(2021春•萍乡期末)“实数x不小于6”是指()A.x≤6 B.x≥6 C.x<6 D.x>6【即学即练】(2021春•建平县期末)据天气预报,2021年7月5日建平县最高气温是25℃,最低气温是22℃,则当天我县气温t(℃)的变化范围是()A.t>25 B.t≤22 C.22<t<25 D.22≤t≤25知识点02 不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或a c>bc).知识精讲目标导航性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c<b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c . 【知识拓展1】(2021春•饶平县校级期末)若2a +3b ﹣1>3a +2b ,试比较a ,b 的大小.【即学即练1】(2021•梁园区校级一模)若a >b >0,c >d >0,则下列式子不一定成立的是( ) A .a ﹣c >b ﹣dB .C .ac >bcD .ac >bd【即学即练2】(2021秋•澧县期末)若a >b ,则﹣2a ﹣2b .(用“<”号或“>”号填空) 【即学即练3】(2021春•万柏林区校级月考)利用不等式的性质,解答下列问题. (1)①如果a ﹣b <0,那么a b ; ②如果a ﹣b =0,那么a b ; ③如果a ﹣b >0,那么a b ; (2)比较2a 与a 的大小. (3)若a >b ,c >d . ①比较a +c 与b +d 的大小; ②比较a ﹣d 与b ﹣c 的大小.【即学即练4】(2021春•未央区校级月考)若m<n,且(a﹣5)m>(a﹣5)n,求a的取值范围.【即学即练5】(2021春•饶平县校级期末)根据要求,回答下列问题:(1)由2x>x﹣,得2x﹣x>﹣,其依据是;(2)由x>x﹣,得2x>6x﹣3,其依据是;(3)不等式x>(x﹣1)的解集为.【即学即练6】(2021•连州市模拟)已知a>b,则下列结论正确的是()A.﹣2a>﹣2b B.a+c>b+c C.3a<3b D.ac>bc【即学即练7】(2021春•潍坊期末)若a>b,则下列不等式一定成立的是.A.a+2>b+2 B.<C.﹣2a<﹣2b D.a2<b2【即学即练8】(2021•内江)已知非负实数a,b,c满足==,设S=a+2b+3c的最大值为m,最小值为n,则的值为.知识点03 一元一次不等式1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b>0(a≠0)或ax+b≥0(a≠0) ,ax+b<0(a≠0)或ax+b≤0(a≠0).2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1.要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.【知识拓展1】(2021春•皇姑区校级期中)若x2m﹣1>5是关于x的一元一次不等式,则m=.【即学即练1】(2021春•饶平县校级期末)已知(b+2)x b+1<﹣3是关于x的一元一次不等式,试求b的值,并解这个一元一次不等式.【即学即练2】(2021春•平川区校级期末)在数学表达式:﹣4<0,2x+y>0,x=1,x2+2xy+y2,x≠5,x+2>y+3中,是一元一次不等式的有()A.1个B.2个C.3个D.4个【即学即练3】(2021•南岗区校级开学)下列各式中,是一元一次不等式的有()(1)x+2+x2<2x﹣5+x2;(2)2x+xy+y;(3)3x﹣4y≥0;(4)﹣5<x;(5)x≠0;(6)a2+1>5.A.1个B.2个C.3个D.4个【即学即练4】(2021春•甘孜州期末)下列不等式中,是一元一次不等式的是()A.x<y B.a2+b2>0 C.>1 D.<0【即学即练5】(2021春•冠县期末)若(m+1)x|m|+2>0是关于x的一元一次不等式,则m=.【知识拓展2】(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.【即学即练1】(2021•滕州市一模)下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3 B.C.D.2【即学即练2】(2021•河南模拟)用三个不等式x>﹣4,x<﹣1,x>1中的两个组成不等式组,其中有解集的个数为()A.0 B.1 C.2 D.3【即学即练3】(2021•新野县三模)已知关于x的不等式组有实数解,则m的取值范围是.【即学即练4】(2021春•沭阳县期末)如图,是关于x的不等式的解集示意图,则该不等式的解集为.【即学即练5】(2021春•陆河县校级期末)如图,此不等式的解集为.【即学即练6】(2021春•天津期末)分别用含x的不等式表示如图数轴中所表示的不等式的解集:②;②.【即学即练7】(2021•潮阳区模拟)把某个关于x的不等式的解集表示在数轴上如图所示,则该不等式的解集是()A.x≥﹣2 B.x>﹣2 C.x<﹣2 D.x≤﹣2【即学即练8】(2021春•抚州期末)在实数范围内规定新运算“*”,基本规则是a*b=a﹣2b,已知不等式x*m≤3的解集在数轴上表示如图所示,则m的值为.【即学即练9】(2021春•饶平县校级期末)解不等式7﹣2x>(1﹣)2,把它的解集在数轴上表示出来,并求出它的正整数解.【即学即练10】(2019•衢江区二模)如图,在数轴上,点A、B分别表示数1和﹣2x+3.(1)求x的取值范围;(2)将x的取值范围在数轴上表示出来.【知识拓展3】(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣【即学即练1】(2021秋•济南期末)不等式﹣3x≤6的解集为.【即学即练2】(2021秋•鹿城区校级期中)若不等式(m﹣3)x>m﹣3,两边同除以(m﹣3),得x<1,则m的取值范围为.【即学即练3】(2021秋•肇源县期末)若关于x的方程x+k=2x﹣1的解是负数,则k的取值范围是()A.k>﹣1 B.k<﹣1 C.k≥﹣1 D.k≤﹣1【即学即练4】(2021•安徽模拟)解不等式≤.【即学即练5】(2021•永定区模拟)解不等式:7x﹣2≤5x,并把解集在数轴上表示出来.【即学即练6】(2021秋•清镇市期中)已知点M(﹣6,3﹣a)是第二象限的点,则a的取值范围是.【知识拓展4】(2021•陕西)求不等式﹣x+1>﹣2的正整数解.【即学即练1】(2021•长兴县模拟)整数x满足不等式2x+1<8,则x的值可能是.(写出一个符合的值即可)【即学即练2】(2021春•聊城期末)解不等式,并写出它的负整数解.【即学即练3】(2021春•鞍山期末)解不等式(1﹣2x )≥;并写出它所有的非负整数解.【即学即练4】(2021秋•朝阳区校级期中)不等式4(x ﹣2)<2x ﹣3的非负整数解的个数为( ) A .2个B .3个C .4个D .5个1.比较a b +和a b -的大小.2.等式()()52186117x x -+<-+的最小整数解是方程24x ax -=的解,求a 的值.3.解不等式:11315111x x x x ++>+-++.能力拓展分层提分题组A 基础过关练一.选择题(共4小题)1.(2021秋•龙凤区校级期末)若不等式(3a﹣2)x+2<3的解集是x<2,那么a必须满足()A.a=B.a>C.a<D.a=﹣2.(2021•锦江区校级开学)若a>b,则下列不等式不一定成立的是()A.﹣2a<﹣2b B.am<bm C.a﹣3>b﹣3 D.3.(2021秋•龙凤区期末)已知a<b,则下列不等式错误的是()A.a﹣7<b﹣7 B.ac2<bc2C.D.1﹣3a>1﹣3b4.(2021秋•杜尔伯特县期末)若m<n,则下列各式正确的是()A.﹣2m<﹣2n B.C.1﹣m>1﹣n D.m2<n2二.填空题(共6小题)5.(2021秋•肇源县期末)若不等式组无解,则a的取值范围是.6.(2021秋•瓯海区月考)根据“3x与5的和是负数”可列出不等式.7.(2021秋•青羊区校级期中)﹣<x<的所有整数的和是.8.(2021秋•济南期末)不等式﹣3x≤6的解集为.9.(2021秋•澧县期末)若a>b,则﹣2a﹣2b.(用“<”号或“>”号填空)10.(2020秋•开化县期末)若x<y,且(a﹣3)x≥(a﹣3)y,则a的取值范围是.三.解答题(共2小题)11.(2021春•澄城县期末)已知(k+3)x|k|﹣2+5<k﹣4是关于x的一元一次不等式,求这个不等式的解集.12.(2021春•秦都区月考)解不等式:3x ﹣4<4+2(x ﹣2).题组B 能力提升练一、单选题1.在数学表达式:30-<,+a b ,3x =,222x xy y ++,5x ≠,23x y +>+中,是一元一次不等式的有( ). A .1个B .2个C .3个D .4个2.不等式x ﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( ) A .B .C .D .3.不等式2﹣3x≥2x﹣8的非负整数解有( ) A .1个B .2个C .3个D .4个4.如图,是关于x 的不等式2x ﹣a≤﹣1的解集,则a 的取值是( )A .a≤﹣1B .a≤﹣2C .a=﹣1D .a=﹣25.已知关于x 的不等式(1)2a x ->的解集为21x a<-,则a 的取值范围是( ) A .0a >B .1a >C .0a <D .1a <6.若方程3(1)1(3)5m x m x x ++=--的解是正数,则m 的取值范围是( )A .54m >B .54m <C .54m >-D .54m <-7.若关于x 的不等式mx m nx n +<-+的解集为23x >-,则关于x 的不等式2mx m nx n ->-的解集是( ) A .43x >B .43x <C .43x >-D .43x <-二、填空题8.不等式5x-9≤3(x+1)的解集是________.9.已知不等式3x -0a ≤的正整数解恰是1,2,3,4,那么a 的取值范围是_________________. 10.不等式112943x x ->+的正整数解的个数为___________________. 11.当x _____________时,21x -的值小于32x +的值. 12.不等式442x x ->-的最小整数解为_____. 13.(1)已知x a <的解集中的最大整数为3,则a 的取值范围是________. (2)已知x a >的解集中最小整数为-2,则a 的取值范围是________.14.若不等式2113x -≤中的最大值是m ,不等式317x --≤-中的最小值为n ,则不等式nx mn mx +<的解集是________. 三、解答题15.解一元一次不等式532122x x ++-<.16.解不等式,并把不等式的解集在数轴上表示出来. (1)6327x x ->-; (2)21123x x -+-≤.17.已知,关于x的不等式(2a-b)x+a-5b>0的解集为x<10 7.(1)求ba的值.(2)求关于x的不等式ax>b的解集.题组C 培优拔尖练1.列式计算:求使的值不小于的值的非负整数x.2.已知不等式5(x﹣2)﹣9>7(x﹣11)+36,它的最大整数解恰好是方程x﹣ax=20的解,求a的值.3.为了保护环境,池州海螺集团决定购买10台污水处理设备,现有H和G两种型号设备,其中每台价格及月处理污水量如下表:H G价格(万元/台)1512处理污水量(吨/月)250220经预算,海螺集团准备购买设备的资金不高于130万元.(1)请你设计该企业有几种购买方案?(2)哪种方案处理污水多?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式知识点北师大八年级
不等式知识点
不等式是数学中的一种基本概念,其本质是描述数值大小之间
的关系。

不等式在数学中具有广泛应用,尤其在代数与几何中具
有极其重要的地位。

本文将对不等式的基本概念、不等式的解法、不等式的应用等方面进行详细介绍。

一、不等式的基本概念
不等式是由‘>’、‘<’、‘≥’、‘≤’等符号来表示的数值大小关系的
式子。

不等式中的数值可以是整数、分数、甚至是根式等。

不等
式中出现的符号具有以下含义:
1.>:大于
2.<:小于
3.≥:大于或等于
4.≤:小于或等于
例如:
x > 2 表示x大于2
y < 3 表示y小于3
a +
b ≤ 10 表示a与b的和小于或等于10
二、不等式的解法
解不等式就是要求出不等式中未知数的取值范围。

不等式的解法需要根据不等式的形式来进行,以下为常见的不等式形式及其解法:
1.一元一次不等式
一元一次不等式是一种只涉及一个变量及其一次项的不等式,其通式为ax + b > c(或ax + b < c、ax + b ≥ c、ax + b ≤ c)。

对于一元一次不等式的解法,需要注意以下步骤:
(1)将不等式移项,使得未知数在等号左侧。

(2)对不等式两侧同乘/除以正数,使得未知数的系数为1。

(3)求出未知数的取值范围。

例如:
3x - 4 ≥ 5,将-4移项得3x ≥ 9,再除以3,得到x ≥ 3。

2.一元二次不等式
一元二次不等式是一种有二次项的不等式,其通式为ax² + bx + c > 0(或ax² + bx + c <0、ax² + bx + c ≥ 0,ax² + bx + c ≤ 0)。

对于一元二次不等式的解法,需要注意以下步骤:
(1)将不等式移项,使得不等式的右侧为0。

(2)根据判别式(b² - 4ac),判断二次函数的零点个数及其
位置。

(3)根据二次函数在零点处的取值情况,求出不等式的解集。

例如:
x² - 2x - 3 > 0,移项得x² - 2x + 3 < 0,此时判别式Δ = b² - 4ac = 4 - 4(1)(3)=-8 <0,说明该二次函数没有实数根,即对任意x,
该不等式均成立。

三、不等式的应用
1.线性规划问题
线性规划(Linear programming)是一种通过遍历问题的所有可行解,并在其中寻找目标函数最大化或最小化的过程。

线性规划
问题的关键在于要将问题转换成数学模型,这就需要用到不等式的知识。

举个例子:一家工厂在一段时间内最多能生产a件产品、b件产品和c件产品。

如果该工厂的利润分别为x,y,z元/件,那么该工厂在生产过程中能获得的最大利润为多少?
这个问题需要将工厂能生产的产品数量以及利润量等因素全部转化为不等式形式,并在其中寻找使目标函数最大化的结果。

2.几何问题
数学中许多几何问题在解决时需要用到不等式的知识。

例如在证明一个长方形是正方形时,需要证明其中两条对角线相等,这就可以通过运用三角不等式来完成。

另外,不等式理念也有助于我们更加清楚地认识数值之间的关系,加强我们对数学的理解,有利于我们在未来的数学学习中更好地应用不等式的知识。

以上就是本文对不等式的基本概念、不等式的解法、不等式的应用等方面的详细介绍,希望对大家的数学学习有所帮助。

相关文档
最新文档