高中数学参数方程知识点大全

合集下载

(完整word版)高中数学参数方程知识点大全

(完整word版)高中数学参数方程知识点大全

高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21) 解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==ty t x B.⎩⎨⎧==t y t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=tt 22sin 2cos 2=ctg 2t=2211x t tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x + ρcos θ=x ,代入上式,得 222y x +=2x-5. 平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 215231 7.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x by a x ≠=-D.)(12222a x by a x -≠=- 8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1,-3π),r=2 9.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21± C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A. 3πB.32πC.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pt y pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 .(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t| (三)20.(5154,558);21.;332 22.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

高三数学参数方程知识点

高三数学参数方程知识点

高三数学参数方程知识点数学是一门抽象而又具有普适性的学科,它的应用广泛,对于高三学生来说,数学的学习变得更加重要和密集。

本文将着重介绍高三数学中的参数方程知识点,帮助学生全面理解并有效记忆这一概念。

一、参数方程的定义与特点参数方程是指用一个参数表示所有的自变量和因变量之间的函数关系。

通常用t作为参数,表示自变量的取值范围。

在参数方程中,将自变量和因变量用参数表示,使得函数的自变量和因变量之间的关系更为灵活。

二、参数方程的表示方法参数方程的表示方法有多种形式,常见的有向量表示法和分量表示法。

1. 向量表示法在向量表示法中,自变量和因变量都用向量表示。

例如,对于平面上的一个点P,其参数方程可表示为:P(t) = (x(t), y(t))其中,x(t)和y(t)分别表示点P的x坐标和y坐标,t为参数。

2. 分量表示法在分量表示法中,将自变量和因变量都分别表示为关于参数t的函数。

例如,对于平面上的一个点P,其参数方程可以表示为:x = f(t)y = g(t)其中,f(t)和g(t)分别表示x和y的函数,t为参数。

三、参数方程应用领域参数方程在数学中有广泛的应用,特别是在曲线的研究中起到重要作用。

下面分别介绍参数方程在平面曲线和空间曲线中的应用。

1. 平面曲线参数方程在平面曲线中的应用非常广泛,常见的曲线方程如圆、椭圆、抛物线、双曲线等都可以用参数方程表示。

通过参数方程,可以对曲线的形状和性质进行更深入的研究。

例如,对于圆的参数方程为:x = a*cos(t)y = a*sin(t)其中,a为半径,t为参数。

通过改变参数t的取值范围,可以绘制出一条圆的完整轨迹。

2. 空间曲线参数方程在空间曲线的研究中也起到重要作用,例如,直线、曲线、螺旋线等都可以通过参数方程来表示。

通过参数方程,可以描述物体在空间中的运动轨迹,从而研究物体的运动方式和变化规律。

四、参数方程的解法当给定一个参数方程时,我们需要求解参数方程对应的曲线方程或图形。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高中数学参数方程知识点大全同学,下面就是超全的高中数学参数方程知识点啦!一、参数方程的基本概念。

1. 啥是参数方程。

简单来说呢,一般的方程是直接表示两个变量(比如x和y)之间的关系。

但参数方程就不一样啦,它是通过引入一个额外的变量,这个变量就叫参数(通常用t 之类的字母表示),然后分别用这个参数来表示x和y。

就好像x = f(t),y = g(t),这样x和y的值就随着参数t的变化而变化啦。

举个例子,对于直线y = 2x+1,它的参数方程可以写成x = t,y = 2t + 1(这里t就是参数)。

2. 参数的意义。

参数是有实际意义的哦。

比如说在描述物体运动轨迹的时候,参数可能表示时间。

如果一个点在平面上运动,x坐标和y坐标随着时间t的变化而变化,那这个t就是很有意义的参数,它能让我们知道这个点在每个时刻的位置。

二、常见曲线的参数方程。

1. 直线的参数方程。

对于过点(x_0,y_0),倾斜角为α的直线。

它的参数方程一般形式是<=ft{begin{array}{l}x=x_0+tcosα y = y_0+tsinαend{array}right.(这里t是参数)。

这个参数t的几何意义可重要啦。

| t|表示直线上的动点(x,y)到定点(x_0,y_0)的距离。

如果t>0,动点在定点的沿直线方向的一侧;如果t < 0,动点在定点的另一侧。

2. 圆的参数方程。

对于圆心在(a,b),半径为r的圆,它的参数方程是<=ft{begin{array}{l}x=a + rcosθ y=b + rsinθend{array}right.(这里θ是参数,θ∈[0,2π))。

你可以把θ想象成是一个角度,当θ从0变到2π的时候,(x,y)这个点就绕着圆转了一圈,把圆上所有的点都遍历了一遍呢。

3. 椭圆的参数方程。

椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0)的参数方程是<=ft{begin{array}{l}x=acosθ y = bsinθend{array}right.(这里θ是参数,θ∈[0,2π))。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高考复习之参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数方程或极坐标方程求两条曲线的交点.二、知识结构1.直线的参数方程(1)标准式过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)(2)一般式过定点P 0(x 0,y 0)斜率k=tgα=ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 不参数)②在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时,|t|表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t|.直线参数方程的应用设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=at y y a t x x sin cos 00(t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则(1)P 1、P 2两点的坐标分别是(x 0+t 1cosα,y 0+t 1sinα)(x 0+t 2cosα,y 0+t 2sinα);(2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t,则t=221t t +中点P 到定点P 0的距离|PP 0|=|t|=|221t t +|(4)若P 0为线段P 1P 2的中点,则t 1+t 2=0.2.圆锥曲线的参数方程(1)圆圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆椭圆12222=+b y a x (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a>b>0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数)3.极坐标极坐标系在平面内取一个定点O,从O 引一条射线Ox,选定一个单位长度以及计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x y tg y x θρ三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1在圆x 2+y 2-4x-2y-20=0上求两点A 和B,使它们到直线4x+3y+19=0的距离分别最短和最长.解:将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数)则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2极坐标方程ρ=θθcos sin 321++所确定的图形是()A.直线B.椭圆C.双曲D.抛物线解:ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析例3椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ()A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5).应选B.例4参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y x A.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21)C.双曲线的一支,这支过(-1,21) D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sinθ=2y(x>0)即y=21x 2(x>0).∴应选B.例5在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是()A.(2,-7)B.(31,32) C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2将x=21代入,得y=21∴应选C.例6下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是()A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty tx 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgt x 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t ty tgt x 2cos 12cos 1解:普通方程x 2-y 中的x∈R,y≥0,A.中x=|t|≥0,B.中x=cost∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C.∴应选D.例7曲线的极坐标方程ρ=4sinθ化成直角坐标方程为()A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4解:将ρ=22y x +,sinθ=22y x y +代入ρ=4sinθ,得x 2+y 2=4y,即x 2+(y-2)2=4.∴应选B.例8极坐标ρ=cos(θπ-4)表示的曲线是()A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ,∴普通方程为2(x 2+y 2)=x+y,表示圆.应选D.例9在极坐标系中,与圆ρ=4sinθ相切的条直线的方程是()A.ρsinθ=2 B.ρcosθ=2C.ρcosθ=-2 D.ρcosθ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sinθ,CO⊥OX,OA 为直径,|OA|=4,l 和圆相切,l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有cosθ=ρ2=OPOB ,得ρcosθ=2,∴应选B.例104ρsin 22θ=5表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ把ρ=22y x +ρcosθ=x,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线.∴应选D.例11极坐标方程4sin 2θ=3表示曲线是()A.两条射线 B.两条相交直线 C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3x 2,y=±x 3,它表示两相交直线.∴应选B.四、能力训练(一)选择题1.极坐标方程ρcosθ=34表示()A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲线:①θ=6π和sinθ=21;②θ=6π和tgθ=33,③ρ2-9=0和ρ=3;④⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为()A.1 B.2 C.3 D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0,θ1+θ2=0,则M,N 两点位置关系是()A.重合B.关于极点对称C.关于直线θ=2π D.关于极轴对称5.极坐标方程ρ=sinθ+2cosθ所表示的曲线是()A.直线B.圆C.双曲线D.抛物线6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是()A.⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab≠0)化为普通方程是()A.)(12222a xb y a x ≠=+ B.)(12222a x b y a x -≠=+C.)(12222a x by a x ≠=- D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为()A.(1,3π),r=2 B.(1,6π),r=1 C.(1,3π),r=1D.(1,-3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是()A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方程为()A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±x D.y+1=)2(2-±x 11.若直线⎩⎨⎧=+=bty at x 4((t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为()A.3π B.32π C.3π或32π D.3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M,N 间的距离为()A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│D.2p(t 1-t 2)213.若点P(x,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy,y 2-x 2)也在单位圆上运动,其运动规律是()A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcosθ+25+3sinθ-25sin 2θ与x 轴两个交点距离的最大值是()A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是()A.θθρsin cos 23-=B.θθρcos cos 23-=C.θθρsin 2cos 3-=D.θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为.18.极坐标方程ρ=tgθsecθ表示的曲线是.19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为;直线上一点P(x ,y)与点M(-1,2)的距离为.(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数)上一点P,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p>0,t 为参数),当t∈[-1,2]时,曲线C 的端点为A,B,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD,与椭圆的左半部分交于C、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G,H 两点.(1)试判断满足│BC│·│BD│=3│GF 2│·│F 2H│成立的直线BD 是否存在?并说明理由.(2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离.24.A,B 为椭圆2222by a x +=1,(a>b>0)上的两点,且OA⊥OB,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l∶812yx +=1,P 是l 上一点,射线OP 交椭圆于点R,又点Q 在OP 上且满足│OQ│·│OP│=│OR│2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D3.C4.C5.B6.A7.A8.C9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x≤21);18.抛物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab ,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。

高中数学参数方程知识点大全

高中数学参数方程知识点大全

高中数学参数方程知识点大全一、参数方程的定义与表示参数方程是描述平面曲线的一种方法,它将曲线上的点用两个或多个参数表示。

参数方程的一般形式为:$$\begin{cases}x = x(t) \\y = y(t)\end{cases}$$其中,$t$ 是参数,$x(t)$ 和 $y(t)$ 分别是曲线上的点的横坐标和纵坐标。

二、参数方程与普通方程的转换1. 消去参数将参数方程中的参数消去,可以得到曲线的普通方程。

消去参数的方法主要有代数法和三角法。

2. 参数方程转换为普通方程将参数方程中的参数 $t$ 用普通方程中的变量 $x$ 或 $y$ 表示,可以得到曲线的普通方程。

三、参数方程的应用1. 描述运动轨迹参数方程可以用来描述物体的运动轨迹,例如抛体运动、圆周运动等。

2. 解决几何问题参数方程可以用来解决一些几何问题,例如求曲线的长度、面积、切线等。

3. 解决物理问题参数方程可以用来解决一些物理问题,例如求物体的速度、加速度、位移等。

四、常见参数方程1. 抛物线$$\begin{cases}x = at^2 \\y = bt^2 + ct + d\end{cases}$$2. 圆$$\begin{cases}x = a \cos t \\y = a \sin t\end{cases}$$3. 椭圆$$\begin{cases}x = a \cos t \\y = b \sin t\end{cases}$$4. 双曲线$$\begin{cases}x = a \sec t \\y = b \tan t\end{cases}$$5. 抛物线$$\begin{cases}x = a t^2 \\y = b t^2 + c t + d\end{cases}$$五、参数方程的优缺点优点可以方便地描述曲线的形状和运动规律。

可以解决一些普通方程难以解决的问题。

缺点需要找到合适的参数。

计算量可能较大。

参数方程是高中数学中一个重要的知识点,它可以帮助我们更好地理解曲线的形状和运动规律。

参数方程总结知识点

参数方程总结知识点

参数方程总结知识点一、参数方程的概念参数方程是指用参数表示平面曲线、空间曲面上各点的坐标的方程,一个平面曲线或者空间曲面可以由一对参数方程来表示。

通常情况下,参数方程是形如x=f(t),y=g(t),z=h(t)的方程,其中x、y、z分别是曲线上某一点的坐标,t是参数。

参数t可以是实数也可以是整数。

二、参数方程的性质1. 参数方程的表示形式:参数方程有两种常用的表示形式,一种是向量形式,另一种是分量形式。

向量形式的参数方程可以表示为:r(t)=<x(t), y(t), z(t)>其中r(t)是位置向量,t是参数,x(t)、y(t)、z(t)分别是位置向量在x轴、y轴、z轴上的分量。

分量形式的参数方程可以表示为:x=f(t),y=g(t),z=h(t)其中x、y、z分别是曲线上某一点的坐标,t是参数,f(t)、g(t)、h(t)分别是曲线上某一点的坐标在x轴、y轴、z轴上的分量。

2. 参数方程的图形:参数方程描述的曲线或者曲面通常是比较复杂的几何图形,参数方程的图形特点不容易直接观察出来。

但是我们可以利用参数方程来绘制曲线或者曲面的图形,可以通过不同的参数值来确定曲线或者曲面上的一系列点,然后将这些点用线段或者曲线段连接起来,就可以得到参数曲线的图形。

3. 参数方程的应用:参数方程在物理、工程等领域有着广泛的应用,比如用来描述物体在空间中的运动轨迹、描述流体在空间中的运动状态等。

参数方程还可以用来求解一些复杂的几何问题,比如求参数曲线的长、面积等。

三、参数方程的运算参数方程的运算包括参数曲线的求导、求积分等。

参数方程的求导和求积分与普通的函数求导和求积分类似,只是要注意求导和求积分的对象是参数t,而不是变量x、y、z。

四、参数方程的方程组一条平面曲线或者空间曲面通常可以由多个参数方程组成,这些参数方程之间存在一定的关系,我们可以利用参数方程的方程组来求解曲线或者曲面上的一些特殊点。

五、参数曲线的方程与直角坐标系之间的转换参数曲线的方程与直角坐标系之间可以相互转换,通过参数曲线的方程,我们可以求解其在直角坐标系中的方程,通过直角坐标系中的方程,我们也可以求解其在参数方程中的方程。

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

高中数学参数方程知识点详解(讲义+过关检测+详细答案)

5.【答案】D
【解析】 x2 t, y2 1 t 1 x2, x2 y2 1,而t 0, 0 1 t 1,得0 y 2 .
4
4
6.【答案】D
【解析】圆
x=2 cos,
的圆心为原点,半径为
y =2 sin
2,
则圆心到直线 3x-4y-9=0 的距离为 9 ,小于半径 2,故直线与圆相交. 5
D.(1, 3)
2.已知某曲线的参数方程为 xy==ccooss2, +1,则该曲线是(

A.直线
B.圆
C.双曲线
3.若一直线的参数方程为
x
x0
1 2
t
(t 为参数),则此直线的倾斜Байду номын сангаас为(
y
y0
3t 2
A.30º
B. 60º
C.120º
4.若点
P(4,a)在曲线
x=
t 2
(t 为参数)上,点 F(2,0),则|PF|等于(
)
y=2 t
A.4
B.5
C.6
D.抛物线 ) D.150º
D.7
5.与参数方程为
x
t
(t为参数) 等价的普通方程为( )
y 2 1 t
A. x2 y2 1 4
B. x2 y2 1(0 x 1) 4
C. x2 y2 1(0 y 2) 4
D. x2 y2 1(0 x 1, 0 y 2) 4
y2 b2
1( a
0 , b 0 )的参数方程为:
x a sec
y
b
tan

为参数,
[0, 2 ) 且
, 2
3 2

参数方程知识点总结

参数方程知识点总结

参数方程知识点总结参数方程是数学中的一种重要概念,它将一个二维对象的坐标表达成一个参数的函数形式,让我们能够更加简单、直观地描述和操作它。

如何理解参数方程、如何求解参数方程、如何利用参数方程求解相关问题,都是我们需要了解的知识点。

以下是关于参数方程的知识点总结。

一、参数方程的定义参数方程是指用一个或多个参数来表示平面直角坐标系内给定曲线上的点的坐标。

例如,一个直线的参数方程可以表示为x=a+bt,y=c+dt(a、b、c、d为常数,t为参数),表示它上面任意一点的坐标都可以用t这个参数来表示。

二、参数方程的基本性质1. 参数方程可以表示的曲线类型很多,具体分类如下:(1) 直线:y=mt+k(m为斜率,k为纵截距),参数方程可表示为x=t,y=mt+k。

(2) 圆:以(a,b)为圆心,r为半径,则参数方程可表示为x=a+rcos(t),y=b+rsin(t)。

(3) 椭圆:以(x0,y0)为中心,a,b为长、短轴,参数方程可表示为x=x0+acos(t),y=y0+bsin(t)。

(4) 双曲线:以(x0,y0)为中心,a,b为长、短轴,参数方程可表示为x=x0+asec(t),y=y0+btan(t)。

2. 参数方程可以带来更直观的几何意义,例如,当参数t等于时间t时,参数方程可以表示为物体在平面直角坐标系上运动时的路径。

3. 参数方程是等价变形的,不同形式的参数方程对应着同一条曲线。

例如,参数方程x=t,y=t^2和x=cos(t),y=sin(t)^2表示的是同一个抛物线。

三、求解参数方程的方法1. 从坐标式转化为参数式,需要用到三角函数,例如:(1) 圆的参数方程中,x=a+rcos(t),y=b+rsin(t),可以通过勾股定理进行转化得到r=sqrt((x-a)^2+(y-b)^2)。

(2) 双曲线的参数方程中,x=x0+asec(t),y=y0+btan(t),可以通过勾股定理转化为(x-x0)^2/a^2-(y-y0)^2/b^2=1,然后再将常数项1移到右边得到y0=±b sqrt((x-x0)^2/a^2-1),然后可以通过套公式计算出tan(t)的值,进而求解得到参数方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学参数方程知识点大全
一、参数方程的定义和基本概念
参数方程是指用一个或多个参数表示一个点在平面或空间上的坐标,一般形式为x=f(t),y=g(t)或x=f(u,v),
y=g(u,v),z=h(u,v)等形式。

1. 参数的取值范围
参数的取值范围是指t,u,v等参数的取值范围,有些问题中可能要求特定的参数取值范围,例如0≤t≤1。

2. 参数方程的解析式
参数方程的解析式是指将参数方程中的参数用其他变量(如x,y,z)表示出来的式子,通常要具体分析题目所求的内容,才能得到具体的解析式。

二、参数方程表示的图形及其性质
参数方程表示的图形是指用参数方程所描述的点的集合,常见的有平面曲线、空间曲线和曲面。

1. 平面曲线的参数方程
平面曲线的参数方程一般形式为x=f(t),y=g(t),
t∈[a,b],其中a,b为常数。

2. 空间曲线的参数方程
空间曲线的参数方程一般形式为x=f(t),y=g(t),
z=h(t),t∈[a,b],其中a,b为常数。

3. 曲面的参数方程
曲面的参数方程一般形式为x=f(u,v),y=g(u,v),
z=h(u,v),u,v∈D,其中D为平面区域。

三、参数方程在计算机绘制图形中的应用
在计算机绘制图形中,参数方程可以方便地表示出各种曲线和曲面,并通过计算机程序实现绘制,除此之外还可以进行各种变换和操作。

1. 坐标变换
坐标变换是指通过参数方程的变换操作实现图形的变形、旋转、平移等操作。

2. 光照模拟
通过参数方程计算表面法向量、光照强度和光照颜色,实现真实的光照模拟。

3. 碰撞检测
通过参数方程计算图形的表面或体积信息,实现碰撞检测的功能,以及物体的相交等计算。

四、参数方程的求导
1. 参数方程的一阶导数
参数方程的一阶导数是指对参数t求导数得到的结果,常用来表示曲线的斜率和切线方向。

2. 参数方程的二阶导数
参数方程的二阶导数是指对参数t进行二次求导得到的结果,常用来表示曲线的曲率和弧度的变化率。

五、参数方程的应用示例
1. 斜抛运动
斜抛运动的轨迹可以用参数方程表示,通过求解初始速度、角度等参数可以得到斜抛运动的轨迹方程,从而计算两点之间的距离和时间等参数。

2. 三次样条插值
三次样条插值可以用参数方程表示,通过给定控制点的
坐标和参数方程的求导等信息,可以得到多项式函数的系数,从而实现平滑曲线的插值。

3. 空间曲线的重参数化
空间曲线的重参数化是指通过新的参数方程表示原空间
曲线,常用于模拟动态过程中对象的运动轨迹,如航迹重演等。

相关文档
最新文档