DC-DC升降压电路设计
DC-DC升降压电路的几种个人方案

DC-DC升降压电路的几种解决方案(成都信息工程学院科技创新实验室)WOODSTOCK前一段时间,本着学习的态度参加了TI杯校赛,做了其中的一个直流升降压的题,作品没做的很好,但是在准备期间,我对各种可行电路都做了尝试,一些心得拿出来与大家分享,也望各路大侠对不妥之处不吝赐教。
我们在实际应用中,经常会出现系统中各个模块供电不统一,或者供电电源的电压时变化的(比如汽车中的电池电压受温度影响而变化),在只有一个电源提供供电的时候,同时可以升压或降压的电路就变得非常有用。
下面,来看一下我想到的几种升降压问题的解决方案。
非隔离式开关电源的基本电路一般有三种:Buck降压电路、Boost升压电路、Buck-boost极性反转升降压电路。
要实现同时升降压功能,首先想到的肯定是Buck-Boost极性反转电电路。
图表1 极性反转电路原理示意这种拓扑结构的电路能够输出与输入相反的、可以比输入电压更高或者更低的电压,并且整体的效率也很高。
但缺点也很明显:一就是极性相反,当输入电压是正压且要求输出也是正的时候,我们还要对输出电压进行反向,这就是一件很麻烦的事;但是,有时我们需要的就是负压的时候,这个缺点又会有一种很大的用处。
缺点二就是,这种拓扑结构电路的电流脉动值很大,输出滤波不好处理。
在实际制作中,我选择了用TI的Buck型降压芯片TPS5430来做开关管以及驱动的部分,更方便控制,简化了电路。
还有一个缺点是,这种电路不方便数控,而且没法直接用AD采输出电压。
下面这个是我做的一个控制TPS5430反馈的电路。
常见的来解决这个问题的还有另外一种电路,就是把boost电路和buck电路结合起来。
但是怎样结合?方法有很多种。
第一种,直接拼接。
比如输入电压时5-12V,输出电压要10V,那么我们就可以使用升压电路将输入电压统一升到13V,然后再使用电压可调节的降压电路来提供输出电压。
在做这个方案时,我升压用了TI的TPS61175输入范围是3-18V,输出范围是3-65V,最大输出电流时3A。
DC-DC升降压电路的几种个人方案

DC-DC升降压电路的几种解决方案〔成都信息工程学院科技创新实验室〕W00DSTOCK前一段时间,本着学习的态度参加了TI杯校赛,做了其中的一个直流升降压的题,作品没做的很好,但是在准备期间,我对各种可行电路都做了尝试,一些心得拿出来与大家分享,也望各路大侠对不妥之处不吝赐教。
我们在实际应用中,经常会出现系统中各个模块供电不统一,或者供电电源的电压时变化的〔比方汽车中的电池电压受温度影响而变化〕,在只有一个电源提供供电的时候,同时可以升压或降压的电路就变得非常有用。
下面,来看一下我想到的几种升降压问题的解决方案。
非隔离式开关电源的根本电路一般有三种:Buck降压电路、Boost升压电路、Buck-boost 极性反转升降压电路。
要实现同时升降压功能,首先想到的肯定是Buck-Boost 极性反转电电路。
图表 1 极性反转电路原理示意这种拓扑结构的电路能够输出与输入相反的、可以比输入电压更高或者更低的电压,并且整体的效率也很高。
但缺点也很明显:一就是极性相反,当输入电压是正压且要求输出也是正的时候,我们还要对输出电压进行反向,这就是一件很麻烦的事;但是,有时我们需要的就是负压的时候,这个缺点又会有一种很大的用处。
缺点二就是,这种拓扑结构电路的电流脉动值很大,输出滤波不好处理。
在实际制作中,我选择了用TI的Buck型降压芯片TPS5430来做开关管以及驱动的局部,更方便控制,简化了电路。
还有一个缺点是,这种电路不方便数控,而且没法直接用AD采输出电压。
下面这个是我做的一个控制TPS5430反应的电路。
图表 2 LM324做控制电路常见的来解决这个问题的还有另外一种电路,就是把boost电路和buck电路结合起来。
但是怎样结合?方法有很多种。
第一种,直接拼接。
比方输入电压时5-12V,输出电压要10V,那么我们就可以使用升压电路将输入电压统一升到13V,然后再使用电压可调节的降压电路来提供输出电压。
在做这个方案时,我升压用了TI的TPS61175,输入范围是3-18V,输出范围是3-65V,最大输出电流时3A。
DCDC升压开关电源设计

DCDC升压开关电源设计DC-DC升压开关电源是一种能够将低电压升高至高电压的电源装置,被广泛应用于各个领域中。
本文将介绍DC-DC升压开关电源的设计原理、关键技术以及一些注意事项。
DC-DC升压开关电源的设计原理是基于开关电路的工作原理。
开关电路是通过控制开关管的开关时间比例来调整输出电压的。
当开关管导通时,输入电源经过电感储能,从而增加电能;当开关管关断时,通过电容放电,将储存的能量释放出来,实现输出电压升高。
在设计DC-DC升压开关电路时,需要考虑以下几个关键技术:1.拓扑结构选择:常见的DC-DC升压开关电路拓扑结构有Boost、Flyback等。
不同的拓扑结构适用于不同的应用场景,选取合适的拓扑结构对于提高电路的效率和可靠性非常重要。
2.开关管的选择:开关管是DC-DC升压开关电路中重要的组成部分。
选择合适的开关管需要考虑其导通电阻、关断速度等参数,以及温度、功率和容量等要求。
3.控制电路设计:控制电路负责控制开关管的开关时间比例,从而调整输出电压。
常见的控制方法有脉宽调制(PWM)、频率调制(FM)等。
此外,控制电路还需要考虑保护电路的设计,以提高电路的可靠性。
4.滤波电路设计:DC-DC升压开关电路输出的电压含有大量的高频脉冲噪声。
通过适当设计滤波电路,可以减小输出电压的脉冲噪声,保证输出电压的稳定性和准确性。
此外,在进行DC-DC升压开关电源设计时1.功率匹配:输入电源和输出负载之间的功率匹配非常重要。
如果输入功率过大,开关管可能会因为过载而烧毁;如果输出负载功率过大,可能导致输出电压不稳定。
2.散热设计:开关管在工作过程中会产生大量的热量,需要通过散热器等散热装置将热量散发出去。
合理的散热设计可以保证电路的正常工作和寿命。
3.EMI问题:DC-DC升压开关电源会产生一定的电磁干扰(EMI),可能对周围的电子设备产生干扰。
在设计时要注意EMI的控制,采取一些抑制措施,如屏蔽、滤波等。
DCDC升压稳压变换器设计

DCDC升压稳压变换器设计DC-DC升压稳压变换器是一种常见的电源变换器,用于将低压直流电源(如电池)的电压升高为所需的高压输出。
本文将介绍DC-DC升压稳压变换器的设计原理、组成部分及其工作原理,并进行详细的分析和说明。
DC-DC升压稳压变换器设计的主要目标是将输入直流电压升压到所需的输出电压,同时保持输出电压稳定且具有良好的电流调整性能。
为了实现这一目标,设计者需要考虑以下几个方面:1.输入输出电压和电流:首先确定所需输出电压和电流的数值。
根据要求选择相应的元件和电路拓扑结构。
2. 拓扑结构选择:常见的DC-DC升压稳压变换器拓扑结构有Boost、Flyback和SEPIC等。
选择适合的拓扑结构需要考虑功率转换效率、元件数量和输入输出电流等因素。
3.元件参数选择:选择合适的功率开关管、电感、电容和二极管等元件参数。
元件的选择需考虑其工作频率、电流承受能力和输出纹波等因素。
4.控制电路设计:设计合适的开关控制电路,能够实现稳定的输出电压。
常用的控制电路有单片机控制、模拟控制和PWM控制等。
采用合适的控制方法可以保持输出电压的稳定性和动态响应性。
5.保护电路设计:为了保护DC-DC升压稳压变换器和被供电设备的安全,需要考虑过压、过流和短路保护等电路设计。
这些保护电路可以提高系统的可靠性和安全性。
在进行具体的设计时,首先需要确定输出电压和电流的数值要求,并进一步计算电路参数。
然后选择合适的拓扑结构和元件,并设计出合适的控制电路和保护电路。
接下来进行电路仿真和实验验证,对设计结果进行验证和调整,确保电路性能和稳定性。
最后对整个设计过程进行总结和文档记录。
综上所述,DC-DC升压稳压变换器设计是一个复杂而关键的过程,需要考虑多个因素并进行系统性的设计和调试。
通过合理设计和优化,可以得到稳定性好、效率高且尺寸小巧的DC-DC升压稳压变换器。
这些变换器可以广泛应用于各种电子设备和系统中,如移动电源、电动车充电器和太阳能系统等。
大功率dcdc 降压电路 方案

大功率dcdc 降压电路方案大功率DC-DC降压电路是一种常见的电路设计方案,用于将高电压转换为低电压。
在许多应用中,需要将高电压源转换为适合于特定设备的低电压。
这种转换通常通过DC-DC降压电路来实现。
DC-DC降压电路的设计目标是在保持高效率的同时提供稳定的输出电压。
为了实现这一目标,设计师需要考虑电路的拓扑结构、传输效率、输出电压稳定性和电路保护等方面。
DC-DC降压电路的拓扑结构可以采用多种形式,如Buck、Boost、Buck-Boost等。
其中,Buck拓扑是最常见的降压电路拓扑,其原理是通过开关管控制电压输出。
Boost拓扑则是将输入电压升高到所需的输出电压。
Buck-Boost拓扑则结合了Buck和Boost的优点,可以在输入电压高于或低于输出电压时实现降压。
传输效率是衡量DC-DC降压电路性能的重要指标之一。
传输效率是指输出功率与输入功率的比值。
高效率的DC-DC降压电路可以最大限度地减少能量损耗,使得电路能够在长时间运行时提供稳定的输出电压。
为了提高传输效率,设计师可以采取多种措施。
例如,选择低导通电阻的开关管,减小开关管的导通电压降;合理选择电感和电容的数值,以减小电感电流和电容电压的波动;使用高效的电源管理芯片,以实现更好的功率转换效果。
DC-DC降压电路的稳定性也是需要考虑的重要因素。
输出电压的稳定性直接影响到被供电设备的正常工作。
为了提高输出电压的稳定性,设计师可以采用反馈控制的方式来调节输出电压。
通过引入反馈电路,将输出电压与参考电压进行比较,并根据比较结果控制开关管的导通时间,从而实现输出电压的稳定控制。
为了确保DC-DC降压电路的安全可靠运行,还需要考虑电路的保护机制。
常见的保护机制包括过压保护、过流保护、短路保护等。
这些保护机制可以有效地保护电路和被供电设备免受损坏。
大功率DC-DC降压电路是一种常见的电路设计方案,用于将高电压转换为低电压。
在设计过程中,设计师需要考虑电路的拓扑结构、传输效率、输出电压稳定性和电路保护等方面。
DCDC升压开关电源设计

DCDC升压开关电源设计DC-DC升压开关电源是一种常见的电源设计,它可以将输入电压升压到指定的输出电压。
本文将介绍DC-DC升压开关电源的基本原理、设计步骤以及注意事项。
一、DC-DC升压开关电源的基本原理DC-DC升压开关电源通过开关器件实现输入电压的升压。
其基本原理是电感储能和开关器件的周期开关。
当电源输入电压施加给开关器件时,开关器件导通,电感器件开始储能;当开关器件断开时,电感器件将储存的能量输出,并经过整流滤波后得到稳定的输出电压。
二、DC-DC升压开关电源的设计步骤1.确定输入输出电压:首先确定所需的输入和输出电压。
输入电压一般来自电池、交流电源或其他直流电源,而输出电压则是升压后的电压。
2.选择开关器件:根据所需的转换功率和输出电压,选择合适的开关器件。
常用的开关器件有MOSFET和IGBT,选择开关器件时要考虑其导通电阻、开关速度和功耗等因素。
3.选择电感器件:电感器件用于储存能量,可以选择磁性材料制成的线圈或铁氧体等。
选择合适的电感器件要考虑其电感值、饱和电流和损耗等因素。
4.计算元件参数:根据输入输出电压和所选的开关器件和电感器件,计算所需的元件参数。
包括电容器的容值、电感器件的电感值以及开关器件的参数,例如导通电阻和开关频率等。
5.设计控制电路:根据所选的开关器件类型,设计适配的控制电路。
常用的控制电路包括PWM控制电路、反馈电路和过压保护电路等。
6.进行仿真和优化:使用电路仿真软件进行仿真,验证设计的可行性,并根据仿真结果进行优化。
7.PCB布局设计:根据设计的电路图,进行PCB布局设计,保证电路的稳定性和可靠性。
8.制作原型并测试:将设计的电路制作成原型,进行测试以验证其性能和可靠性。
三、DC-DC升压开关电源设计的注意事项1.开关器件选型要合适,能够承受所需的转换功率和工作频率,同时保持较低的导通电阻和开关损耗。
2.电感器件的选用要符合电路的工作频率和最大电流需求,避免电感器件的饱和和损耗过大。
dcdc升压电路设计

dcdc升压电路设计DC-DC升压电路是将直流电压升高到目标电压的电路。
它常用于电子设备中,如移动电源、无线通信设备等。
以下是一个基本的DC-DC升压电路设计流程:1. 确定输出电压:首先确定所需的输出电压。
这取决于所驱动的负载电路的要求。
2. 选择升压器拓扑结构:常见的升压拓扑有Boost拓扑、Flyback拓扑和SEPIC拓扑等。
不同的拓扑结构有不同的特点和适用场景,根据具体需求选择合适的拓扑结构。
3. 选择电感元件:根据拓扑结构选择合适的电感元件。
电感元件用于储存能量并平滑输出电压。
4. 计算分辨率:根据输出电压和输入电压确定升压倍数,然后根据所选择的拓扑结构计算分辨率。
5. 选择开关器件:根据电流和功率需求选择合适的开关器件。
常用的开关器件有MOSFET和BJT。
6. 选择输入和输出电容:根据负载电流和输出纹波要求选择合适的输入和输出电容。
7. 选择反馈元件:选择合适的反馈元件来监测和控制输出电压。
8. 进行电路原理图设计:根据以上选择的元件进行电路原理图设计。
9. 进行电路仿真:使用专业的电路仿真软件,如SPICE等,进行电路仿真验证。
10. 进行PCB布局和布线:根据电路原理图进行PCB布局和布线设计,注意优化布局以降低噪声和干扰。
11. 制作原型进行测试:制作电路板原型,并进行测试验证电路的性能和稳定性。
12. 进行性能优化:根据测试结果进行性能优化,如调整参数、更换元件等。
以上是一个DC-DC升压电路设计的基本流程,具体的设计步骤和注意事项还会根据具体应用场景和要求有所变化。
DC—DC升压开关变换器设计

DC—DC升压开关变换器设计本设计设计了相应的硬件电路,研制了一款小功率开关电源。
整个系统包括主电路、控制电路、驱动电路、保护电路和反馈电路几部分内容。
系统主电路由Boost升压斩波电路和相应的滤波保护电路组成。
控制电路包括主电路开关管控制脉冲的产生和保护电路。
论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计过程,包括元器件的选取以及参数计算。
本设计中采用的芯片主要是PWM控制芯片SG3525、光电耦合芯片PC817和半桥驱动芯片IR2110。
设计过程中充分利用了SG3525的控制性能,具有较宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。
标签:SG3525,开关稳压电源,PWM,升压斩波1绪论近年来,随着电力电子学的高速发展,电力供给系统也得到了很大的发展。
同时,人们对电源的要求也越来越高。
在高效率、大容量、小体积之后,对电源系统的输入功率因数和软开关技术也提出了更高的要求。
电源是给电子设备提供所需要的能量的设备,这就决定了电源在电子设备中的重要性。
电子设备要获得好的工作可靠性必须有高质量的电源,所以电子设备对电源的要求日趋增高。
相对于线性稳压电源来说,开关稳压电源的优点更能满足现代电子设备的要求。
但是,由于开关电源轻、小、薄的关键技术是高频化,开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率,近年来国内外的专家学者提出了众多的电路拓扑,使得软开关技术成为电力电子技术研究的热点。
因此对于现代的开关电源功率交换技术的发展趋势,可以概括为:高频化、高效率、无污染和模块化。
2开关电源概况2.1开关电源基本拓扑结构开关变换器是电能变换的核心装置。
按转换电能的种类,可把变换器分为四类:①直流变换器(DC-DC),将一种直流电能转换为另一种或多种直流电能的变换器,是直流开关电源的主要部件;②逆变器(DC-AC),将直流电能变为交流电能的电能变换器,是交流开关电源和不间断电源UPS的主要部件;③整流器(AC-DC),将交流电转为直流电的电能变换器;④交交变频器(AC-AC),将一种频率的交流电转换成另一种频率可变的交流电,或者将一种频率可变的交流电转变为恒定频率的交流电的电能变换器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
升降压开关电源设计题目(三)
电源的基本要求
(1)基本电路包括DC/DC,电流保护等基本模块,并具有相应的测试点(2’)
(2)输出Uo可调范围:10V~15V(10’)
(3)最大输出电流Imax:1.0A(10’)
(4)稳压输入DC/DC电压变化从8V变化到10V的调整率小于10%(10’)
(5)输出电流Io从0变1.0 A,负载调整率小于10%(DC/DC 的输入电压为10V)(10’)
(6)DC/DC变换器的效率大于85%(15’)
(7)输出纹波电压峰峰值小于1V(Uo=15V,,Io=500mA)(10’)
(8)具有过流保护功能,动作电流Io=1.5 A(10%容量)(10’)
(9)报告针对上面设计要求逐项给出设计原理与仿真分析(20’)
发挥部分::
(10)最大输出电流Imax:2.0 A (10’)
(11)稳压输入DC/DC电压变化从5 V变化到10 V的调整率小于5% (10’)
(12)输出电流Io从0变2A,负载调整率小于5%(DC/DC 的输入电压为10 V)(10’)
(13)DC/DC变换器的效率大于90% (20’)
(14)输出纹波电压峰峰值小于0.5 V(Uo=15V,,Io=1.0 A)(10’)。