4.第四-六讲立体几何中向量方法答案
高中数学第七节立体几何中的向量方法(解析)

第七节立体几何中的向量方法1.理解直线的方向向量与平面的法向量;2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;3.能用向量方法证明有关直线和平面位置关系的一些定理;4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与e共线的向量叫做直线l的方向向量,显然一条直线的方向向量有无数个.(2)平面的法向量如果表示向量n的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作n ⊥α,此时向量n 叫做平面α的法向量.显然一个平面的法向量也有无数个,且它们是共线向量. (3)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ; α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 2.空间向量与空间角的关系 (1)两条异面直线所成角的求法设两条异面直线a ,b 的方向向量分别为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a ·b ||a ||b |(其中φ为异面直线a ,b 所成的角).φ的取值范围是⎝ ⎛⎦⎥⎤0,π2. (2)直线和平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.φ的取值范围是⎣⎢⎡⎦⎥⎤0,π2.(3)求二面角的大小①如图甲,AB 、CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.②如图乙、丙,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.θ的取值范围是[0,π].3.空间向量与距离的关系 (1)点到平面的距离如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离d =|AB →·n ||n |.(2)线面距、面面距均可转化为点面距进行求解.1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( )(3)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) (4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(5)两个平面的法向量所成的角是这两个平面所成的角.( ) [答案] (1)× (2)× (3)× (4)× (5)×2.已知A (1,0,0),B (0,1,0),C (0,0,1),则下列向量是平面ABC 法向量的是( )A.(-1,1,1)B.(1,-1,1)C.⎝⎛⎭⎪⎫-33,-33,-33D.⎝ ⎛⎭⎪⎫33,33,-33[解析] 设n =(x ,y ,z )为平面ABC 的法向量, 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,化简得⎩⎪⎨⎪⎧-x +y =0,-x +z =0,∴x =y =z .故选C.[答案] C3.若平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A.平行B.相交但不垂直C.垂直D.重合[解析] 由(1,2,0)·(2,-1,0)=0,可知平面α⊥平面β,选C.[答案] C4.如图所示,若M ,N 分别是棱长为1的正方体ABCD -A ′B ′C ′D ′的棱A ′B ′,BB ′的中点,则直线AM 与CN 所成角的余弦值为( )A.32 B.1010 C.35D.25[解析] 以A 为原点,AB →,AD →,AA ′→所在方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系A -xyz ,则A (0,0,0),M ⎝ ⎛⎭⎪⎫12,0,1,C (1,1,0),N ⎝ ⎛⎭⎪⎫1,0,12,所以AM →=⎝ ⎛⎭⎪⎫12,0,1,CN →=⎝ ⎛⎭⎪⎫0,-1,12,所以cos 〈AM →,CN →〉=AM →·CN →|AM →||CN →|=1254=25.[答案] D5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22C.223D.233[解析] 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),DA 1→=(2,0,2),DB →=(2,2,0), 设平面A 1BD 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,即⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.故选D. [答案] D6.正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角是________.[解析] 如图所示,以O 为原点建立空间直角坐标系O -xyz .设OD =SO =OA =OB =OC =a , 则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2. 则CA →=(2a,0,0),AP →=⎝⎛⎭⎪⎫-a ,-a 2,a 2,CB →=(a ,a,0).设平面P AC 的法向量为n ,可求得n =(0,1,1),则cos 〈CB →,n 〉=CB →·n |CB →||n |=a 2a 2·2=12. ∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 所成的角为90°-60°=30°.[答案] 30°考点一 向量法证明垂直与平行关系——互动型如图,已知直三棱柱ABC -A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .[证明] 如图建立空间直角坐标系A -xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4).(1)取AB 中点为N ,则N (2,0,0),C (0,4,0),D (2,0,2),∴DE →=(-2,4,0),NC →=(-2,4,0), ∴DE →=NC →.∴DE ∥NC ,又NC 在平面ABC 内,故DE ∥平面ABC . (2)B 1F →=(-2,2,-4), EF →=(2,-2,-2), AF →=(2,2,0),B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, 则B 1F →⊥EF →,∴B 1F ⊥EF ,∵B 1F →·AF →=(-2)×2+2×2+(-4)×0=0. ∴B 1F →⊥AF →,即B 1F ⊥AF ,又∵AF ∩FE =F ,∴B 1F ⊥平面AEF .(1)用向量证明平行的方法①线线平行:证明两直线的方向向量共线.②线面平行:a.证明该直线的方向向量与平面的某一法向量垂直;b.证明直线的方向向量与平面内某直线的方向向量平行.③面面平行:a.证明两平面的法向量为共线向量;b.转化为线面平行、线线平行问题.(2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.(2016·青岛模拟)如图,在直三棱柱ADE-BCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点.求证:(1)OM∥平面BCF;(2)平面MDF⊥平面EFCD.[证明]由题意,AB,AD,AE两两垂直,以A为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.(1)OM →=⎝⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0),∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)设平面MDF 与平面EFCD 的一个法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),由n 1·DF →=n 1·DM →=0,得⎩⎨⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎪⎨⎪⎧y 1=12x 1,z 1=-12x 1,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1). ∵n 1·n 2=0,∴平面MDF ⊥平面EFCD .考点二 向量法求空间角——共研型角度1:向量法求异面直线所成的角(2016·西安模拟)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110 B.25 C.3010D.22[解析] 建立如图所示的空间直角坐标系C -xyz ,设BC =2,则B (0,2,0),A (2,0,0),M (1,1,2),N (1,0,2),所以BM →=(1,-1,2),AN →=(-1,0,2),故BM 与AN 所成角θ的余弦值cos θ=|BM →·AN →||BM →|·|AN →|=36×5=3010. [答案] C角度2:向量法求斜线与平面所成的角(2016·全国卷Ⅲ)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.[解] (1)证明:由已知得AM =23AD =2. 取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN ∥AM ,TN =AM ,所以四边形AMNT 为平行四边形,所以MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB . (2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB 2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系A -xyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN→=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是直线AN 与平面PMN 所成角的正弦值为|cos 〈n ,AN →〉|=|n ·AN →||n |·|AN →|=8525.角度3:向量法求二面角(2016·全国卷Ⅰ)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°. (1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值.[解] (1)证明:由已知可得AF ⊥DF ,AF ⊥FE ,所以AF ⊥平面EFDC .又AF ⊂平面ABEF ,故平面ABEF ⊥平面EFDC .(2)过D 作DG ⊥EF ,垂足为G ,由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E的平面角,故∠DFE =60°,则DF =2,DG =3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知,AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF . 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,故∠CEF =60°.从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0).设n =(x ,y ,z )是平面BCE 的法向量,则 ⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0.所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4). 所以cos 〈n ,m 〉=n ·m |n ||m |=-21919. 故二面角E -BC -A 的余弦值为-21919.求空间角的向量方法(1)求异面直线所成的角利用直线的方向向量将异面直线所成的角转化成向量所成的角,即若异面直线a ,b 的方向向量为a ,b ,所成的角为θ,则cos θ=⎪⎪⎪⎪⎪⎪a ·b |a |·|b |. (2)求斜线与平面所成的角①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(锐角或直角时)或其补角(钝角时).②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角.(3)求二面角①分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.②分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.1.[角度1]如图所示,已知正方体ABCD -A 1B 1C 1D 1,E ,F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是__________.[解析] 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐标系D -xyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°. [答案] 45°2.[角度2](2016·江西九校联考)如图,在三棱柱ABC-A1B1C1中,底面△ABC是边长为2的等边三角形,过A1C作平面A1CD平行于BC1,交AB于点D.(1)求证:CD⊥AB;(2)若四边形BCC1B1是正方形,且A1D=5,求直线A1D与平面CBB1C1所成角的正弦值.[解](1)证明:连接AC1,设AC1与A1C相交于点E,连接DE,则E为AC1的中点.∵BC1∥平面A1CD,平面A1CD∩平面ABC1=DE,∴DE∥BC1,∴D为AB的中点.又∵△ABC为正三角形,∴CD⊥AB.(2)∵AD2+A1A2=5=A1D2,∴A1A⊥AD.又B1B⊥BC,B1B∥A1A,∴A1A⊥BC.又AD∩BC=B,∴A1A⊥平面ABC.设BC的中点为O,B1C1的中点为O1,连接AO,OO1,以O为原点,OB所在的直线为x轴,OO1所在的直线为y轴,OA所在的直线为z轴,建立空间直角坐标系O-xyz,则A 1(0,2,3),D ⎝ ⎛⎭⎪⎫12,0,32.∴A 1D →=⎝ ⎛⎭⎪⎫12,-2,-32.易得平面CBB 1C 1的一个法向量为n =(0,0,1), ∴|cos 〈A 1D →,n 〉|=|A 1D →·n ||A 1D →|·|n |=1510.故直线A 1D 与平面CBB 1C 1所成角的正弦值为1510.3.[角度3]如图,几何体EF -ABCD中,CDEF 为边长为2的正方形,ABCD 为直角梯形,AB ∥CD ,AD ⊥DC ,AD =2,AB =4,∠ADF =90°.(1)求证:AC ⊥FB ;(2)求二面角E -FB -C 的大小. [解] (1)证明:由题意得,AD ⊥DC ,AD ⊥DF ,且DC ∩DF =D ,∴AD ⊥平面CDEF ,∴AD ⊥FC , ∵四边形CDEF 为正方形,∴DC ⊥FC .∵DC ∩AD =D ,∴FC ⊥平面ABCD ,∴FC ⊥AC .又四边形ABCD 为直角梯形,AB ∥CD ,AD ⊥DC ,AD =2,AB =4,∴AC =22,BC =22,则有AC 2+BC 2=AB 2, ∴AC ⊥BC ,又BC ∩FC =C ,∴AC ⊥平面FCB ,∴AC ⊥FB .(2)由(1)知AD ,DC ,DE 所在直线相互垂直,故以D 为原点,DA ,DC ,DE 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,可得D (0,0,0),F (0,2,2),B (2,4,0),E (0,0,2),C (0,2,0),A (2,0,0),∴EF →=(0,2,0),FB →=(2,2,-2), 设平面EFB 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·EF →=0,n ·FB →=0,⎩⎪⎨⎪⎧2y =0,2x +2y -2z =0,⎩⎪⎨⎪⎧y =0,x +y -z =0. 令z =1,则n =(1,0,1),由(1)知平面FCB 的一个法向量为AC →=(-2,2,0), 设二面角E -FB -C 的大小为θ,由图知θ∈⎝ ⎛⎭⎪⎫0,π2, ∴cos θ=|cos 〈n ,AC →〉|=12,∴θ=π3.考点三 向量法求距离——自练型(1)在四面体P -ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为( )A.63B.33aC.a 3D.6a(2)在底面为直角梯形的四棱锥P -ABCD 中,侧棱P A ⊥底面ABCD ,BC ∥AD ,∠ABC =90°,P A =AB =BC =2,AD =1,则点D 到平面PBC 的距离是________.[解析] (1)根据题意,可建立如图所示的空间直角坐标系.P -xyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离.∵P A =PB =PC ,∴H 为△ABC 的外心.又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝⎛⎭⎪⎫a 3,a 3,a 3.∴PH =⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02=33a .∴点P 到平面ABC 的距离为33a .(2)分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如图,则A (0,0,0),P (0,0,2),B (2,0,0),C (2,2,0),D (0,1,0),∴PC →=(2,2,-2),BC →=(0,2,0).设n =(x ,y ,z )为平面PBC 的法向量,则⎩⎪⎨⎪⎧n ·PC →=0,n ·BC →=0,即⎩⎪⎨⎪⎧x +y -z =0,y =0, 取x =1,则n =(1,0,1). 又BD →=(-2,1,0),∴点D 到平面PBC 的距离为|BD →·n ||n |= 2.[答案] (1)B (2) 2空间距离的求法(1)两点间的距离就是以这两点为端点的向量的模.(2)求点P 到平面α的距离,先在平面α内取一点A ,确定向量P A →的坐标,再确定平面α的法向量n ,最后代入公式d =|P A →·n ||n |求解.课题43:建立适当的空间直角坐标系名师导学:利用向量方法解决立体几何问题的前提是恰当地建立空间直角坐标系,关键是确定明确的线线垂直关系,即“墙角”模型,另外,坐标系建立的是否合适,直接影响计算的速度与结果.(2016·云南毕业生复习统一测试)如图,在三棱锥A-BCD中,CD⊥BD,AB=AD,E为BC的中点.(1)求证:AE⊥BD;(2)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求二面角B -AC-D的平面角的正弦值.[切入点]取BD的中点O,通过证明OE、OD、OA两两垂直,建立空间直角坐标系.[关键点]先进行几何关系的证明,具备建系条件时才能建系.[解](1)证明:设BD的中点为O,连接AO ,EO .∵AB =AD ,∴AO ⊥BD .又∵E 为BC 的中点,∴EO ∥CD . ∵CD ⊥BD ,∴EO ⊥BD .∵OA ∩OE =O ,∴BD ⊥平面AOE . 又∵AE ⊂平面AOE , ∴AE ⊥BD .(2)由(1)知,AO ⊥BD ,EO ⊥BD ,∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AO ⊂平面ABD ,∴AO ⊥平面BCD .∵EO ⊂平面BCD , ∴AO ⊥EO ,∴OE ,OD ,OA 两两互相垂直. ∵CD ⊥BD ,BC =4,CD =2, ∴BD =BC 2-CD 2=2 3.由O 为BD 的中点,AO ⊥BD ,AD =2,得BO =OD =3,OA =AD 2-OD 2=1.以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),A (0,0,1),B (0,-3,0),C (2,3,0),D (0,3,0),∴AB →=(0,-3,-1),AC →=(2,3,-1),AD →=(0,3,-1).设平面ABC 的法向量为n =(x ,y ,z ),则n ⊥AB →,n ⊥AC →,∴⎩⎪⎨⎪⎧ -3y -z =0, 2x +3y -z =0.取y =-3,得⎩⎪⎨⎪⎧x =3, z =3.∴n =(3,-3,3)是平面ABC 的一个法向量.同理可得平面ADC 的一个法向量m =(0,3,3). 设二面角B -AC -D 的平面角为θ, 则|cos θ|=⎪⎪⎪⎪⎪⎪m ·n |m ||n |=77.∵0<θ<π,∴sin θ=1-cos 2θ=427,∴二面角B -AC -D 的平面角的正弦值为427.建立空间直角坐标系的策略(1)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系.如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即建立坐标系时以其中的垂直相交直线为基本出发点.(2)建系的基本思想是寻找其中的线线垂直关系,在没有现成的垂直关系时要通过其他已知条件得到垂直关系.另外,使尽可能多的点在坐标轴上,可以减小运算量.如图所示,四棱锥E-ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.(1)求证:BD⊥平面ADE.(2)求BE和平面CDE所成角的正弦值.[解](1)证明:由BC⊥CD,BC=CD=2,可得BD=2 2.由EA⊥ED,且EA=ED=2,可得AD=2 2.又AB=4,所以AB2=AD2+BD2,所以BD⊥AD.又平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面ADE.(2)建立如图所示的空间直角坐标系D-xyz ,则D (0,0,0),B (0,22,0),C (-2,2,0),E (2,0,2),所以BE →=(2,-22,2),DE →=(2,0,2), DC →=(-2,2,0).设n =(x ,y ,z )是平面CDE 的法向量,则n ·DE →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,-x +y =0,令x =1,则n =(1,1,-1).设直线BE 与平面CDE 所成的角为α,则sin α=|cos 〈BE →,n 〉|=|BE →·n ||BE →|·|n |=|2-22-2|23×3=23,所以BE 和平面CDE 所成角的正弦值为23.。
高三复习数学63_立体几何中的向量方法(有答案)

6.3 立体几何中的向量方法一、解答题。
1. 空间直角坐标系(1)为了确定空间点的位置,我们建立空间直角坐标系:以单位正方体OABC −D ′A ′B ′C ′为载体,__________________.这时我们说建立了一个空间直角坐标系Oxyz ,其中O 叫坐标原点,x 轴、y 轴、z 轴叫坐标轴.(2)___________________叫坐标平面,分别称为________________________. (3)通常建立的直角坐标系为___________________,即___________________________________.2. 空间两点间的距离(1)若A (x 1,y 1,z 1),B (x 2,y 2,z 2),则|AB|=________.(2)特别地,点P (x,y,z )与原点O 之间的距离为|PO|=________.3. 空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作⟨a ,b ⟩,其范围是0≤⟨a ,b ⟩≤π,若⟨a ,b ⟩=π2,则称a 与b ________,记作a ⊥b .②两向量的数量积已知空间两个非零向量a ,b ,则|a ||b |cos ⟨a ,b ⟩叫做向量a ,b 的数量积,记作a ⋅b ,即a ⋅b =|a ||b |cos ⟨a ,b ⟩.(2)空间向量数量积的运算律 ①结合律:(λa )⋅b =λ(a ⋅b ); ②交换律:a ⋅b =b ⋅a ;③分配律:a ⋅(b +c )=a ⋅b +a ⋅c .4. 空间向量的坐标表示及应用 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ⋅b =________.(2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a //b ⇔a =λb ⇔________,________,a 3=λb 3(λ∈R ), a ⊥b ⇔a ⋅b =0⇔________(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=√a ⋅a =√a 12+a 22+a 32,cos ⟨a ,b ⟩=a ⋅b |a ||b |=112233√a 12+a 22+a 32⋅√b 12+b 22+b 32设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=√(a 2−a 1)2+(b 2−b 1)2+(c 2−c 1)2.5. 空间距离(1)点到直线的距离:指一点到它在一条直线上的________的距离. (2)两异面直线的距离:指两条异面直线的________的长度. (3)点到面的距离:指一点到它在一个平面内的________的距离.(4)平行线面间的距离:设直线l//平面α,则直线l 任意一点到平面α的距离,叫做直线l 到平面α的距离.据此可知:线面距离可转化为点面距离求解.(5)平行平面间的距离:其中一个平面内任意一点到另一个平面的距离,也就是两个平行平面的公垂线段的长度.显然,面面距离可以转化为点面距离求解.6. 如图,已知正三棱柱ABC −A 1B 1C 1各条棱长都相等.M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成角大小是________.7. (文)在长方体ABCD −A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30∘,则该长方体的体积为( ) A.8 B.6√2 C.8√2 D.8√38. (理)已知三棱柱ABC −A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) A.13 B.√23C.√33D.239. (理)如图,AE ⊥平面ABCD ,CF//AE ,AD//BC ,AD ⊥AB ,AB =AD =1,AE =BC =2.求证:BF//平面ADE;求直线CE与平面BDE所成角的正弦值;若二面角E−BD−F的余弦值为1,求线段CF的长.310. (文)如图,在三棱锥P−ABC中,AB=BC=2√2,PA=PB=PC=AC=4,O 为AC的中点.证明:PO⊥平面ABC;若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.11. (理)如图,在直三棱柱ABC−A1B1C1中,∠BAC=90∘,AB=AC=AA1=1.D 是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1//平面BDA1.求证:CD=C1D.求点C到平面B1DP的距离.12. (理)在正四面体S−ABC中,侧面SAC与底面ABC所成二面角的余弦值为()A.1 4B.13C.√24D.√2313. (文)在正四面体S−ABC中,侧棱SA与底面ABC所成线面角的余弦值为()A.1 2B.√32C.√33D.√6314. 在长方体ABCD−A1B1C1D1中,AB=BC=1,AA1=√3,则异面直线AD1与DB1所成角的余弦值为()A.1 5B.√56C.√55D.√2215. 在三棱柱ABC−A1B1C1中,各棱长相等,侧棱垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是()A.30∘B.45∘C.60∘D.90∘16. (理)二面角α−l−β为60∘,A、B是棱l上的两点,AC、BD分别在半平面α,β内,AC⊥l,BD⊥l,且AB=AC=a,BD=2a,则CD的长为()A.2aB.2√2aC.√5aD.√3a17. (文)已知∠ACB=90∘,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为√3,那么P到平面ABC的距离为()A.1B.√2C.√32D.1218. (理)设三棱锥V−ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P−AC−B的平面角为γ,则()A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β19. (文)在封闭的直三棱柱ABC−A1B1C1内有一个体积为V的球,若AB⊥BC,AB= 6,BC=8,AA1=3,则V的最大值是()A.4πB.9π2C.6π D.32π320. (理)棱长为2的正方体ABCD−A1B1C1D1中,E为棱CC1的中点,点P,Q分别为面A1B1C1D1和线段B1C上的动点,则△PEQ周长的最小值为()A.2√2B.√10C.√11D.2√321. (文)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高ℎ,计算其体积V的近似公式V≈136L2ℎ.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2ℎ相当于将圆锥体积公式中的π近似取为()A.227B.258C.15750D.35511322. 在长方体ABCD−A1B1C1D1中,AB=3,BC=2,AA1=1,则异面直线AB1与BC1所成角的余弦值为________.23. (理)已知点E、F分别在正方体ABCD−A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于________.24. (文)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为________.25. 如图,四棱柱ABCD−A1B1C1D1中,所有棱长均为a,且∠A1AB=∠A1AD=∠DAB=60∘,则下列结论正确的是________(写出所有正确结论的编号).①平面A1BD//平面CB1D1;②四边形BDD1B1为正方形;a;③点A到平面BDD1B1的距离为√32④点A1在平面BDC1上的射影为△BDC1的垂心;⑤平面A1BD与平面BDD1B1将四棱柱分成从小到大三部分的体积比为1:2:3.26. 如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置.证明:AC⊥HD′;,OD′=2√2,求五棱锥D′−ABCFE体积.若AB=5,AC=6,AE=5427. 如图,在三棱台ABC−DEF中,平面BCFE⊥平面ABC,∠ACB=90∘,BE=EF=FC=1,BC=2,AC=3.求证:BF⊥平面ACFD;求直线BD与平面ACFD所成角的余弦值.28. (理)如图,在正三棱柱ABC−A1B1C1中,侧棱长和底面边长均为1,D是BC的中点.求证:A1B//平面ADC1求A1A与平面ADC1所成角的正弦值;的值;若不存在,试问线段A1B1上是否存在点E,使CE⊥平面ADC1?若存在,求AEA1B1说明理由.29. (文)如图,四棱锥P−ABCD的底面是直角梯形,AD//BC,AD=3BC=6,PB= 6√2,点M在线段AD上,且MD=4,AD⊥AB,PA⊥平面ABCD.求证:平面PCM⊥平面PAD;当四棱锥P−ABCD的体积最大时,求四棱锥P−ABCD的表面积.参考答案与试题解析6.3 立体几何中的向量方法一、解答题。
立体几何中的向量方法答案

立体几何中的向量方法(Ⅰ)——证明平行与垂直1.用向量表示直线或点在直线上的位置(1)给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫作直线l 的参数方程.向量a 称为该直线的方向向量.(2)对空间任一确定的点O ,点P 在直线l 上的充要条件是存在唯一的实数t ,满足等式OP→=(1-t )OA →+tOB →,叫作空间直线的向量参数方程. 2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l α⇔v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2. 3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. [难点正本 疑点清源]利用空间向量解决立体几何中的平行问题(1)证明两条直线平行,只需证明这两条直线的方向向量是共线向量,但要注意说明这两条直线不共线. (2)证明线面平行的方法①证明直线的方向向量与平面的法向量垂直,但要说明直线不在平面内.②证明能够在平面内找到一个向量与已知直线的方向向量共线,也要说明直线不在平 面内.③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.同时要注意强调直线不在平面内.1.两不重合直线l 1和l 2的方向向量分别为v 1=(1,0,-1),v 2=(-2,0,2),则l 1与l 2的位置关系是__________. 答案 平行解析 ∵v 2=-2v 1,∴v 1∥v 2,又l 1与l 2不重合,∴l 1∥l 2.2.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.答案 407,-157,4解析 由题意知,BP →⊥AB →,BP →⊥BC →.所以⎩⎪⎨⎪⎧AB →·BC →=0,BP →·AB →=0,BP →·BC →=0,即⎩⎪⎨⎪⎧1×3+5×1+(-2)×z =0,(x -1)+5y +(-2)×(-3)=0,3(x -1)+y -3z =0,解得,x =407,y =-157,z =4.3.已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2),则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥bD .以上都不对答案 C 解析 ∵c =2a ,∴a ∥c ,又a·b =(-2,-3,1)·(2,0,4)=-4+0+4=0,∴a ⊥b .4.若平面α,β垂直,则下面可以作为这两个平面的法向量的是( )A .n 1=(1,2,1),n 2=(-3,1,1)B .n 1=(1,1,2),n 2=(-2,1,1)C .n 1=(1,1,1),n 2=(-1,2,1)D .n 1=(1,2,1),n 2=(0,-2,-2)答案 A 解析 两个平面垂直时其法向量也垂直,只有选项A 中的两个向量垂直. 5.若平面α、β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则 ( ) A .α∥βB .α⊥βC .α、β相交但不垂直D .以上均不正确答案 C题型一 利用空间向量证明平行问题例1 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .思维启迪:证明线面平行,可以利用判定定理先证线线平行;也可以寻找平面的法向量.证明 方法一 如图所示,以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则M ⎝⎛⎭⎫0,1,12,N ⎝⎛⎭⎫12,1,1,D (0,0,0),A 1(1,0,1),B (1,1,0), 于是MN →=⎝⎛⎭⎫12,0,12,设平面A 1BD 的法向量是n =(x ,y ,z ).则n ·DA 1→=0,且n ·DB →=0,得⎩⎪⎨⎪⎧x +z =0,x +y =0.取x =1,得y =-1,z =-1.∴n =(1,-1,-1).又MN →·n =⎝⎛⎭⎫12,0,12·(1,-1,-1)=0, ∴MN →⊥n ,又MN 平面A 1BD ,∴MN ∥平面A 1BD .方法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,又∵MN 与DA 1不共线,∴MN ∥DA 1, 又∵MN 平面A 1BD ,A 1D 平面A 1BD ,∴MN ∥平面A 1BD . 探究提高 用向量证明线面平行的方法有(1)证明该直线的方向向量与平面的某一法向量垂直; (2)证明该直线的方向向量与平面内某直线的方向向量平行;(3)证明该直线的方向向量可以用平面内的两个不共线的向量线性表示; (4)本题易错点:只证明MN ∥A 1D ,而忽视MN 平面A 1BD .如图所示,平面P AD ⊥平面ABCD ,ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E 、F 、G 分别是线段P A 、PD 、CD 的中点.求证:PB ∥平面EFG .证明 ∵平面P AD ⊥平面ABCD 且ABCD 为正方形,∴AB 、AP 、AD 两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0)、B (2,0,0)、C (2,2,0)、D (0,2,0)、P (0,0,2)、E (0,0,1)、F (0,1,1)、G (1,2,0). ∴PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1), 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), ∴⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.∴PB →=2FE →+2FG →,又∵FE →与FG →不共线,∴PB →、FE →与FG →共面.∵PB 平面EFG ,∴PB ∥平面EFG . 题型二 利用空间向量证明垂直问题例2 如图所示,正三棱柱ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 方法一 设平面A 1BD 内的任意一条直线m 的方向向量为m .由共面向量定理,则存在实数λ,μ,使m =λBA 1→+μBD →. 令BB 1→=a ,BC →=b ,BA →=c ,显然它们不共面,并且|a |=|b |=|c |=2,a ·b =a·c =0,b·c =2,以它们为空间的一个基底,则BA 1→=a +c ,BD →=12a +b ,AB 1→=a -c ,m =λBA 1→+μBD →=⎝⎛⎭⎫λ+12μa +μb +λc , AB 1→·m =(a -c )·⎣⎡⎦⎤⎝⎛⎭⎫λ+12μa +μb +λc =4⎝⎛⎭⎫λ+12μ-2μ-4λ=0.故AB 1→⊥m ,结论得证. 方法二 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC —A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0).设平面A 1BD 的法向量为n =(x ,y ,z ),BA 1→=(-1,2,3),BD →=(-2,1,0).因为n ⊥BA 1→,n ⊥BD →,故⎩⎪⎨⎪⎧n ·BA 1→=0,n ·BD →=0⇒⎩⎨⎧-x +2y +3z =0,-2x +y =0,令x =1,则y =2,z =-3,故n =(1,2,-3)为平面A 1BD 的一个法向量,而AB 1→=(1,2,-3),所以AB 1→=n ,所以AB 1→∥n ,故AB 1⊥平面A 1BD .探究提高 证明线面平行和垂直问题,可以用几何法,也可以用向量法.用向量法的关键在于构造向量,再用共线向量定理或共面向量定理及两向量垂直的判定定理.若能建立空间直角坐标系,其证法较为灵活方便.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC=90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ; (2)B 1F ⊥平面AEF .证明 (1)如图建立空间直角坐标系A —xyz ,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B 1(4,0,4). 取AB 中点为N ,连接CN ,则N (2,0,0),C (0,4,0),D (2,0,2), ∴DE →=(-2,4,0),NC →=(-2,4,0),∴DE →=NC →,∴DE ∥NC ,又∵NC 平面ABC ,DE 平面ABC .故DE ∥平面ABC . (2)B 1F →=(-2,2,-4),EF →=(2,-2,-2),AF →=(2,2,0). B 1F →·EF →=(-2)×2+2×(-2)+(-4)×(-2)=0, B 1F →·AF →=(-2)×2+2×2+(-4)×0=0. ∴B 1F →⊥EF →,B 1F →⊥AF →,即B 1F ⊥EF ,B 1F ⊥AF ,又∵AF ∩FE =F ,∴B 1F ⊥平面AEF . 题型三 利用空间向量解决探索性问题例3 (2012·福建)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.思维启迪:利用向量法建立空间直角坐标系,将几何问题进行转化;对于存在性问题可通过计算下结论.(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1), E ⎝⎛⎭⎫a2,1,0,B 1(a,0,1), 故AD 1→=(0,1,1),B 1E →=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0. ∵AD 1→·B 1E →=-a 2×0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0).使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0). 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ax +z =0,ax 2+y =0.取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12.又DP 平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP =12.探究提高 对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.如图所示,四棱锥S —ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD .(2)若SD ⊥平面P AC ,则侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 连接BD ,设AC 交BD 于O ,则AC ⊥BD .由题意知SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →分别为x 轴、y 轴、z 轴正方向,建立空间 直角坐标系如图.设底面边长为a ,则高SO =62a , 于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,OC →=⎝⎛⎭⎫0,22a ,0,SD →=⎝⎛⎭⎫-22a ,0,-62a ,则OC →·SD →=0.故OC ⊥SD .从而AC ⊥SD .(2)解 棱SC 上存在一点E 使BE ∥平面P AC . 理由如下:由已知条件知DS →是平面P AC 的一个法向量,且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a ,BC →=⎝⎛⎭⎫-22a ,22a ,0.设CE →=tCS →,则BE →=BC →+CE →=BC →+tCS →=⎝⎛⎭⎫-22a ,22a (1-t ),62at ,而BE →·DS →=0⇔t =13.即当SE ∶EC =2∶1时,BE →⊥DS →.而BE 不在平面P AC 内,故BE ∥平面P AC .利用空间向量解决立体几何问题典例:(12分)(2011·大纲全国)如图,四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.考点分析 本题以四棱锥为载体,考查多面体的结构特征,线面垂直的判定以及直线与平面所成角的计算.解题策略 本题有两种解题思路:①利用常规方法,从线线垂直证明线面垂直,作出所求线面角;②利用空间向量,将线面垂直转化为两个向量的关系,利用平面的法向量求线面角. 规范解答(1)证明 以C 为坐标原点,射线CD 为x 轴正半轴,射线CB 为y 轴的正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0),B (0,2,0).[2分] 又设S (x ,y ,z ),则x >0,y >0,z >0.AS →=(x -2,y -2,z ), BS →=(x ,y -2,z ), DS →=(x -1,y ,z ),由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.[6分]于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0,故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .[8分] (2)解 设平面SBC 的法向量a =(m ,n ,p ), 则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).[10分]又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.[12分]解后反思 直线和平面的位置关系可以利用直线的方向向量和平面的法向量之间的关系来判断.证明的主要思路:(1)证明线线平行:可证两条直线的方向向量共线;(2)证明线面平行:①证明直线的方向向量和平面的法向量垂直,②证明直线的方向向量可用平面内的两个不共线向量线性表示;(3)证明面面平行:可证两个平面的法向量共线;(4)证明线线垂直:可证两条直线的方向向量垂直;(5)证明线面垂直:①证明直线的方向向量和平面内的两个不共线向量垂直,②证明直线的方向向量与平面的法向量共线;(6)证明面面垂直:可证两个平面的法向量互相垂直.。
专题07 立体几何中的向量方法(解析版)

专题07 立体几何中的向量方法【要点提炼】1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则sin θ=|cos a ,μ|=|a ·μ||a ||μ|.(3)面面夹角设平面α,β的夹角为θ(0≤θ<π), 则|cos θ|=|cosμ,v|=|μ·v ||μ||v |.考点考向一 利用空间向量证明平行、垂直【典例1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以AB ⊥平面P AD ,所以向量AB→=(1,0,0)为平面P AD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面P AD , 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面P AD ⊥平面PCD .探究提高 1.利用向量法证明平行、垂直,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素). 2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的定理,如在(2)中忽略BE ⊄平面P AD 而致误.【拓展练习1】 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.OM →=⎝ ⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)在第(1)问的空间直角坐标系中,设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝ ⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧n 1·DF→=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 考向二 线线角、线面角的求解【典例2】 (2020·浙江卷)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .图(1)由∠ACD =45°,DO ⊥AC ,得 CD =2CO .由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC . 所以BC ⊥平面BDO ,故BC ⊥DB .由ABC -DEF 为三棱台,得BC ∥EF ,所以EF ⊥DB .(2)解 法一 如图(1),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO ,得OH ⊥BC ,故OH ⊥平面DBC , 所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2,得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33.法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(2),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .图(2)设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2). 因此OC→=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎨⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33.探究提高 1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).【拓展练习2】 (2020·全国Ⅱ卷)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形且M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又侧面BB 1C 1C 是矩形,所以B 1C 1⊥MN . 又A 1N ∩MN =N ,A 1N ,MN ⊂平面A 1AMN , 所以B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知及(1)得AM ⊥BC ,MN ⊥BC ,AM ⊥MN .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM = 3.连接NP ,AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN . 又AP ∥ON ,则四边形AONP 为平行四边形,故PM =233,E ⎝ ⎛⎭⎪⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC .作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a ,0,0),则 NQ =4-⎝ ⎛⎭⎪⎫233-a2, B 1⎝⎛⎭⎪⎫a ,1,4-⎝ ⎛⎭⎪⎫233-a2. 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a 2, |B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n |·|B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 考向三 利用向量求二面角【典例3】 (2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.解 设AB =a ,AD =b ,AA 1=c .如图,以C 1为坐标原点,C 1D 1→的方向为x 轴正方向, 建立空间直角坐标系C 1-xyz .(1)证明 连接C 1F ,C 1(0,0,0),A (a ,b ,c ),E ⎝ ⎛⎭⎪⎫a ,0,23c ,F ⎝ ⎛⎭⎪⎫0,b ,13c ,EA→=⎝ ⎛⎭⎪⎫0,b ,13c ,C 1F →=⎝ ⎛⎭⎪⎫0,b ,13c ,得EA →=C 1F →, 因此EA ∥C 1F ,即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x ,y ,z )为平面AEF 的法向量,则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎨⎧-y -z =0,-2x -2z =0,可取n 1=(-1,-1,1).设n 2为平面A 1EF 的法向量,则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,同理可取n 2=⎝ ⎛⎭⎪⎫12,2,1.设二面角A -EF -A 1的平面角为α,所以cos α=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,则sin α=1-cos2α=42 7,所以二面角A-EF-A1的正弦值为42 7.探究提高 1.二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.2.利用向量法求二面角,必须能判定“所求二面角的平面角是锐角或钝角”,否则解法是不严谨的.【拓展练习3】(2020·沈阳一监)如图,已知△ABC为等边三角形,△ABD为等腰直角三角形,AB⊥BD.平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE∥BD,BD=2CE.点F为AD的中点,连接EF.(1)求证:EF∥平面ABC;(2)求二面角C-AE-D的余弦值.(1)证明取AB的中点为O,连接OC,OF,如图.∵O,F分别为AB,AD的中点,∴OF∥BD且BD=2OF.又CE∥BD且BD=2CE,∴CE∥OF且CE=OF,∴OF綊EC,则四边形OCEF为平行四边形,∴EF∥OC.又OC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.(2)解∵△ABC为等边三角形,O为AB的中点,∴OC⊥AB.∵平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,BD ⊥AB ,BD ⊂平面ABD ,∴BD ⊥平面ABC .又OF ∥BD ,∴OF ⊥平面ABC .以O 为坐标原点,分别以OA ,OC ,OF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.不妨令正三角形ABC 的边长为2,则O (0,0,0),A (1,0,0),C (0,3,0),E (0,3,1),D (-1,0,2),∴AC→=(-1,3,0),AE →=(-1,3,1),AD →=(-2,0,2). 设平面AEC 的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧AC →·m =-x 1+3y 1=0,AE →·m =-x 1+3y 1+z 1=0. 不妨令y 1=3,则m =(3,3,0). 设平面AED 的法向量为n =(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧AD →·n =-2x 2+2z 2=0,AE →·n =-x 2+3y 2+z 2=0. 令z 2=1,得n =(1,0,1). ∴cos 〈m ,n 〉=323×2=64.由图易知二面角C -AE -D 为钝角, ∴二面角C -AE -D 的余弦值为-64. 考向四 利用空间向量求解探索性问题【典例4】 (2020·武汉调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,点O 是AC 与BD 的交点,点E 是线段OD 1上的一点.(1)若点E 为OD 1的中点,求直线OD 1与平面CDE 所成角的正弦值;(2)是否存在点E ,使得平面CDE ⊥平面CD 1O ?若存在,请指出点E 的位置,并加以证明;若不存在,请说明理由. 解 (1)不妨设正方体的棱长为2.以D 为坐标原点,分别以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),D 1(0,0,2),C (0,2,0),O (1,1,0). 因为E 为OD 1的中点, 所以E ⎝ ⎛⎭⎪⎫12,12,1.则OD 1→=(-1,-1,2),DE →=⎝ ⎛⎭⎪⎫12,12,1,DC →=(0,2,0).设p =(x 0,y 0,z 0)是平面CDE 的法向量, 则⎩⎪⎨⎪⎧p ·DE→=0,p ·DC →=0,即⎩⎪⎨⎪⎧12x 0+12y 0+z 0=0,2y 0=0,取x 0=2,则y 0=0,z 0=-1,所以p =(2,0,-1)为平面CDE 的一个法向量. 设直线OD 1与平面CDE 所成角为θ, 所以sin θ=|cos 〈OD 1→,p 〉|=|OD 1→·p ||OD 1→||p |=|-1×2+(-1)×0+2×(-1)|(-1)2+(-1)2+22×22+(-1)2=23015, 即直线OD 1与平面CDE 所成角的正弦值为23015.(2)存在,且点E 为线段OD 1上靠近点O 的三等分点.理由如下. 假设存在点E ,使得平面CDE ⊥平面CD 1O .同第(1)问建立空间直角坐标系,易知点E 不与点O 重合,设D 1E →=λEO →,λ∈[0,+∞),OC →=(-1,1,0),OD 1→=(-1,-1,2). 设m =(x 1,y 1,z 1)是平面CD 1O 的法向量, 则⎩⎪⎨⎪⎧m ·OC →=0,m ·OD 1→=0,即⎩⎨⎧-x 1+y 1=0,-x 1-y 1+2z 1=0,取x 1=1,则y 1=1,z 1=1,所以m =(1,1,1)为平面CD 1O 的一个法向量.因为D 1E →=λEO →,所以点E 的坐标为⎝⎛⎭⎪⎫λ1+λ,λ1+λ,21+λ, 所以DE →=⎝ ⎛⎭⎪⎫λ1+λ,λ1+λ,21+λ. 设n =(x 2,y 2,z 2)是平面CDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE→=0,n ·DC →=0,即⎩⎪⎨⎪⎧λ1+λx 2+λ1+λy 2+21+λz 2=0,2y 2=0,取x 2=1,则y 2=0,z 2=-λ2,所以n =⎝ ⎛⎭⎪⎫1,0,-λ2为平面CDE 的一个法向量. 因为平面CDE ⊥平面CD 1O ,所以m ⊥n . 则m ·n =0,所以1-λ2=0,解得λ=2.所以当D 1E →EO →=2,即点E 为线段OD 1上靠近点O 的三等分点时,平面CDE ⊥平面CD 1O .探究提高 1.空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.但注意空间坐标系建立的规范性及计算的准确性,否则容易出现错误.2.空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【拓展练习4】 (2019·北京卷)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,P A =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =13.(1)求证:CD ⊥平面P AD ; (2)求二面角F -AE -P 的余弦值;(3)设点G 在PB 上,且PG PB =23.判断直线AG 是否在平面AEF 内,说明理由. (1)证明 因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD . 又因为AD ⊥CD ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以CD ⊥平面P AD .(2)解 过点A 作AD 的垂线交BC 于点M . 因为P A ⊥平面ABCD ,AM ,AD ⊂平面ABCD , 所以P A ⊥AM ,P A ⊥AD .建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点, 所以E (0,1,1).所以AE→=(0,1,1),PC →=(2,2,-2),AP →=(0,0,2). 所以PF→=13PC →=⎝ ⎛⎭⎪⎫23,23,-23, 所以AF→=AP →+PF →=⎝ ⎛⎭⎪⎫23,23,43. 设平面AEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,即⎩⎪⎨⎪⎧y +z =0,23x +23y +43z =0. 令z =1,则y =-1,x =-1. 于是n =(-1,-1,1).又因为平面P AD 的一个法向量为p =(1,0,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=-33.由题知,二面角F -AE -P 为锐角,所以其余弦值为33. (3)解 直线AG 在平面AEF 内,理由如下: 因为点G 在PB 上,且PG PB =23,PB →=(2,-1,-2), 所以PG→=23PB →=⎝ ⎛⎭⎪⎫43,-23,-43, 所以AG→=AP →+PG →=⎝ ⎛⎭⎪⎫43,-23,23. 由(2)知,平面AEF 的一个法向量n =(-1,-1,1), 所以AG →·n =-43+23+23=0.又点A ∈平面AEF ,所以直线AG 在平面AEF 内.【专题拓展练习】一、单选题1.已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且,,OA a OB b OC c ===,用,,a b c 表示MN ,则MN 等于( )A .()12b c a +- B .()12a b c ++ C .()12a b c -+D .()12c a b --【答案】D 【详解】MN MA AO ON =++1122BA OA OC =-+ ()1122OA OB OA OC =--+ 111222OA OB OC =--+()12c a b =--. 故选:D2.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 3C .点P 的轨迹是正方形D .点P 轨迹的长度为2+5【答案】D 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点, 则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫=⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥, 所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH , 所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动,所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,52EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形; 且矩形EFGH 的周长为522252+⨯=+,故C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G 的距离相等,且最大,所以线段MP 的最大值为52,故B 错. 3.在空间四边形ABCD 中,AB CD AC DB AD BC ⋅+⋅+⋅=( ) A .-1 B .0 C .1 D .不确定【答案】B 【详解】 如图,令,,AB a AC b AD c ===, 则AB CD AC DB AD BC ⋅+⋅+⋅,()()()a cb b ac c b a =⋅-+⋅-+⋅-,0a c a b b a b c c b c a =⋅-⋅+⋅-⋅+⋅-⋅=.故选:B4.如图,在四棱锥P ABCD -中,底面ABCD 为矩形.PA ⊥底面,2,4ABCD PA AB AD ===.E 为PC 的中点,则异面直线PD 与BE 所成角的余弦值为( )A .35B .3010C .1010D .31010【答案】B 【详解】以A 点为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系如下图所示:则()2,0,0B ,()1,2,1E ,()002P ,,,()0,4,0D , ()1,2,1BE =-∴,()0,4,2PD =-,设异面直线PD 与BE 所成角为θ,则630cos 10625PD BE PD BEθ⋅===⨯⋅. 5.已知四棱锥,-P ABCD 底面是边长为2的正方形,PAD △是以AD 为斜边的等腰直角三角形,AB ⊥平面PAD ,点E 是线段PD 上的动点(不含端点),若线 AB 段上存在点F (不含端点),使得异面直线PA 与 EF 成30的角,则线段PE 长的取值范围是( )A .202⎛⎫ ⎪ ⎪⎝⎭, B .603⎛⎫⎪ ⎪⎝⎭, C .222⎛⎫⎪ ⎪⎝⎭, D .623,⎛⎫⎪⎝⎭【答案】B 【详解】由PAD △是以AD 为斜边的等腰直角三角形,AB ⊥平面PAD ,取AD 中点G ,建立如图空间直角坐标系,依题意(0,0,0),(1,0,0),(1,0,0),(1,2,0),(0,0,1)G A D B P -,设(1,,0)F y ,,设()()1,0,1,0,DE xDP x x x ===,01x <<,故()1,0,E x x -,()2,,EF x y x =--又()1,0,1PA =-,异面直线PA 与 EF 成30的角,故cos30PA EF PA EF ⋅=⋅︒,即()2223222x y x =-++即()222213y x =--+,01x <<,故220,3y ⎡⎫∈⎪⎢⎣⎭,又02y <<,故60y ⎛∈ ⎝⎭,. 故选:B.6.已知二面角l αβ--,其中平面的一个法向量()1,0,1m =-,平面β的一个法向量()0,1,1n =-,则二面角l αβ--的大小可能为( )A .60︒B .120︒C .60︒或120︒D .30【答案】C 【详解】11cos ,222m n m n m n ⋅-<>===-⨯,所以,120m n <>=,又因为二面角的大小与法向量夹角相等或互补, 所以二面角的大小可能是60或120. 故选:C7.已知向量(,,)x y z a a a a =,(,,)x y z b b b b =,{},,i j k 是空间中的一个单位正交基底.规定向量积的行列式计算:()()(),,yz xy xz y z z y z x x z x y y x xy z yz xyxz xyz ij ka a a a a a ab a b a b i a b a b j a b a b k a a a b b b b b b b b b ⎛⎫⨯=-+-+-==-⎪ ⎪⎝⎭其中行列式计算表示为a b ad bc c d=-,若向量(2,1,4),(3,1,2),AB AC ==则AB AC ⨯=( )A .(4,8,1)---B .(1,4,8)--C .(2,8,1)--D .(1,4,8)---【答案】C 【详解】由题意得()()()()1241+4322+21132,8,1AB AC i j k ⨯=⨯-⨯⨯-⨯⨯-⨯=--, 故选:C.8.长方体1111ABCD A B C D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1A C 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形【答案】B 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q AC PQ x ∴⋅=---=,解得18Qx =,即()18,0,10Q , 设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5Ny =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--,则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1A C 垂直的长方体截面为五边形QMNEF . 故选:B.9.在四面体ABCD 中,6AB =,3BC =,4BD =,若ABD ∠与ABC ∠互余,则()BA BC BD ⋅+的最大值为( )A .20B .30C .40D .50【答案】B 【详解】设ABD α∠=,可得2ABC πα∠=-,则α为锐角,在四面体ABCD 中,6AB =,3BC =,4BD =, 则()cos cos 2BA BC BD BA BC BA BD BA BC BA BD παα⎛⎫⋅+=⋅+⋅=⋅-+⋅ ⎪⎝⎭()18sin 24cos 30sin αααϕ=+=+,其中ϕ为锐角,且4tan 3ϕ=. 02πα<<,则2πϕαϕϕ<+<+,所以,当2παϕ+=时,()BA BC BD ⋅+取得最大值30.10.已知正方体1111ABCD A B C D -的棱长为1,点E 是底面ABCD 上的动点,则()111CE CA D B -⋅的最大值为( )A .22B .1C .2D .6【答案】B 【详解】以点D 为原点,1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则111(0,0,1),(1,1,1),(1,0,1),D B A设(,,0)E x y ,其中[],0,1x y ∈,则()()11111,,1,1,1,0CE CA A E x y D B -==--=, 所以111()11CE CA D B x y -⋅=+-≤,等号成立的条件是(1,1,0)E ,故其最大值为1, 故选:B .11.如图,在底面为正方形的四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且PA =AB .若点M 为PD 中点,则直线CM 与PB 所成角的大小为( )A .60°B .45°C .30°D .90°【答案】C 【详解】如图所示:以A 为坐标原点,以AB ,AD ,AP 为单位向量建立空间直角坐标系A xyz -,设1PA =,则()0,0,0A ,()1,1,0C ,110,,22M ⎛⎫⎪⎝⎭,()0,0,1P ,()1,0,0B , 故()1,0,1PB =-,111,,22MC ⎛⎫=- ⎪⎝⎭,故1132cos ,21111144PB MC PB MC PB MC+⋅===⋅+⋅++, 由异面直线夹角的范围是(]0,90︒︒,故直线CM 与PB 所成角的大小为30. 故选:C.12.如图,在正四面体ABCD 中,,,2BE EC CF FD DG GA ===,记平面EFG 与平面BCD 、平面ACD 、平面ABD ,所成的锐二面角分别为α、β、γ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .γαβ>>【答案】A【详解】 解:(空间向量法)因为,,2BE EC CF FD DG GA ===,所以E 、F 分别为BC 、CD 的中点,G 为AD 上靠近A 的三等分点,取BD 的中点M ,连接CM ,过A 作AO ⊥平面BCD ,交CM 于点O ,在平面BCD 中过O 作//ON BD ,交CD 于N ,设正四面体ABCD 的棱长为2,则33OM =,233CO =,22222326233OA AC OC ⎛⎫=-=-= ⎪ ⎪⎝⎭, 以O 为原点,OC 为x 轴,ON 为y 轴,OA 为z 轴,建立空间直角坐标系,26A ⎛ ⎝⎭,31,0B ⎛⎫- ⎪ ⎪⎝⎭,23C ⎫⎪⎝⎭,3D ⎛⎫ ⎪⎝⎭,31,02E ⎫-⎪⎝⎭,31,062F ⎛⎫ ⎪⎝⎭,3146,939G ⎛- ⎝⎭,(0,1,0)EF =,53546,8691EG ⎛⎫=- ⎪ ⎪⎝⎭,232633AC ⎛=- ⎝⎭,32633AD ⎛=-- ⎝⎭,3261,33AB ⎛⎫=--- ⎪⎝⎭,设平面EFG 的一个法向量为()1,,n x y z =,则110n EF n EG ⎧⋅=⎪⎨⋅=⎪⎩,即05354606y x y z =⎧⎪⎨+=⎪⎩,不妨令1z =,则18,0,125n ⎛⎫= ⎪ ⎪⎝⎭,同理可计算出平面BCD 、平面ACD 、平面ABD 的一个法向量分别为2(0,0,1)n =,()32,6,1n =,4(22,0,1)n =-,则可得1212517co 1s 5n n n n α⋅==⋅,1313717co 1s 5n n n n β⋅==⋅,14149cos 1751n n n n γ⋅==⋅,所以cos cos cos αβγ<<,又cos y x =在()0.x π∈上递减,所以αβγ>>, 故选:A.13.在正四棱锥P ABCD -中,1PA PB PC PD AB =====,点Q ,R 分别在棱AB ,PC 上运动,当||QR 达到最小值时,||||PQ CQ 的值为( ) A .7010B .355C .3510D .705【答案】A 【详解】以P 在底面的投影O 为坐标原点,建立如图所示的坐标系,设1(,,0)2Q a ,(,,)R m n q因为211(0(,0),22P C -,,112(,22PC =-, 又因为R 在PC 上,PR PC λ=所以(,m m q -=,11(,),22λλ-, 所以R 11(,2222λλ=--+,所以2222111222QR a λλ⎛⎛⎫⎛⎫=--+-+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭221324a a λλλ=+-++ 因为[]11,,0,122a λ⎡⎤∈-∈⎢⎥⎣⎦设2213()24f a a a λλλ=+-++,2213()24g a a λλλλ=+-++ 对其求导()2f a a λ'=-,1()22g a λλ'=-+当二个导数同时为0时,取最小值,即20a λ-=,1202a λ-+=所以11,36a λ==时取最小值,所以1121,,,1,,02623PQ CQ ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以PQCQ==10,所以当||QR 达到最小值时,||||PQ CQ 的值为10. 14.如图所示,正方体1111ABCD A B C D -的棱长为1,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为1D .点C 和点G 到平面AEF 的距离相等 【答案】B 【详解】以D 点为坐标原点,DA 、DC 、1DD 为x ,y ,z 轴建系,则(000)D ,,、(100)A ,,、()010C ,,、1(101)A ,,、1(001)D ,,、 1(10)2E ,,、1(01)2F ,,,1(11)2G ,,, 则()1001DD =,,、1112AF ⎛⎫=- ⎪⎝⎭,,,则112DD AF ⋅=, ∴直线1D D 与直线AF 不垂直,A 错误;则11012A G ⎛⎫=- ⎪⎝⎭,,,1102AE ⎛⎫=- ⎪⎝⎭,,,1112AF ⎛⎫=- ⎪⎝⎭,,, 设平面AEF 的法向量为()n x y z =,,,则10021002x y AE n AF n x y z ⎧-+=⎪⎧⋅=⎪⎪⇒⎨⎨⋅=⎪⎪⎩-++=⎪⎩,令2x =,则1y =,2z =,则(212)n =,,,10AG n ⋅=,∴直线1A G 与平面AEF 平行,B 正确; 易知四边形1AEFD 为平面AEF 截正方体所得的截面,且1D F 、DC 、AE 共点于H ,15D H AH ==,12AD =,∴121232(5)()222AD H S ∆=⨯⨯-=,则113948AD HAEFD S S =⋅=四边形,C 错误; (110)AC =-,,,点C 到平面AEF 的距离113AC n d n⋅==, 1012AG ⎛⎫= ⎪⎝⎭,,,点G 到平面AEF 的距离223AG n d n ⋅==,则12d d ≠,D 错误;故选:B .15.如图所示,1111ABCD A B C D -是棱长为6的正方体,E 、F 分别是棱AB 、BC 上的动点,且AE BF =.当1A 、E 、F 、1C 共面时,平面1A DE 与平面1C DF 所成锐二面角的余弦值为( )A .15B .12C .32D .65【答案】B 【详解】以点D 为原点建立如图所示的空间直角坐标系,则1(606)A ,,、(000)D ,,、1(066)C ,,,由题意知:当(630)E ,,、(360)F ,,时,1A 、E 、F 、1C 共面, 设平面1A DE 的法向量为1111()n x y z =,,,1(606)DA =,,,(630)DE =,,, 则1111111660{630n DA x z n DE x y ⋅=+=⋅=+=,取11x =,解得1(121)n =--,,,设平面1C DF 的法向量为2222()n x y z =,,,1(066)DC =,,,(360)DF =,,, 则2122222660{360n DC y z n DF x y ⋅=+=⋅=+=,取22x =,解得2(211)n =-,,,设平面1A DE 与平面1C DF 所成锐二面角为θ,则1212121cos cos 266n n n n n n θ⋅====⋅⋅,, ∴平面1A DE 与平面1C DF 所成锐二面角的余弦值为12, 故选:B.二、解答题16.在三棱柱111ABC A B C -中,1AB AC ==,13AA =AB AC ⊥,1B C ⊥平面ABC ,E 是1B C 的中点.(1)求证:平面1AB C ⊥平面11ABB A ; (2)求直线AE 与平面11AAC C 所成角的正弦值. 【详解】(1)由1B C ⊥平面ABC ,AB 平面ABC ,得1AB B C ⊥,又AB AC ⊥,1CB AC C =,故AB ⊥平面1AB C ,AB 平面11ABB A ,故平面11ABB A ⊥平面1AB C .(2)以C 为原点,CA 为x 轴,1CB 为z 轴,建立如图所示空间直角坐标系, 则()0,0,0C ,()1,0,0A ,()1,1,0B 又2BC =113BB AA ==故11CB =,()10,0,1B ,10,0,2E ⎛⎫⎪⎝⎭,()1,0,0CA = ()111,1,1AA BB ==--,11,0,2AE ⎛⎫=- ⎪⎝⎭设平面11AAC C 的一个法向量为(),,n x y z =,则100n CA n AA ⎧⋅=⎪⎨⋅=⎪⎩,即00x x y z =⎧⎨--+=⎩,令1y =,则1z =, ()0,1,1n =, 设直线AE 与平面11AAC C 所成的角为θ,故1102sin 1214n AE n AEθ⋅===⨯+,即直线AE 与平面11AAC C 所成角的正弦值为1010.17.如图1,矩形ABCD 中,3AB BC =,将矩形ABCD 折起,使点A 与点C 重合,折痕为EF ,连接AF 、CE ,以AF 和EF 为折痕,将四边形ABFE 折起,使点B 落在线段FC 上,将CDE △向上折起,使平面DEC ⊥平面FEC ,如图2.(1)证明:平面ABE ⊥平面EFC ;(2)连接BE 、BD ,求锐二面角A BE D --的正弦值. 【详解】(1)证明:在平面ABCD 中,AF =FC ,BF +FC 3AB , 设3AB a =,则3BC a =,设BF =x ,在BAF △中,()22233x a a x +=-,解得x a =,则2AF FC a ==, 因为点B 落在线段FC 上,所以BC DE a ==,所以BE FC ⊥, 又AB BF ⊥即AB CF ⊥,AB BE B =,,AB BE ⊂平面ABE ,所以CF ⊥平面ABE ,由CF ⊂平面EFC 可得平面ABE ⊥平面EFC ;(2)以F 为原点,FC 为x 轴,过点F 平行BE 的方向作为作y 轴,过点F 垂直于平面EFC 的方向作为z 轴,建立如图所示空间直角坐标系,则()()()()2,0,0,0,0,0,3,0,,0,0C a F E a a B a ,()0,3,0BE a =, 易得平面ABE 的一个法向量为()2,0,0FC a =,作DG EC ⊥于G , 因为平面DEC ⊥平面FEC ,所以DG ⊥平面EFC ,则5334a G a ⎛⎫ ⎪ ⎪⎝⎭,53334a a D a ⎛ ⎝⎭,13334a a BD a ⎛= ⎝⎭,设平面DBE 的一个法向量为(),,n x y z =,则3013330442n BE ay a an BD ax y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令3z =(3n =-, 因为12239cos ,13239n FC n FC a n FC⋅--===⋅⋅,所以锐二面角A -BE -D 223913113⎛⎫--= ⎪ ⎪⎝⎭. 18.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AAC C 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值. 【详解】解:(Ⅰ)连结1BC ,与1B C 交于点O ,连结OD , 四边形11BB C C 是平行四边形,O 为1B C 中点,D 为AB 中点,得1//AC OD ,又OD ⊂平面1CDB ,故1//AC 平面1CDB ;(Ⅱ)方法一:由12AB AC ==,12AC AB ==,且O 为1B C ,1BC 的中点, 得1AO BC ⊥,1AO B C ⊥,11B C BC =, 又1BC ,1CB 为平面11BB C C 内两条相交直线,得AO ⊥平面11BB C C ,故1AC B ∠即为直线1AC 与平面11BB C C 所成的角; 由60BAC ∠=︒,2AB AC ==,2BC =,得四边形11BB C C 为菱形,又11B C BC =,故四边形11BB C C 为正方形,122BC =则1ABC 为等腰直角三角形,且12BAC π∠=,故14AC B π∠=,12sin 2AC B ∠=, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22.方法二:以D 为原点,分别以射线DB ,1DB ,CD 为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系O xyz -,则()0,0,0D ,()1,0,0A -,()1,0,0B ,()13,0A -,()13,0B , 由60BAC ∠=︒,2AB AC ==,ABC 为正三角形, 故CD AB ⊥,又1B D AB ⊥,所以AB ⊥平面1CDB , 设()0,,C y z ,由2CA =,123CA =,得(22223,38,y z y z ⎧+=⎪⎨+=⎪⎩即36,3y z ⎧=⎪⎪⎨⎪=⎪⎩,故3260,33C ⎛- ⎝⎭, 由11B C BC ,得12326C ⎛- ⎝⎭,所以12326AC ⎛= ⎝⎭,()11,3,0BB =-,3261,,33BC ⎛⎫=-- ⎪ ⎪⎝⎭; 设平面11BB C C 的一个法向量为()111,,n x y z =,由10,0,n BB n BC ⎧⋅=⎨⋅=⎩得1111130,33260,x y x y z ⎧-=⎪⎨+-=⎪⎩可取()3,1,2n =,设直线1AC 与平面11BB C C 所成角为θ, 则1112sin cos ,2AC n AC n AC nθ⋅===, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22. 19.如图,在三棱柱111ABC A B C -中,侧面11ABB A 和11BCC B 都是正方形,平面11ABB A ⊥平面11BCC B ,,D E 分别为1BB ,AC 的中点.(1)求证://BE 平面1A CD .(2)求直线1B E 与平面1A CD 所成角的正弦值. 【详解】(1)证明:取1A C 中点F ,连接DF ,EF , ∵,E F 分别为1,AC A C 的中点,∴1//EF AA ,且112EF AA =,又四边形11ABB A 是正方形,∴11//BB AA 且11BB AA =, 即1//EF BB 且112EF BB =,又∵D 为1BB 中点,∴//EF BD 且EF BD =,所以四边形EFDB 为平行四边形,所以//BE DF ,又BE ⊄平面1A CD ,DF ⊂平面1A CD ,所以//BE 平面1A CD .(2)由题意,1,,BA BC BB 两两垂直,所以以B 为原点建立如图所示的空间直角坐标系,设12BA BC BB ===,则11(0,2,0),(1,0,1),(2,0,0),(0,1,0),(0,2,2)B E C D A . ,11(1,2,1),(2,1,0),(2,2,2)B E CD AC =-=-=-,设平面 1A CD 的法向量为(),,m x y z =, 则100AC m CD m ⎧⋅=⎨⋅=⎩,即222020x y z x y -++=⎧⎨-+=⎩,得()1,2,1m =- 设直线1B E 与平面1A CD 所成角为θ,1111412sin cos ,366B E m B E mB E mθ, 所以直线1B E 与平面1A CD 所成角的正弦值为23.。
立体几何第4讲 立体几何中的向量方法 作业 解析

(2)设直线 EF 与平面 A1BC 所成角为 θ.
→
→
由(1)可得BC=(- 3,1,0),A1C=(0,2,-2 3).设平面 A1BC 的法向量为 n=(x,y,z).
B→C·n=0, 由
→
A1C·n=0,
→
→
- 3x+y=0,
|EF·n| 4
得 y- 3z=0.
取 n=(1, 3,1),故 sinθ=|cos〈EF,n〉|= →
AE 折到△APE 的位置.
(1)证明:AE⊥PB;
(2)当四棱锥 PABCE 的体积最大时,求二面角 APEC 的余弦
值.
解:(1)证明:在等腰梯形 ABCD 中,连接 BD,交 AE 于点 O,
∵AB∥CE,AB=CE,∴四边形 ABCE 为平行四边形,
∴AE=BC=AD=DE,
∴△ADE 为等边三角形,
则 A(0,0,0),B( 3a,-a,0),C( 3a,a,0),D(0,2a,0),
→ቤተ መጻሕፍቲ ባይዱ
→
3a a
3a a
P(0,0,2a),E( 3a,0,0),F( 2 ,2,a),∴AE=( 3a,0,0),AF=( 2 ,2,a),
立体几何第 3 讲 立体几何中的向量方法 作业 解析 第 1 页 共 4 页
→
PE·n1=0, 设平面 PCE 的法向量为 n1=(x,y,z),则
→
EC·n1=0
1 3 2x- 2 z=0,
n·A→E=0, 设 n=(x,y,z)是平面 AEF 的法向量,则
→
n·AF=0
3ax=0, ⇒ 3ax ay
2 + 2 +az=0,
取 z=a,得 n=(0,-2a,a)为平面 AEF 的一个法向量. →
立体几何中的向量方法(一)-课后练习及答案解析

§立体几何中的向量方法(一)——证明平行与垂直.直线的方向向量:在空间直线上任取两点,,则称为直线的方向向量.平面的法向量:如果直线垂直于平面α,那么把直线的方向向量叫作平面α的法向量..用向量证明空间中的平行关系()设直线和的方向向量分别为和,则∥(或与重合)⇔∥.()设直线的方向向量为,与平面α共面的两个不共线向量和,则∥α或α⇔存在两个实数,,使=+.()设直线的方向向量为,平面α的法向量为,则∥α或α⇔⊥.()设平面α和β的法向量分别为,,则α∥β⇔∥..用向量证明空间中的垂直关系()设直线和的方向向量分别为和,则⊥⇔⊥⇔·=.()设直线的方向向量为,平面α的法向量为,则⊥α⇔∥.()设平面α和β的法向量分别为和,则α⊥β⇔⊥⇔·=..判断下面结论是否正确(请在括号中打“√”或“×”)()直线的方向向量是唯一确定的.(×)()平面的单位法向量是唯一确定的.(×)()若两平面的法向量平行,则两平面平行.(×)()若两直线的方向向量不平行,则两直线不平行.(√)()若∥,则所在直线与所在直线平行.(×)()若空间向量平行于平面α,则所在直线与平面α平行.(×).若直线,的方向向量分别为=(,-),=(-),则().∥.⊥.与相交但不垂直.以上均不正确答案解析·=-+-=,故⊥,即⊥选..已知平面α内有一点(,-),平面α的一个法向量为=(,-),则下列点中,在平面α内的是().() .(-).(-) .(,-)答案解析逐一验证法,对于选项,=(),∴·=-+=,∴⊥,∴点在平面α内,同理可验证其他三个点不在平面α内..若(,),(,-,),(-,)是平面α内的三点,设平面α的法向量=(,,),则∶∶=.答案∶∶(-).已知=(,-),=(,),若⊥,=(-,,-),且⊥平面,则实数,,分别为.答案,-,解析由题意知,⊥,⊥.所以错误!即(\\(×+×+(-)×=,,(-)++(-)×(-)=,(-)+-=,))解得,=,=-,=.题型一证明平行问题例(·浙江改编)如图,在四面体-中,⊥平面,⊥,=,=,是的中点,是的中点,点在线段上,且=.证明:∥平面.思维启迪证明线面平行,可以利用判定定理先证线线平行,也可利用平面的法向量.证明方法一如图,取的中点,以为原点,、所在射线为、轴的正半轴,建立空间直角坐标系.由题意知,(,,),(,-,),(,,).设点的坐标为(,).因为=,所以.因为为的中点,故(,,).又为的中点,故,所以=.又平面的一个法向量为=(),故·=.又 平面,所以∥平面.方法二在线段上取点,使得=,连接,同证法一建立空间直角坐标系,写出点、、的坐标,设点坐标为(,).∵=,设点坐标系(,)则(-,-)=(-,-)∴(\\(=()=(())+()))∴=(,+)又由证法一知=(,+),∴=,∴∥.又 平面,平面,∴∥平面.思维升华用向量证明线面平行的方法有()证明该直线的方向向量与平面的某一法向量垂直;()证明该直线的方向向量与平面内某直线的方向向量平行;()证明该直线的方向向量可以用平面内的两个不共线的向量线性表示.如图所示,平面⊥平面,为正方形,△是直角三角形,且==,、、分别是线段、、的中点.求证:∥平面.证明∵平面⊥平面且为正方形,∴、、两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,则()、()、()、()、()、()、()、().∴=(,-),=(,-),=(,-),设=+,即(,-)=(,-)+(,-),∴(\\(=,-=,,-=-,))解得==.∴=+,又∵与不共线,∴、与共面.∵ 平面,∴∥平面.题型二证明垂直问题例如图所示,正三棱柱—1C的所有棱长都为,为的中点.求证:⊥平面.思维启迪证明线面垂直可以利用线面垂直的定义,即证线与平面内的任意一条直线垂直;也可以证线与面的法向量平行.证明方法一设平面内的任意一条直线的方向向量为.由共面向量定理,则存在实数λ,μ,使=λ+μ.令=,=,=,显然它们不共面,并且===,·=·=,·=,以它们为空间的一个基底,则=+,=+,=-,=λ+μ=+μ+λ,·=(-)·=-μ-λ=.故⊥,结论得证.方法二如图所示,取的中点,连接.因为△为正三角形,所以⊥.因为在正三棱柱—1C中,平面⊥平面,所以⊥平面.取1C的中点,以为原点,以,,为轴,轴,轴建立空间直角坐标系,则(),(-),(,),(,),().设平面的法向量为=(,,),=(-,),=(-).因为⊥,⊥,故(\\(·(,\(→))=,·(,\(→))=))⇒(\\(-++()=,,-+=,))令=,则=,=-,故=(,-)为平面的一个法向量,而=(,-),所以=,所以∥,故⊥平面.思维升华用向量证明垂直的方法()线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.()线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.()面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.如图所示,在四棱锥-中,⊥平面,=,在四边形中,∠=∠=°,=,=,点在上,=,与平面成°角.()求证:∥平面;()求证:平面⊥平面.证明以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴建立如图所示的空间直角坐标系,∵⊥平面,∴∠为与平面所成的角,∴∠=°.∵=,∴=,=.∴(),(,),(,),(),(,,),∴=(,-),=(,),=(,,),()令=(,,)为平面的一个法向量,则(\\((,\(→))·=,,(,\(→))·=,))即(\\(-+=,()+=,))∴(\\(=(),=-(()),))令=,得=(-,).∵·=-×+×+×=,∴⊥,又 平面,∴∥平面.()取的中点,则(,),=(-,).∵=,∴⊥.又∵·=(-,)·(,)=,∴⊥,∴⊥,又∩=,∴⊥平面,又∵平面,∴平面⊥平面.题型三解决探索性问题例(·福建)如图,在长方体-1C中,==,为的中点.()求证:⊥;()在棱上是否存在一点,使得∥平面?若存在,求的长;若不存在,说明理由.思维启迪利用向量法建立空间直角坐标系,将几何问题进行转化;对于存在性问题可通过计算下结论.()证明以为原点,,,的方向分别为轴,轴,轴的正方向建立空间直角坐标系(如图).设=,则(),(),(),,(),故=(),=,=(),=.∵·=-×+×+(-)×=,∴⊥.()解假设在棱上存在一点(,).使得∥平面,此时=(,-,).又设平面的法向量=(,,).∵⊥平面,∴⊥,⊥,得(\\(+=,,()+=.))取=,得平面的一个法向量=.要使∥平面,只要⊥,有-=,解得=.又 平面,∴存在点,满足∥平面,此时=.思维升华对于“是否存在”型问题的探索方式有两种:一种是根据条件作出判断,再进一步论证.另一种是利用空间向量,先设出假设存在点的坐标,再根据条件求该点的坐标,即找到“存在点”,若该点坐标不能求出,或有矛盾,则判定“不存在”.如图所示,四棱锥—的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.()求证:⊥.()若⊥平面,则侧棱上是否存在一点,使得∥平面.若存在,求∶的值;若不存在,试说明理由.()证明连接,设交于,则⊥.由题意知⊥平面.以为坐标原点,,,分别为轴、轴、轴正方向,建立空间直角坐标系如图.设底面边长为,则高=,于是,,,,=,=,则·=.故⊥.从而⊥.()解棱上存在一点使∥平面.理由如下:由已知条件知是平面的一个法向量,且=,=,=.设=,则=+=+=,而·=⇔=.即当∶=∶时,⊥.而不在平面内,故∥平面.利用向量法解决立体几何问题典例:(分)(·湖南)如图所示,在四棱锥-中,⊥平面,=,=,=,∠=∠=°,是的中点.()证明:⊥平面;()若直线与平面所成的角和与平面所成的角相等,求四棱锥-的体积.思维启迪本题中的()有两种证明思路:()利用常规方法,将证明线面垂直转化为证明线线垂直,利用线面垂直的判定定理证之;()将证明线面垂直问题转化为向量间的关系问题,证明向量垂直;然后计算两个向量的数量积.规范解答方法一()证明如图,连接.由=,=,∠=°得=. [分]又=,是的中点,所以⊥. [分]因为⊥平面,平面,所以⊥.[分]而,是平面内的两条相交直线,所以⊥平面. [分]()解过点作∥,分别与,相交于点,,连接.由()⊥平面知,⊥平面.于是∠为直线与平面所成的角,[分]且⊥.由⊥平面知,∠为直线与平面所成的角.[分]由题意得∠=∠,因为∠=,∠=,所以=.由∠=∠=°知,∥.又∥,所以四边形是平行四边形.故==.于是=.在△中,=,=,⊥,所以==,===.于是==.[分]又梯形的面积为=×(+)×=,所以四棱锥-的体积为=××=××=.[分]方法二如图,以为坐标原点,,,所在直线分别为轴,轴,轴建立空间直角坐标系.设=,则(),(),(),(),(),(,).[分]()证明易知=(-),=(),=(,).因为·=-++=,·=,[分]所以⊥,⊥.而,是平面内的两条相交直线,所以⊥平面.[分]()解由题设和()知,,分别是平面,平面的法向量.[分]而与平面所成的角和与平面所成的角相等,所以〈,〉=〈,〉,即=.[分]由()知,=(-),=(,-),又=(,-),故=.解得=.[分]又梯形的面积为=×(+)×=,所以四棱锥-的体积为=××=××=.[分]温馨提醒()利用向量法证明立体几何问题,可以建立坐标系或利用基底表示向量;()建立空间直角坐标系时要根据题中条件找出三条互相垂直的直线;()对于和平面有关的垂直问题,也可利用平面的法向量.方法与技巧用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:()建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;()通过向量运算,研究点、线、面之间的位置关系;()根据运算结果的几何意义来解释相关问题.失误与防范用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线∥,只需证明向量=λ(λ∈)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.组专项基础训练(时间:分钟)一、选择题.若直线的一个方向向量为=(),平面α的一个法向量为=(,-),则() .∥α或α.⊥α.α.与α斜交答案.若直线的方向向量为,平面α的法向量为,能使∥α的是().=(),=(-).=(),=().=(),=(-,-).=(,-),=()答案解析若∥α,则·=,中,·=×+(-)×+×=,∴⊥..设平面α的法向量为=(,-),平面β的法向量=(-,,),若α∥β,则+的值为().-.-8 ..-答案解析由α∥β得∥,∴==,∴=-,=,∴+=..已知=(,-),=(-,-),=(,λ),若,,三向量共面,则实数λ等于()答案解析由题意得=+μ=(-μ,-+μ,-μ),∴(\\(=-μ=-+μ,λ=-μ)),∴(\\(=(),μ=(),λ=()))..如图,在长方体—1C中,=,=,=,为的中点,为的中点.则与所成的角为().°.°.°.以上都不正确答案解析以点为原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系,依题意,可得,(),(,),(),(,),(,).∴=(,,-),=(-,),∴·=(,,-)·(-,)=,即⊥,∴⊥.二、填空题.已知平面α和平面β的法向量分别为=(),=(,-,),且α⊥β,则=.答案-解析∵·=-+=,∴=-..设点(2a+,+)在点()、(,-)、(,-,)确定的平面上,则=.答案解析=(-,-),=(,-).根据共面向量定理,设=+ (、∈),则(2a-,+)=(-,-)+(,-)=(-+,--+),∴(\\(-=-+,+=--,=+,))解得=-,=,=..如图,在正方体—1C中,棱长为,、分别为和上的点,1M==,则与平面1C1C的位置关系是.答案平行解析∵正方体棱长为,1M==,∴=,=,∴=++=++=(+)++(+)=+.又∵是平面的法向量,∴·=·=,∴⊥.又∵ 平面,∴∥平面.三、解答题.如图,四边形为正方形,⊥平面,∥,==.证明:平面⊥平面.证明如图,以为坐标原点,线段的长为单位长,射线为轴的正半轴建立空间直角坐标系.依题意有(,),(),(),则=(),=(),=(,-).∴·=,·=.即⊥,⊥,又∩=,故⊥平面,又平面,∴平面⊥平面..如图,在底面是矩形的四棱锥-中,⊥底面,,分别是,的中点,==,=.()求证:∥平面;()求证:平面⊥平面.证明()以为原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图所示的空间直角坐标系,则(),(),(),(),(),∴(,,),(,),=(-,),=(,-),=(,-),=(),=(),=(),=().∵=-,∴∥,即∥,又平面, 平面,∴∥平面.()∵·=()·()=,·=()·()=,∴⊥,⊥,即⊥,⊥.又∩=,∴⊥平面.∵平面,∴平面⊥平面.组专项能力提升(时间:分钟).已知=(),=(,-),=++(,-).若与及都垂直,则,的值分别为().-.,-..-,-答案解析由已知得=(+,+-,-+),故·=3m++=,·=+-=.解得(\\(=-,=.)).已知平面,点是空间任意一点,点满足条件=++,则直线().与平面平行.是平面的斜线.是平面的垂线.在平面内答案解析由已知得、、、四点共面.所以在平面内,选..在正方体—1C中,为正方形1C四边上的动点,为底面正方形的中心,,分别为,的中点,点为平面内一点,线段与互相平分,则满足=λ的实数λ的有个.答案解析建立如图的坐标系,设正方体的边长为,则(,),(),∴的中点坐标为,又知(),∴(+,+),而在上,∴+=,∴+=,即点坐标满足+=.∴有个符合题意的点,即对应有个λ..如图所示,已知直三棱柱—1C中,△为等腰直角三角形,∠=°,且=,、、分别为1A、1C、的中点.求证:()∥平面;()1F⊥平面.证明()如图建立空间直角坐标系,令==,则(),(),(),(),().取中点为,连接,则(),(),(),∴=(-),=(-),∴=,∴∥,又∵平面, 平面.故∥平面.()=(-,-),=(,-,-),=().·=(-)×+×(-)+(-)×(-)=,·=(-)×+×+(-)×=.∴⊥,⊥,即1F⊥,1F⊥,又∵∩=,∴1F⊥平面..在四棱锥—中,⊥底面,底面为正方形,=,、分别是、的中点.()求证:⊥;()在平面内求一点,使⊥平面,并证明你的结论.()证明如图,以、、所在直线分别为轴、轴、轴建立空间直角坐标系,设=,则()、()、(,)、(,)、、(,)、.=,=(,).∵·=,∴⊥,即⊥.()解设(,),则=,若使⊥平面,则由·=·()==,得=;由·=·(,-,)=+=,得=.∴点坐标为,即点为的中点.。
立体几何中的向量方法(知识点讲解)高考数学一轮复习(新教材 新高考)(解析版)

专题8.7 立体几何中的向量方法(知识点讲解)【知识框架】【核心素养】以几何体为载体,考查空间线面的平行、垂直关系,考查空间角的函数值的计算,凸显直观想象、数学运算、逻辑推理的核心素养.【知识点展示】(一)异面直线所成的角①定义:设a ,b 是两条异面直线,过空间任一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做a 与b 所成的角.②范围:两异面直线所成角θ的取值范围是(0,]2π.③向量求法:设直线a ,b 的方向向量为a ,b ,其夹角为φ,则有cos |cos |||||||a ba b θϕ⋅==⋅.(二)直线与平面所成角直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.范围 [0,]2π.(三) 二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).(3)二面角的范围是[0,π]. (四)利用向量求空间距离点面距的求法:如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【常考题型剖析】题型一: 求异面直线所成的角例1.(2018·全国高考真题(理))在长方体1111ABCD A B C D -中,1AB BC ==,13AA =线1AD 与1DB 所成角的余弦值为( )A .15B .56C 5D .22【答案】C【解析】以D 为坐标原点,DA,DC,DD 1为x,y,z 轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,13),3)D A B D ,所以11(1,0,3),(1,13)AD DB =-=,因为11111115cos ,525AD DB AD DB AD DB ⋅-===⨯,所以异面直线1AD 与1DB 5,选C.例2.(2023·全国·高三专题练习(理))已知正四面体ABCD ,M 为BC 中点,N 为AD 中点,则直线BN 与直线DM 所成角的余弦值为( ) A .16B .23C 21D 421【答案】B 【解析】 【分析】利用空间向量的线性运算性质,结合空间向量夹角公式进行求解即可. 【详解】设该正面体的棱长为1,因为M 为BC 中点,N 为AD 中点, 所以22131(1)2BN DM ==-⨯因为M 为BC 中点,N 为AD 中点, 所以有12BN BA AN AB AD =+=-+, 1111(),2222DM DB BM DA AB BC AD AB AC AB AD AB AC =+=++=-++-=-++2222111()()222111112224411111111111111111112222242421,2BN DMAB AD AD AB AC AB AD AB AB AC AD AB AD AC AD⋅=-+-++=⋅--⋅-+⋅+⋅=⨯⨯-⨯-⨯⨯⨯-⨯+⨯⨯⨯+⨯⨯⨯=- 122cos ,333BN DM BN DM BN DM-⋅〈〉===-⋅⨯,根据异面直线所成角的定义可知直线BN 与直线DM 所成角的余弦值为23, 故选:B例3.(2022·贵州毕节·三模(理))在正四棱锥S ABCD -中,底面边长为22侧棱长为4,点P 是底面ABCD 内一动点,且13SP =A ,P 两点间距离最小时,直线BP 与直线SC 所成角的余弦值为( ) A 5B 3C 2D .110【答案】A 【解析】 【分析】如图所示,连接,AC BC 交于点O ,连接PO ,得到PO ⊥底面ABCD ,根据13SP =求得1OP =,得到,A P 两点间距离最小为1AB =,以,,OA OB OS 分别为x 轴、y 轴和z 轴,建立空间直角坐标系,求得(1,2,0),(2,0,23)BP SC =-=--,结合向量的夹角公式,即可求解.【详解】如图所示,连接,AC BC 交于点O ,连接PO ,因为四棱锥S ABCD -为正四棱锥,可得PO ⊥底面ABCD , 由底面边长为24AC =,所以2AO =,在直角SOA 中,4,2SA AO ==,可得2223SO SA AO =- 又由13SP =SOP △中,可得221OP SP SO -=, 即点P 在以O 为圆心,以1为半径的圆上,所以当圆与OA 的交点时,此时,A P 两点间距离最小,最小值为1AB =, 以,,OA OB OS 分别为x 轴、y 轴和z 轴,建立空间直角坐标系,如图所示, 可得(1,0,0),(0,2,0),(0,0,3),(2,0,0)P B S C -,则(1,2,0),(2,0,23)BP SC =-=--,可得25cos ,54BP SC BP SC BP SC⋅-==⨯⋅, 所以直线BP 与直线SC 5故选:A.【方法技巧】向量法求两异面直线所成角的步骤 (1)选好基底或建立空间直角坐标系; (2)求出两直线的方向向量v 1,v 2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.提醒:两异面直线所成角θ的范围是⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角. 题型二:求直线与平面所成角例4.(2022·全国·模拟预测(理))如图为一个四棱锥与三棱锥的组合体,C ,D ,E 三点共线,已知三棱锥P -ADE 四个面都为直角三角形,且ED ⊥AD ,P A ⊥平面ABCE ,PE =3,CD =AD =2,ED =1,则直线PC 与平面P AE 所成角的正弦值等于( )A 3B 10C 15D 13 【答案】C 【解析】本题利用空间向量处理线面夹角问题,sin cos ,PC n θ=. 【详解】如图建立空间直角坐标系,()002P ,,,()2,2,0C ,()0,0,0A ,()2,1,0E -则有:()2,2,2PC =--,()2,1,0AE =-,()0,0,2AP =设平面P AE 的法向量(),,n x y z =,则有2020x y z -=⎧⎨=⎩,令1x =,则2,0y z ==,即()1,2,0n = ∴15cos ,5PC n PC n PC n⋅==-PC 与平面P AE 15 故选:C .例5.(2021·浙江高考真题)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120,1,4,15ABC AB BC PA ∠=︒===M ,N 分别为,BC PC 的中点,,PD DC PM MD ⊥⊥.(1)证明:AB PM ⊥;(2)求直线AN 与平面PDM 所成角的正弦值. 【答案】(1)证明见解析;(215.(1)要证AB PM ⊥,可证DC PM ⊥,由题意可得,PD DC ⊥,易证DM DC ⊥,从而DC ⊥平面PDM ,即有DC PM ⊥,从而得证;(2)取AD 中点E ,根据题意可知,,,ME DM PM 两两垂直,所以以点M 为坐标原点,建立空间直角坐标系,再分别求出向量AN 和平面PDM 的一个法向量,即可根据线面角的向量公式求出. 【详解】(1)在DCM △中,1DC =,2CM =,60DCM ∠=,由余弦定理可得3DM =所以222DM DC CM +=,∴DM DC ⊥.由题意DC PD ⊥且PD DM D ⋂=,DC ∴⊥平面PDM ,而PM ⊂平面PDM ,所以DC PM ⊥,又//AB DC ,所以AB PM ⊥.(2)由PM MD ⊥,AB PM ⊥,而AB 与DM 相交,所以PM ⊥平面ABCD ,因为7AM =22PM =,取AD 中点E ,连接ME ,则,,ME DM PM 两两垂直,以点M 为坐标原点,如图所示,建立空间直角坐标系,则(3,2,0),(0,0,2),3,0,0)A P D ,(0,0,0),3,1,0)M C -又N 为PC 中点,所以313352,2222N AN ⎛-=- ⎝⎝. 由(1)得CD ⊥平面PDM ,所以平面PDM 的一个法向量(0,1,0)n =从而直线AN 与平面PDM 所成角的正弦值为5||152sin ||2725244AN n AN n θ⋅===++‖例6. (2020·北京高考真题)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值. 【答案】(Ⅰ)证明见解析;(Ⅱ)23. 【解析】(Ⅰ)如下图所示:在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,1111//A B C D 且1111A B C D =,11//AB C D ∴且11AB C D =,所以,四边形11ABC D 为平行四边形,则11//BC AD , 1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E ;(Ⅱ)以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,设正方体1111ABCD A B C D -的棱长为2,则()0,0,0A 、()10,0,2A 、()12,0,2D 、()0,2,1E ,()12,0,2AD =,()0,2,1AE =,设平面1AD E 的法向量为(),,n x y z =,由100n AD n AE ⎧⋅=⎨⋅=⎩,得22020x z y z +=⎧⎨+=⎩, 令2z =-,则2x =,1y =,则()2,1,2n =-.11142cos ,323n AA n AA n AA ⋅<>==-=-⨯⋅. 因此,直线1AA 与平面1AD E 所成角的正弦值为23. 【总结提升】利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. 题型三:求二面角例7.(2021·天津高考真题)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱BC 的中点,F 为棱CD 的中点.(I )求证:1//D F 平面11A EC ;(II )求直线1AC 与平面11A EC 所成角的正弦值. (III )求二面角11A AC E --的正弦值. 【答案】(I )证明见解析;(II 3(III )13.【分析】(I )建立空间直角坐标系,求出1D F 及平面11A EC 的一个法向量m ,证明1m D F ⊥,即可得证; (II )求出1AC ,由1sin cos ,A m C θ=运算即可得解; (III )求得平面11AA C 的一个法向量DB ,由cos ,DB m DB m DB m⋅=⋅结合同角三角函数的平方关系即可得解.【详解】(I )以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立如图空间直角坐标系, 则()0,0,0A ,()10,0,2A ,()2,0,0B ,()2,2,0C ,()0,2,0D ,()12,2,2C ,()10,2,2D , 因为E 为棱BC 的中点,F 为棱CD 的中点,所以()2,1,0E ,()1,2,0F ,所以()11,0,2D F =-,()112,2,0AC =,()12,1,2A E =-, 设平面11A EC 的一个法向量为()111,,m x y z =,则11111111202202m x y m x y A A E z C ⎧⋅+=⎪⎨⋅+-=⎩=⎪=,令12x =,则()2,2,1m =-,因为1220m D F =⋅-=,所以1m D F ⊥,因为1D F ⊄平面11A EC ,所以1//D F 平面11A EC ; (II )由(1)得,()12,2,2AC =, 设直线1AC 与平面11A EC 所成角为θ, 则11123sin cos ,323m A C AC m m C A θ⋅===⨯⋅ (III )由正方体的特征可得,平面11AA C 的一个法向量为()2,2,0DB =-, 则822cos ,322DB m DB m DB m⋅===⨯⋅ 所以二面角11A AC E --211cos,3DB m -=.例8. (2021·全国·高考真题(理))如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值. 【答案】(12;(270【解析】 【分析】(1)以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设2BC a =,由已知条件得出0PB AM ⋅=,求出a 的值,即可得出BC 的长;(2)求出平面PAM 、PBM 的法向量,利用空间向量法结合同角三角函数的基本关系可求得结果. 【详解】(1)[方法一]:空间坐标系+空间向量法PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a =22BC a == [方法二]【最优解】:几何法+相似三角形法如图,连结BD .因为PD ⊥底面ABCD ,且AM ⊂底面ABCD ,所以PD AM ⊥. 又因为PB AM ⊥,PBPD P =,所以AM ⊥平面PBD .又BD ⊂平面PBD ,所以AM BD ⊥.从而90ADB DAM ∠+∠=︒.因为90∠+∠=︒MAB DAM ,所以∠=∠MAB ADB . 所以∽ADB BAM ,于是=AD BAAB BM. 所以2112BC =.所以2BC = [方法三]:几何法+三角形面积法 如图,联结BD 交AM 于点N .由[方法二]知⊥AM DB .在矩形ABCD 中,有∽DAN BMN ,所以2==AN DA MN BM,即23AN AM =.令2(0)=>BC t t ,因为M 为BC 的中点,则BM t =,241+DB t 21+AM t 由1122=⋅=⋅DABSDA AB DB AN ,得221241123=++t t t 212t =,所以22==BC t(2)[方法一]【最优解】:空间坐标系+空间向量法设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x ()2,1,2m =,设平面PBM 的法向量为()222,,n x y z =,2BM ⎛⎫= ⎪ ⎪⎝⎭,()2,1,1BP =--,由222220220n BM n BP x y z ⎧⋅=-=⎪⎨⎪⋅=--+=⎩,取21y =,可得()0,1,1n =,3314cos ,72m n m n m n ⋅===⋅⨯ 所以,270sin ,1cos ,14m n m n =-=, 因此,二面角A PM B --的正弦值为70 [方法二]:构造长方体法+等体积法如图,构造长方体1111ABCD A B C D -,联结11,AB A B ,交点记为H ,由于11AB A B ⊥,1AB BC ⊥,所以AH ⊥平面11A BCD .过H 作1D M 的垂线,垂足记为G .联结AG ,由三垂线定理可知1⊥AG D M , 故AGH ∠为二面角A PM B --的平面角.易证四边形11A BCD 21D H ,HM . 111111111,2D HMD HMD A HHBMMCD A BCD SD M HG S S SSS=⋅=---正方形,由等积法解得310=HG 在Rt AHG 中,2310==AH HG ,由勾股定理求得35=AG . 所以,70sin AH AGH AG ∠==,即二面角A PM B --70【整体点评】(1)方法一利用空坐标系和空间向量的坐标运算求解;方法二利用线面垂直的判定定理,结合三角形相似进行计算求解,运算简洁,为最优解;方法三主要是在几何证明的基础上,利用三角形等面积方法求得. (2)方法一,利用空间坐标系和空间向量方法计算求解二面角问题是常用的方法,思路清晰,运算简洁,为最优解;方法二采用构造长方体方法+等体积转化法,技巧性较强,需注意进行严格的论证.例9. (2021·全国·高考真题(理))已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小? 【答案】(1)证明见解析;(2)112B D = 【解析】 【分析】(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案; 【详解】(1)[方法一]:几何法 因为1111,//BFA B A B AB ⊥,所以BF AB ⊥.又因为1AB BB ⊥,1BF BB B ⋂=,所以AB ⊥平面11BCC B .又因为2AB BC ==,构造正方体1111ABCG A B C G -,如图所示,过E 作AB 的平行线分别与AG BC ,交于其中点,M N ,连接11,A M B N , 因为E ,F 分别为AC 和1CC 的中点,所以N 是BC 的中点,易证1Rt Rt BCF B BN ≅,则1CBF BB N ∠=∠.又因为1190BB N B NB ∠+∠=︒,所以1190CBF B NB BF B N ∠+∠=︒⊥,. 又因为111111,BFA B B N A B B ⊥=,所以BF ⊥平面11A MNB .又因为ED ⊂平面11A MNB ,所以BF DE ⊥. [方法二] 【最优解】:向量法因为三棱柱111ABC A B C -是直三棱柱,1BB ∴⊥底面ABC ,1BB AB ∴⊥11//A B AB ,11BF A B ⊥,BF AB ∴⊥,又1BB BF B ⋂=,AB ∴⊥平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.()()()0,0,0,2,0,0,0,2,0,B A C ∴()()()1110,0,2,2,0,2,0,2,2B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤). 因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-=,所以BF DE ⊥.[方法三]:因为11BF A B ⊥,11//A B AB ,所以BF AB ⊥,故110BF A B ⋅=,0BF AB ⋅=,所以()11BF ED BF EB BB B D ⋅=⋅++()11=BF B D BF EB BB ⋅+⋅+1BF EB BF BB =⋅+⋅11122BF BA BC BF BB ⎛⎫=--+⋅ ⎪⎝⎭11122BF BA BF BC BF BB =-⋅-⋅+⋅112BF BC BF BB =-⋅+⋅111cos cos 2BF BC FBC BF BB FBB =-⋅∠+⋅∠1=52520255-=,所以BF ED ⊥. (2)[方法一]【最优解】:向量法 设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =, 设平面11BCC B 与平面DEF 的二面角的平面角为θ, 则cos m BA m BAθ⋅=⋅222214a a =⨯-+22214a a =-+当12a =时,2224a a -+取最小值为272, 此时cos θ6272.所以()2min63sin 13θ⎛⎫=-= ⎪ ⎪⎝⎭112B D =. [方法二] :几何法如图所示,延长EF 交11A C 的延长线于点S ,联结DS 交11B C 于点T ,则平面DFE平面11BB C C FT =.作1B H FT ⊥,垂足为H ,因为1DB ⊥平面11BB C C ,联结DH ,则1DHB ∠为平面11BB C C 与平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T s =,过1C 作111//C G A B 交DS 于点G . 由111113C S C G SA A D ==得11(2)3C G t =-.又1111B D B T C G C T=,即12(2)3t s s t =--,所以31ts t =+.又111B H B TC F FT =,即1211(2)B H s =+-121(2)B H s =+-.所以2211DH B H B D =+2221(2)s t s ++-2229225t t t t =+-+ 则11sin B D DHB DH∠=2229225t t t t =+-+29119222t =+⎛⎫-+ ⎪⎝⎭所以,当12t =时,()1min 3sin DHB ∠= [方法三]:投影法 如图,联结1,FB FN ,DEF 在平面11BB C C 的投影为1B NF ,记面11BB C C 与面DFE 所成的二面角的平面角为θ,则1cos B NF DEFS Sθ=.设1(02)B D t t =≤≤,在1Rt DB F 中,222115DF B D B F t ++在Rt ECF 中,223EF EC FC +D 作1B N 的平行线交EN 于点Q . 在Rt DEQ △中,2225(1)DE QD EQ t +=+-在DEF 中,由余弦定理得222cos 2DF EF DE DFE DF EF+-∠=⋅()2315(1)t t ++=()222214sin 35t t DFE t -+∠+1sin 2DFESDF EF DFE =⋅∠2122142t t =-+13,2B NFS =1cos B NF DFES Sθ=22214t t =-+,()29sin 127t t θ=--+当12t =,即112B D =,面11BB C C 与面DFE 3 【整体点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面11BB C C 与面DFE 所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面DFE 在面11BB C C 上的投影三角形的面积与DFE △面积之比即为面11BB C C 与面DFE 所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维. 【总结提升】利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小.但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. 题型四: 利用向量求空间距离例10.(2022·江苏·扬中市第二高级中学模拟预测)在直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=︒,侧棱13AA =,D ,E 分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,则点1A 到平面ABD 的距离为( ) A 6B 6C 26D .26【答案】A 【解析】 【分析】以C 为坐标原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设CA CB a ==,求出11(,,1)22GE =,利用空间向量的数量积转化求解点1A 到平面ABD 的距离.【详解】解:如图所示,以C 为坐标原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系, 设CA CB a ==,则(A a ,0,0),(0B ,a ,0),3(0,0,)2D ,1(A a ,0,3), 可得3(,,)222a a E ,1(,,)332a a G ,(,,1)66a a GE =,3(0,,)2BD a =-, 因为点E 在平面ABD 上的射影是ABD △的重心, 所以GE ⊥平面ABD ,所以0GE BD ⋅=,即30()10662a a a ⨯+⨯-+⨯=,解得3a =, 即11(,,1)22GE =,则点1A 到平面ABD 的距离为d ,E 是1A B 的中点, 所以2||6d GE ==. 故选:A.例11.(2022·上海·位育中学模拟预测)正方形ABCD 的边长是2E F ,、分别是AB 和CD 的中点,将正方形沿EF 折成直二面角 (如图所示).M 为矩形AEFD 内一点,如果MBE MBC MB ∠∠=,和平面BCF 所成角的正切值为13,那么点M 到直线EF 的距离为______.23123【解析】 【分析】利用空间向量运算处理,根据直线夹角cos cos ,a b α=结合MBE MBC ∠=∠可得1y =,再根据线面夹角sin cos ,n BM θ=运算求解2z =【详解】如图,以E 为坐标原点建立空间直角坐标系则()()()0,0,0,1,0,0,1,2,0E B C ,设()()0,,02,01M y z y z ≤≤≤≤()()()1,0,0,0,2,0,1,,EB BC BM y z ===-则22221cos ,,cos ,11EB BM BC BM EB BM BC BM EB BMBC BMy z y z ⋅-⋅====++++∵MBE MBC ∠=∠222211y z y z ++++,即1y =∴()1,1,BM z =-平面BCF 的一个法向量()0,0,1n =,则2cos ,2n BM n BM n BMz ⋅==+∵MB 和平面BCF 所成角的正切值为132102z=+,则2z =∴点M 到直线EF 22例12.(2022·全国·高考真题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为22(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值. 【答案】2 3【解析】 【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111112211433333A A BC A A ABC A ABC AB BC C C B V Sh h V S A A V ---=⋅===⋅==, 解得2h =所以点A 到平面1A BC 2 (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥, 又平面1A BC ⊥平面11ABB A ,平面1A BC平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得2AE =12AA AB ==,122A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==,设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020m BD a b c m BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-, 则11cos ,222m n m n m n⋅===⨯⋅, 所以二面角A BD C --21312⎛⎫-= ⎪⎝⎭【总结提升】1.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |,所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.2.利用法向量求解空间线面角、面面角、距离等问题,关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.。
立体几何中的向量方法求空间角和距离

基础知识・自主学习I要点梳理知识冋顾理消救材1.空间向量与空间角的关系(1)已知异面直线11, 12的方向向量分别为S i, S2,当0<< Si, S2>< ,直线11与12的夹角等于〈S i, S2〉当n< < Si, S z>< n时,直线l1与l2的夹角等于n—< S1, S2 >.⑵已知平面n和n的法向量分别为n1和敗,当0<< n1, n2>< ,平面n与n的夹角等于〈n i, n2〉n当2< < n 1,敗〉^ n时,平面n与n的夹角等于兀―〈n i,n2>.⑶已知直线I的方向向量为S,平面n的法向量为n, 则直线l与平面n的夹角sin 0= |cos〈 s, n > |.2.距离公式点到直线的距离公式:d= . |PA|2—|P A S of.点到平面的距离公式:d= |PA n o|.I夯基释疑夯实基础突破疑砒1.判断下面结论是否正确(请在括号中打“V”或“X”(1)两直线的方向向量所成的角就是两条直线所成的角.(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(3)两个平面的法向量所成的角是这两个平面的夹角.n(4)两异面直线夹角的范围是(0,刁,直线与平面所成角的范围是⑸直线I的方向向量与平面a的法向量夹角为120 °则I和a所成角为30°2.已知二面角a—I —B的大小是n, m, n是异面直线,且m丄a, n丄伏则m,3n所成的角n B.nnC.2nD.6|OP n| |n ||— 2— 6 + 2| =2,故选 B.• cos 〈 n , a >又I 与a 所成角记为 0,即 sin = |cos 〈 n , a >4 5133答案 B解析 ■/ m 丄a, n 丄B,•••异面直线m , n 所成的角的补角与二面角 a-1- B 互补.又•••异面直线所成角的范围为(0,彳, • m , n 所成的角为33.在空间直角坐标系 Oxyz 中,平面OAB 的一个法向量为n = (2, — 2,1),已知点P( — 1,3,2), 则点P 到平面OAB 的距离d 等于 ()A . 4B . 2C . 3D . 1答案 B解析 P 点到平面OAB 的距离为4.若平面a 的一个法向量为n = (4,1,1),直线l 的一个方向向量为 a = (— 2, — 3,3),则I 与 a 所成角的正弦值为 _______________________ . 答案解析 •/ na =— 8— 3 + 3 = — 8, |n |=“ 16+ 1 + 1 = 3 2, |a |= ” ‘4+ 9 + 9 = .22,n a ―84^/11|n| |a |= 3 2X 22=—335 . P 是二面角a — AB — B 棱上的一点,分别在平面a B 上引射线PM 、PN ,如果/ BPM =/ BPN = 45° / MPN = 60° 那么平面 a 与B 的夹角为 _________ . 答案 90° 解析不妨设PM = a , PN = b ,如图,A作ME 丄AB 于E , NF 丄AB 于F ,•••/ EPM = / FPN = 45° •PE =, PF = -22b ,E为CC i的中点,则异面直线B.嚅C並C. 103 10D.^思维启迪本题可以通过建立空间直角坐标系,利用向量BC I、AE所成的角来求. 答案B解析建立坐标系如图,则A(1,0,0),E(0,2,1),B(1,2,0),C i(0,2,2). BC i= (—1,0,2),Al= (—i,2,i),cos〈BC i, AE >BC i A E 30D,G/Hi/I11111/E C y|BC I||AE|10 -求解,而两异面直线所成角的范围是,两向量的夹角a的范围是[0, n,所以要注意二者的区别与联系,应有cos 0= |cos a|.已知直四棱柱ABCD —A1B1C1D1中,底面ABCD 为正方形,AA1= 2AB, E 为AA i的中点,则异面直线BE与CD i所成角的余弦值为10 D.;—> —> —> —> —> —>EM FN = (PM —PE) (PN—PF)=PM PN —PM PF —PE PN+PE PF=abcos 60 —ax^bcos 45 —乎abcos 45 +^axab ab—辿 + ab= 0O 1 O 5••• EM丄FN , •••平面a与B的夹角为90°题型分类・深度剖析题型一求异面直线所成的角【例 1 长方体ABCD —A I B I C I D I中,AB= AA i= 2, AD = 1,BC i与AE所成角的余弦值为所以异面直线BC i与AE所成角的余弦值为誉.思维升华用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来1B.5答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA i = 2AB = 2,则B(1,1,0), E(1,0,1), C(0,1,0), D i(0,0,2),•-BE = (0,- 1,1),••• cos 〈 BE , C D 1 >1 +2 = 3后2 • 5= 10题型二求直线与平面所成的角[例 2】如图,已知四棱锥 P — ABCD 的底面为等腰梯形, AB // CD ,AC 丄BD ,垂足为H , PH 是四棱锥的高,E 为AD 的中点. (1) 证明:PE 丄BC ;(2) 若/ APB = /ADB = 60 °求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA , HB , HP 所在直线分别为x , y , z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图),则 A(1,0,0) , B(0,1,0).设 C(m,0,0), P(0,0, n) (m<0, n>0),则 D(0, m,0), E ;,罗,0 . 可得 PE = 2,罗,-n , BC = (m ,- 1,0).因为 PE BC = m — m + 0 = 0,所以 PE 丄 BC.⑵解由已知条件可得 m = —_3故 C -于,0 0 , D 0,—于,0 , E J ,*, 0,P(0,0,1). 设n = (x , y , n H E = 0, 则Sgx -吕=0,』HP = 0, Z= 0.C D i = (0,- 1,2),yAC 丄BD,BC= 1 ,AD = AA1= 3.因此可以取n = (1, - 3, 0).又PA= (1,0, - 1), 所以|cos < F A, n〉1=乎.一迈所以直线PA与平面PEH所成角的正弦值为丁.思维升华利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.虽21,1 汙― (2013 湖南)如图,在直棱柱ABCD —A1B1C1D1中,AD // BC,/ BAD = 90°(1) 证明:AC 丄B1D;(2) 求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1丄平面ABCD , AC 平面ABCD,所以AC丄BB1.又AC丄BD,所以AC丄平面BB1D, 而B1D 平面BB1D,所以AC丄B1D.⑵解因为B1C1 // AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为9).如图,连接A1D,因为棱柱ABCD —A1B1C1D1是直棱柱,且 / B1A1D1= / BAD = 90°从而Rt △ ABC s Rt △ DAB,故AB = DA =BCAB,所以A i B i丄平面ADD I A I,从而A i B i丄AD i.又AD = AA i= 3,所以四边形ADD i A i是正方形.于是A i D丄AD i,故AD i丄平面A i B i D,于是AD i丄B i D. 由⑴知,AC丄B i D,所以B i D丄平面ACD i. 故/ ADB i= 90°—0,在直角梯形ABCD中,因为AC丄BD,所以/ BAC = Z ADB.即AB= , DA BC = 3.连接AB i,易知△ AB i D 是直角三角形,且B I D2= BB2+ BD2= BB?+ AB2+ AD2= 2i,即B i D = 2i.AD 3 vf2i在Rt△ AB i D 中,cos Z ADB i= =21 = ^^,即cos(90 ° 0= 从而sin 0=一即直线B i C i与平面ACD i所成角的正弦值为一尹.方法二⑴证明易知,AB,AD,AA i两两垂直.如图,以 A 为坐标原点,AB,AD,AA i所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB= t,则相关各点的坐标为A(0,0,0),B(t,0,0),B i(t,0,3),C(t,i,0),C i(t,i,3),D(0,3,0),D i(0,3,3).从而E h D = (—1,3,—3),AC= (t,i,0),BD = (—t,3,0).因为AC丄BD,所以A C E B D = —t2+ 3 + 0= 0,解得t= .3或t =—,3(舍去).于是B T D = (—.3,3,—3),AC= ( . 3,i,0),因为AC B i D = —3+ 3 + 0= 0,(2)解 由 AC = CB =-^AB 得, 以C 为坐标原点,CA 的方向为 方向,CC 1的方向为z 轴正方向,AC 丄 BC.x 轴正方向,CB 的方向为y 轴正建立如图所示的空间直角坐标系sin 0= |cos 〈 n , B 1C 1 > |=n B 1C 1|n | |E h C 1| _ .3_ .21=7= 7即直线B 1C 1与平面ACD 1所成角的正弦值为21 7题型三求两个平面的夹角【例3】(2013课标全国II )如图,直三棱柱 ABC - A 1B 1C 1 中,J 2AB , BB 1 的中点,AA 1 = AC = CB =-^AB. (1) 证明:BC 1 〃 平面 A 1CD ;(2) 求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知/ ACB = 90°故CA 、CB 、C®两两垂直,可以 C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1 // DF . 因为DF 平面A 1CD , BC 「平面A 1CD , 所以BC 1 //平面A 1CD.所以AC 丄B i D ,即AC 丄B i D.⑵解 由⑴知,AD i = (0,3,3), AC= ( 3, 1,0), B i C i = (0,1,0).设n = (x , y , z)是平面ACD i 的一个法向量, n A C = 0, 3x + y = 0,则$,即丫n AD i = 03y+3z= 0,令 x = 1,则 n = (1, -3, 3).设直线B 1C 1与平面ACD 1所成角为0,则D ,C|C可取m = (2,i,—2).从而cos〈n, m> ~~,故sin〈 n, m>6 3 .Cxyz.设CA= 2,贝U D(1,1,0), E(0,2,1), A i(2,0,2),CD = (1,1,0), CE = (0,2,1), CA i= (2,0,2).设n= (x i, y i, z i)是平面A i CD的法向量,n CD = 0, x i + y i = 0,则即可取n= (i, - i,—i).n CA i= 0, 2xi+ 2zi =0.同理,设m是平面A i CE的法向量,m CE = 0, 则Tm CA i= 0.所以平面A i CD与平面A i CE夹角的正弦值为思维升华求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两n 个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,刁.吕I」H如图,在圆锥PO中,已知PO= 2, O O的直径AB= 2,C是;的中点,D为AC的中点.(1)证明:平面POD丄平面FAC;(2)求平面ABF与平面ACF夹角的余弦值.(1)证明如图,以O为坐标原点,OB, OC, OF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0), A( —1,0,0),B(1,0,0), C(0,1,0), P(0,0, 2), D(—2, 2 0).设n i = (x i, y i, z i)是平面POD的一个法向量,则由n i OD = 0, n i OP = 0,lie —2xi + 2y i=,得2 2 (■:;'2 z i= 0.所以平面ABP与平面ACP夹角的余弦值为10 5所以z i = 0, x i = y i,取y i = 1,得n i = (1,1,0).设n2=(X2, y2, Z2)是平面PAC的一个法向量,则由n2 PA= 0, n2 PC= 0,| —X2—■.”'2Z2= 0,得y2 —:;.;2z2= 0.所以X2=—2z2, y2= ,2z2.取z> = 1,得n2= (—2, 2, 1).因为n 1 n2= (1,1,0) (—2, 2, 1)= 0,所以m丄n2•从而平面POD丄平面PAC.⑵解因为y轴丄平面FAB,所以平面PAB的一个法向量为n3= (0,1,0).由(1)知,平面PAC的一个法向量为n2= ( —2, 2, 1). 设向量n2和n3的夹角为0,则C0S 9=|器3|=€=甲.题型四求空间距离【例4 已知正方形ABCD的边长为4, CG丄平面ABCD , CG = 2, E, F分别是AB, AD的中点,则点C到平面GEF的距离为___________ .思维启迪所求距离可以看作CG在平面GEF的法向量的投影.答案*解析建立如图所示的空间直角坐标系Cxyz,n=(1,1,3)所以点C到平面GEF的距离为d=嘗6 11 11则CG = (0,0,2),由题意易得平面GEF的一个法向量为思维升华求点面距一般有以下三种方法:②等体积法;③向量法.其1.①作点到面的垂线,点到垂足的距离即为点到平面的距离; 中向量法在易建立空间直角坐标系的规则图形中较简便.亍心讥IY4 (2012大纲全国改编)已知直四棱柱 ABCD — A I B I C I D I 中,底面 ABCD 为正 方形,AB = 2, CC 1 = 2 2, E 为C®的中点,则点 A 到平面BED 的距离为 ()A . 2 B. 3C. ,2D . 1答案 D解析 以D 为原点,DA 、DC 、DD i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 (如图),贝U D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), C i (0,2,2 .2), E(0,2 ,,2).设n = (x , y , z)是平面BED 的法向量.n BD = 2x + 2y = 0 则S T.DE = 2y+V2z = 0取y = 1,贝U n = (— 1,1, — .2)为平面BED 的一个法向量. 又 D A = (2,0,0),•••点A 到平面BED 的距离是|n D A|l— 1x 2+ 0+ 0||n |'.;—12+ 12+ — ,22=答题按板系列8利用空间向量求角典例:(12分)(2013江西)如图,四棱锥 P — ABCD 中,PA 丄平面 ABCD , E 为BD 的中点,G 为PD 的中点,△ DABDCB , EA = EB = AB = 1 , PA = 3,连接 CE 并延长交 AD 于F.6G⑴求证:AD丄平面CFG ;(2)求平面BCP与平面DCP夹角的余弦值.思维启迪(1)可利用判定定理证明线面垂直;(2)利用AD、AP、AB两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP、DCP夹角的余弦值.规范解答(1)证明在厶ABD中,因为E为BD的中点,所以EA= EB = ED = AB= 1 ,n故/ BAD = 2,n3'/ ABE = / AEB =-因为△ DAB也厶DCB,所以△ EABECB ,n从而有 / FED = Z BEC = Z AEB =-,3所以Z FED = Z FEA. [2分] 故EF 丄AD , AF = FD ,又因为PG = GD,所以FG // FA.又FA丄平面ABCD ,[4分] 所以GF丄AD,故AD丄平面CFG. [6分]⑵解以A为坐标原点建立如图所示的坐标系,[9分] [10 分][12 分]则 A(0,0,0) , B(1,0,0), C 号,于,0 ,D(0, ,3, 0), P 0, 0, 2 , 故BC =扌冷,0, Cp = -2,设平面BCP 的法向量为 n i = (X i , y i , Z i ),n i CP = 0 则 -n i BC = 0令 y i = — ,3,贝V X i = 3, Z i = 2, n i = (3,— 3, 2). 同理求得面DCP 的法向量为n 2= (i ,,3, 2),从而平面BCP 与平面DCP 夹角0的余弦值为 ,I n i n 2|4 卫cos Fsg n 2〉= |n i ||n 2= 4X 2=〒利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾•查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.GD—3电I 2, 2,0. [8分](2) 本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3) 将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.思想方法・感悟提高方法与技巧1 .用向量来求空间角,各类角都可以转化为向量的夹角来计算.2 .求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1 .利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2 .求点到平面的距离,有时利用等体积法求解可能更方便.B i D 和CD i 所成的角( )、选择题1.已知正方体ABCD — A i B i C i D i 如图所示,则直线为 A . 60 ° B . 45 ° C . 30 ° D . 90 °答案 D解析 以A 为原点,AB 、AD 、AA i 所在直线分别为x , y , z 轴建立空间直角坐标系,设正方体边长为i ,则射线CD i 、B i D 的方向向量分别是 CD i = (-i,O,i),•••直线B i D 和CD i 所成的角为90°2 .如图,四棱锥 S — ABCD 的底面为正方形,SD 丄底面ABCD ,则下列 结论中不正确的是 ()A . AC 丄 SB B . AB //平面 SCDC . SA 与平面SBD 所成的角等于 SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 •••四边形ABCD 是正方形,• AC 丄BD. 又••• SD 丄底面 ABCD , • SD 丄AC.其中SD A BD = D , • AC 丄平面SDB ,从而 AC 丄SB. 故A 正确;易知 B 正确;设 AC 与DB 交于O 点,连接SO.则SA 与平面SBD 所成的角为/ ASO , SC 与平面SBD 所成的角为/ CSO ,练出高分A 组专项基础训练 (时间:40分钟)B i D = (— i,i ,i),COS 〈 CD i , B i D >i + 0— i 2X- 3= 0,SA. i2nB.nnC.4nD.6答案B解析如图所示:iS ABC = 2 X ■. 3 X•.::.;: 3 X. nsin 3=3“ 34A: 2B.3 C逅C. 3答案解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为i,1则A i(0,0,i), E i , 0, 2 , D(0,i,0),Eft •-心=(0,i, —i) , A T E= i, 0, —2 ,设平面A i ED的一个法向量为n i= (i, y, z), y—z= 0 ,则i|i —2z= 0 ,y= 2,z= 2..n i= (1,2,2).•••平ABCD 的一个法向量为2n2= (0,0,i) , . cos〈n i ,血〉=23.所以平面A i ED与平面ABCD夹角的余弦值为2 3.在四面体P —ABC中,PA, PB, PC两两垂直,设PA = PB= PC = a,则点P到平面ABC又0A= OC, SA= SC,.•./ ASO= / CSO.故C正确;由排除法可知选 D.93. (2013山东)已知三棱柱ABC —A i B i C i的侧棱与底面垂直,体积为4底面是边长为.3的正三角形•若P为底面A i B i C i的中心,则PA与平面ABC所成角的大小为()VABC—A i B i C i = S\BC X OP = 3-43 X OP = 4, /. OP = _ 3. 又OA= ~2^X ,3X1= i, tan/ OAP = OA = .3,—/ 兀/ n又0< / OAP<2, OAP = 3.2 3余弦值为在正方体ABCD —A i B i C i D i中,点E为BB i的中点,则平面A i ED与平面ABCD夹角的的距离为A•身 B.fa C.3 D. 6a答案B解析根据题意,可建立如图所示的空间直角坐标系Pxy z,则P(0,0,0),A(a,O,O),B(0,a,0),C(0,0,a).过点P作PH丄平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.PA = PB= PC, ••• H ABC 的外心.又•••△ ABC为正三角形,• H ABC的重心,可得H点的坐标为(3,3,3)• PH - ... 3- 02+ a - 0 2+ 3 - 0 2詔a.•••点P到平面ABC的距离为-^a.二、填空题6. 已知两平面的法向量分别为_______________________________ m = (0,1,0), n= (0,1,1),则两平面夹角的大小为 ____________________________________________ 答案n4m n 2 n解析cos〈m, n>=丽厂T,•〈m,n>=;.•两平面夹角的大小为n7. 如图所示,在三棱柱ABC—A i B i C i中,AA i丄底面ABC, AB = BC= AA i,/ ABC = 90°点E、F分别是棱AB、BB i的中点,则直线EF和BC i所成的角是_________ .答案60°解析以BC为x轴,BA为y轴,BB i为z轴,建立空间直角坐标系. 设AB = BC = AA i = 2,则C i(2,0,2), E(0,i,0), F(0,0,i),则E F = (0,- i,i), B C i= (2,0,2),•- EF BC i= 2,RBcos〈E F, B C1> 2 _ 1 -,2X2*2—2,答案3,5 i0解析以A为坐标原点,AB、AD、AA i所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,小i i则A i(0,0,i),E(i,0,2),F(2, i,0), D i(0,i,i).• A?E_ (1,0,—2), A?D i_ (0,1,0).设平面A i D i E的一个法向量为n_ (x, y, z),n A T E _ 0, 则n A i D i_ 0,1x —2z_ 0, 即2y_ 0.••• EF和BC i所成的角为60°8. 正方体ABCD —A i B i C i D i的棱长为1 , E、F分别为BB「CD的中点,则点F到平面AQ i E的距离为________令z_ 2,贝y x_ 1..・.n_ (1,0,2).又心_ (2, 1, —1),•••点F到平面A i D i E的距离为T1_ 心n I_〔2 —2|_ d_|n| _ 5 _10 .三、解答题9. 如图,四棱锥P—ABCD中,PD丄平面ABCD , PA与平面ABD所成的角为60°,在四边形ABCD 中,/ ADC _/ DAB _ 90° AB _ 4,CD _ 1 , AD _ 2.(1) 建立适当的坐标系,并写出点B, P的坐标;(2) 求异面直线PA与BC所成的角的余弦值.解(1)建立如图空间直角坐标系,•••/ ADC _ Z DAB _ 90°AB_ 4, CD_ 1, AD _ 2,a • A(2,0,0), C(0,1,0), B(2,4,0)..13 13,•异面直线PA与BC所成的角的余弦值为.13 13 .由PD丄平面ABCD,得/ FAD为PA与平面ABCD所成的角,•••/ FAD = 60°在Rt△ FAD 中,由AD = 2,得PD = 2.3, • P(0,0,2 . 3).—> ——>(2) •/ FA = (2,0,- 2 3), BC= (- 2,- 3,0),• cos〈PA, BC〉2 X - 2 + 0X -3 + - 2^3 X 04 .1310. (2013天津)如图,四棱柱ABCD - A1B1C1D1中,侧棱A1A丄底面ABCD , AB // DC , AB 丄AD , AD = CD = 1 , AA1 = AB= 2, E 为棱AA1的中点.(1) 证明:B1C1 丄CE;(2) 求二面角B1 - CE - C1的正弦值;(3) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为¥,求线段AM的长.方法一如图,以点A为原点,以AD, AA1, AB所在直线为x轴, y轴,z轴建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2) ,C(1,0,1),B1(0,2,2), C1(1,2,1), E(0,1,0).(1)证明易得B?C1 = (1,0, - 1), CE= ( - 1,1, - 1),于是B1C1C E =0,所以B1C1丄CE.(2)解B1C = (1 , - 2, - 1).设平面BQE的法向量m= (x, y, z),m B1C= 0, ]x-2y-z= 0,则即消去x,得y+ 2z= 0,不妨令z= 1,可得一个法m CE = 0, -x+ y-z=°.向量为m= (- 3,- 2,1).由(1)知,B1C1 丄CE,又CC1 丄B1C1,可得B1C1 丄平面CEC1, 故BQ1= (1,0,—1)为平面于是cos 〈 m, B i C i 〉 m B i C i|m | |B i C i |从而 sin 〈m , B ?C i 〉=亠尹sin 0= |cos 〈 AM , AB 〉|= AM AB||AM| |A B|于是-6,解得匸*(负值舍去), CEC i 的一个法向量.所以二面角B i - CE - C i 的正弦值为亡尹 ⑶解 AE =(o,i,o ), E C i =(i,i,i ),设E M = ?E C i =(入入为,o w 庄i ,有AM = AE + EM 可取AB = (0,0,2)为平面ADD i A i 的一个法向量.设B 为直线AM 与平面ADD i A i 所成的角,则所以AM = 2.方法二(1)证明因为侧棱CC i丄底面A i B i C i D i, B i C i平面A i B i C i D i,所以CC i丄B i C i.经计算可得B i E = .5, B i C i= .2, EC i=v3,从而B i E2= B i C i+ EC i,所以在△ B i EC i中,B i C i丄C i E,又CC i, C i E 平面CC i E, CC i Q C i E = C i,所以B i C i丄平面CC i E,又CE平面CC i E,故B i C i丄CE.⑵解过B i作B i G丄CE于点G,连接C i G.由⑴知,B i C i丄CE,故CE丄平面B i C i G,得CE丄C i G , 所以/ B i GC i为二面角B i-CE —C i的平面角.在Rt △ B1C1G 中, B i G ='42 3即二面角B i—CE —C i的正弦值为亠号.⑶解连接D i E,过点M作MH丄ED i于点H ,可得MH丄平面ADD i A i,连接AH , AM , 则/ MAH为直线AM与平面ADD i A i所成的角.设AM = x,从而在Rt△ AHM中,有在Rt△ C i D i E 中,C i D i = i, ED i = , 2,得EH = ,2MH = 3X.在厶AEH 中,/ AEH = i35° AE = i,由AH2= AE2+ EH2—2AE EHcos i35 °得珞(=i+9/+承整理得5x2— 2 2x— 6 = 0,解得x = ■, 2(负值舍去).所以线段AM的长为.2.所以sin / B i GC i =• cos〈F D i, OE >〔+ 2=VT55 • 3= 5B组专项能力提升(时间:30分钟)1.过正方形ABCD的顶点A作线段PA丄平面ABCD ,若AB= PA,则平面ABP与平面CDP的夹角大小为A. 30°B. 45°C. 60°D. 90°答案B解析建立如图所示的空间直角坐标系,设AB= PA= 1,知A(0,0,0) , B(1,0,0), D(0,1,0), C(1,1,0), P(0,0,1)由题意得,AD丄平面ABP,设E为PD的中点,连接AE,贝U AE丄PD ,又••• CD丄平面PAD, ••• AE丄CD,又PD A CD = D, • AE 丄平面CDP.• AD = (0,1,0), AE = (0, 2 , 2)分别是平面ABP、平面CDP的法向量,而〈AD, AE〉= 45°•平面ABP与平面CDP的夹角大小为45° 2 .在棱长为2的正方体ABCD —A i B i C i D i中,0是底面ABCD的中点,E, F分别是CC i,AD的中点,那么异面直线0E和FD i所成的角的余弦值等于 _____________ .答案严5解析以D为原点,分别以DA、DC、DD i为x轴、y轴、z轴建立空间直角坐标系,•F(1,0,O), D i(0,0,2), O(1,1,0), E(0,2,1),•F D i= (—1,0,2),OE = (—1,1,1),3. ________________________________________________________________________ 设正方体ABCD —A i B i C i D i的棱长为2,则点D i到平面A i BD的距离是_________________________DA I =(2,0,2), DB =(2,2,0),设平面A I BD的一个法向量n = (x, y, z),n DA I=2X+ 2z= 0 则S T .n DB = 2x+ 2y= 0令x= 1,贝U n= (1, - 1,- 1),•••点D1到平面A1BD的距离为.ID^A1 n| 2 23d |n| .3 3 .4. 如图,在底面为直角梯形的四棱锥P—ABCD中,AD // BC,Z ABC=90° PA丄平面ABCD , PA = 3, AD = 2, AB = 2羽,BC= 6.(1)求证:BD丄平面PAC;(2)求平面BPD与平面ABD的夹角.(1)证明如图,建立空间直角坐标系,则A(0,0,0) , B(2 3, 0,0),C(2 .3, 6,0), D(0,2,0), P(0,0,3),• A P =(0,0,3), A C = (2西,6,0), BD = (- 2亞,2,0).•- BD AP = 0, BD AC= 0.• BD 丄AP, BD 丄AC.又••• FA Q AC= A, • BD丄平面FAC.⑵解设平面ABD的法向量为m= (0,0,1), 平面PBD的法向量为n = (x, y, z),则n BD = 0, n BP = 0.答案2333解析如图建立空间直角坐标系,则D I(0,0,2) , A i(2,0,2), D(0,0,0), B(2,2,0), D1A1 = (2,0,0),••• BP = (- 2 3, 0,3), •••-2 3x+ 2y= 0,-2 3x+ 3z= 0, 丫=晶,解得\ =塑Z= 丁x.令x= .3,则n= ( .3, 3,2),m-n 1• cos〈 m, n > = ----- =一|m||n| 2•••平面BPD与平面ABD的夹角为60°(3)证明:在线段 5. (2013北京)如图,在三棱柱 ABC — A i B i C i 中,AAQ I C 是边长为4的正方形.平面 ABC 丄平面AA 1C 1C , AB = 3, BC = 5.(1)求证:AA i 丄平面ABC ;⑵求平面A 1BC 1与平面BB 1C 1夹角的余弦值;BD BC 1上存在点D ,使得AD 丄A 1B ,并求 的值. BC 1(1)证明 在正方形 AA 1C 1C 中,A 1A 丄AC.又平面ABC 丄平面AA 1C 1C ,且平面ABC 门平面AA 1C 1C = AC , ••• 丄平面 ABC.(2)解 在厶ABC 中,AC = 4, AB = 3, BC = 5,••• BC 2 = AC 2+ AB 2, AB 丄AC•以A 为坐标原点,建立如图所示空间直角坐标系 Axyz. A 1(0,0,4), B(0,3,0), C 1(4,0,4), B 1(0,3,4), A 1C 1= (4,0,0), A 1B = (0,3 , — 4), B 1C 1 = (4 , — 3,0) , BB 1 = (0,0,4). 设平面 A 1BC 1的法向量 n 1= (X 1 , y 1 , Z 1),平面 B 1BC 1的法向量n 2= (X 2 , y ,Z 2).A 1C 1 n 1 = 0 , 4x 1 = 0• \AB m= 0 脚-4乙=0•取向量 n 1= (0,4,3)f _B 1C 1 n 2= 0, 4x 2 — 3y 2 = 0,由S _ ? $^B _1 n 2= 0 -4z2= °.取向量 n 2= (3,4,0), m n 2 16 16…cos 〈 n 1, n 2〉= 1 1 1 . = = cl2 |n 1| |n 2| 5X 5 25'由题意知二面角 A 1 — BC 1 — B 1为锐角,•平面A 1BC 1与平面BB 1C 1夹角的余弦值为 黒 25 ⑶证明 设D(x , y , z)是直线BC 1上一点,且BD =疋_1.• (x , y — 3, z) = X 4,— 3,4),3— 3 X, 4 A 解得 x = 4 入 y = 3 — 3 入 z = 4 X — AD = (4 人又 AD 丄A i B , ••• 0+ 3(3 — 3R — 16X= 09 BD 9则X=旦,因此BD =— 则 A 25 '因此 BC i 25.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB⋅n||=(-3,2,1),=(-3,2,1),∴∥,即PQ∥RS.例3【解析】建立如图所示的空间直角坐标系,则有D(0,0,0),A(2,0,0),B1(2,2,2),C1(0,2,2),E(2,2,1),F(0,0,1), 所以设分别是平面ADE与平面B1C1F的法向量, 则即,学科%网令y1=1得n1=(0,1,-2),同理可得平面B1C1F的一个法向量n2=(0,1,-2).(1)因为,所以,又平面ADE ,所以FC 1//平面ADE .(2)因为n 1=n 2=(0,1,-2),所以平面ADE //平面B 1C 1F .例4【解析】由题意知,AB ,AD ,AA 1两两垂直,如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设AB =t ,则有A (0,0,0),B (t ,0,0),B 1(t ,0,3),C (t ,1,0),C 1(t ,1,3),D (0,3,0),D 1(0,3,3).从而=(-t ,3,-3),=(t ,1,0),=(-t ,3,0).因为AC ⊥BD ,所以·=-t 2+3+0=0,解得t =或t =-(舍去),所以=(-,3,-3),=(,1,0).因为·=-3+3+0=0,所以⊥,即AC ⊥B 1D .例5【解析】如图2,以A 为原点, AB ,AD ,AS 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz ,设2AS AB ==,则(0,0,0)A ,(0,2,0)D ,(2,2,0)C ,(2,0,0)B ,(0,0,2)S ,(1,1,1)E .(1)易得(0,0,2)AS =,(2,0,0)AB =,ASAB⊥⊥,即22AS zAB x⎧⋅==⎪⎨⋅==⎪⎩又(0,2,0)AD=,所以2AD=n,所以AD∥n,所以直线AD⊥平面:易得(1,1,1)BE=-,(2,BD=-BEBD⊥⊥,即2BE xBD x⎧⋅=-+⎪⎨⋅=-⎪⎩的一个法向量为(1,1,0)=m,可得(0,0,AS=是平面ABCD的一个法向量,因为(0,0,AS⋅=m,所以AS⊥m,所以平面建立如图所示的空间直角坐标系,(0,2,0),D(1,2,0),因为1(0,2,AD=,(1,1,0)EF=1(0,,AD EF=<>易得..(2,DB =-,.1(0,0,2)B B =,.1(2,0,2)C D =1.....1DB B B ⊥⊥m ,即..122DB x B B z ⎧⋅=-⎪⎨⋅==⎪⎩1DB C D ⊥⊥,即..122DB x C D x ⎧⋅=-⎪⎨⋅=+⎪⎩故=(-2,0,2),=(-1,0,λ),=(1,1,0).00FE FP ⎧⋅=⎪⎨⋅=⎪⎩n n 于是可取n =(λ11EF=(12-,0),PE=(1,12·EF=0,且n·PE=0,即=2,则y=2,z=3,所以n=(2,2,3).例.9 .建立如图....2.所示的空间直角坐标系,则............(1,0,0)B,.(1,2,0)C,.(0,0,1)P,.(0,2,0)D,.所以(0,2,0)BC =,(1,0,1)BP =-,(1,0,0)CD =-,(0,2,PD =PBC PCDBC BP ⊥⊥和CD PD ⎧⎪⎨⎪⎩⊥⊥n n ,可得00BC BP ⋅=⋅=和00CD PD ⋅=⋅=,00=和020b c -=⎧⎨-=⎩,1.【答案】C2.【答案】A3.【答案】A4.【答案】B 5.【答案】D6.【答案】B7.【答案】D8.【答案】B9.【答案】B 10.11.【答案】垂直12.【答案】13.【答案】45°15.【解析】不妨设正方体的棱长为1,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则D (0, 0,0),A (1,0,0),B 1(1,1,1),O (12,12,0),C (0,1,0),D 1(0,0,1),G (1,1,12). (1)∵DG =(1,1,12),AC =(-1,1,0), ∴DG ·AC =-1+1+0=0,∴DG ⊥AC ,∴DG ⊥AC .(2)1DB =(1,1,1),1CD =(0,-1,1),OC =(12,12,0),∵1DB ·1CD =1×0+1×(-1)+1×1=0,1DB ·OC =1×(12-)+1×12+1×0=0, ∴DB 1⊥CD 1,DB 1⊥OC ,∵CD 1∩OC =C ,∴DB 1⊥平面CD 1O .16.【解析】(1)因为三棱柱111ABC A B C -是直三棱柱,所以四边形A 1ACC 1是矩形. 连接A 1C 交AC 1于O ,连接OD ,则O 是A 1C 的中点, 又D 是BC 的中点,所以在△A 1BC 中,OD ∥A 1B , 因为A 1B ⊄平面ADC 1,OD ⊂平面ADC 1, 所以A 1B ∥平面ADC 1.(2)因为△ABC 是等边三角形,D 是BC 的中点,所以AD ⊥BC . 如图,以D 为原点,建立如图所示空间坐标系D xyz -.由已知AB =BB 1=2,得D (0,0,0),A,0,0),A 10,2),C 1(0,-1,2), 则DA =,0,0),1DC =(0,-1,2), 设平面AC 1D 的法向量为n =(x ,y ,z ),则100DA DC ⎧⋅=⎪⎨⋅=⎪⎩n n,即020y z =-+=⎪⎩,取z =1,则x =0,y =2,∴n =(0,2,1), 又1DA =0,2),∴cos 〈1DA ,n设A 1D 与平面ADC 1所成角为θ, 则sin θ=|cos 〈1DA ,n 〉|, 故A 1D 与平面ADC 1所成角的正弦值为35.(2)=(-1,0,),=(-1,-,2),设平面ACM的一个法向量为m1=(x1,y1,z1),所以.取z1=1,得m1=(,1,1).学科&网又平面BCD的一个法向量m2=(0,0,1),所以cos<m1,m2>=.设平面ACM与平面BCD的夹角为θ,则sin θ=.18.【答案】B19.【答案】D20.【答案】B21.【答案】x+y+z=322.【答案】M∈线段FH24.【解析】(1)建立如图所示的空间直角坐标系D-xyz,不妨设正方体的棱长为2,则A (2,0,0),E (2,2,1),F (0,1,0),A 1(2,0,2),D 1(0,0,2), ∴(2,0,0)DA =,(2,2,1)DE =,(0,2,1)AE =.设平面AED 的法向量为n 1=(x 1,y 1,z 1),则110,0,DA DE ⎧⋅=⎪⎨⋅=⎪⎩n n 即111120,220.x x y z =⎧⎨++=⎩令y 1=1,得n 1=(0,1,-2).同理可得平面A 1FD 1的一个法向量为n 2=(0,2,1). ∵n 1·n 2=0,∴平面AED ⊥平面A 1FD 1.学科*网25.【解析】(1)设与交于,设1B E h =,如图所示建立空间直角坐标系,则则平面1D AC ,111,D E AC D E D A ∴⊥⊥,AC BD O O xyz-1(0,1,0),((0,1,0),(0,1,2),A B C D D --(0,1,2),E h +11(0,2,),(23,0,0),(3,1,2),D E h CA D A ===-1D E ⊥即.,设平面的法向量为(,,)x y z =m ,则,,CA AE ⎧⊥⎪⎨⊥⎪⎩m m即0,30,y z ⎧=⎪⎨++=⎪⎩ 令,则0,3x y ==,()0,3,1∴=-m .又平面的一个法向量为()10,2,1D E =,1112cos ,==2D E D E D E⋅∴⋅m m m , ∴二面角大小为.26.【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H −xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE又PF =1,EF =2,故PE ⊥PF .可得32PH EH ==. 220,1,h h ∴-=∴=(0,1,3)E 1(0,2,1),(3,1,3)D EAE∴==-EAC 1z =-1D AC 1E AC D --45则33(0,0,0),(1,,0),(1,22H P D DP --=HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则34sin ||4||||3HP DP HPDP θ⋅===.所以DP 与平面ABFD .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=取平面PAC 的法向量(2,0,0)OB =.学科#网设(,2,0)(02)M a a a -<≤,则(,4,0)AMa a =-. 设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=n n 得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =n .由已知可得|cos ,|2OB =n .2.解得4a =-(舍去),43a =.所以4()3=-n .又(0,2,PC =-,所以cos ,PC =n .所以PC 与平面PAM(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-==设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,||||DA DA DA ⋅==n n n2sin ,DA =n , 所以面MAB 与面MCD(2)在平面PAD 内作PF AD ⊥,垂足为F , 由(1)可知,AB ⊥平面PAD ,故AB PF ⊥, 可得PF ⊥平面ABCD .以F 为坐标原点,FA 的方向为x轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2A ,(0,0,2P ,2B,(,1,0)2C -. 所以(22PC =--,(2,0,0)CB =,2(,0,22PA =-,(0,1,0)AB =. 设(,,)x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x y z ⎧+=⎪⎨=可取(0,1,=-n .学科&网设(,,)x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0,220.x z y -=⎨⎪=⎩可取(1,0,1)=m .则cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为3-.【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.(2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,AB 为单位长,建立如图所示的空间直角坐标系A xyz -,设()000,,x y z =m 是平面ABM 的法向量,则0,0,AM AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0000(220,0,x y x ⎧-++=⎪⎨=⎪⎩所以可取(0,2)=m .于是cos ,⋅==m n m n m n 因此二面角M AB D --.学科&网 【名师点睛】(.......1.)求解本题要注意两点:①............两平面的法向量的夹角不一定是所求的二面...................角,②利用方程思想进行向量运算,要认真细心、准确计算............................(.2.)设..m .,.n .分别为平面.....α.,.β.的法向量,则二面角.........θ.与.<.m .,.n .>.互补或相等,故有........|cos ....θ.|.=.|cos<.....m .,.n .>|=...⋅m n m n .求解时一定要注意结合实际图形判断所求角是锐角还是钝..........................角...(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()1,0,0,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得1)2E . 故1(1,0,1),(2,0,0),(1,)2AD AC AE =-=-=-. 设()=x,y,z n 是平面DAE 的法向量,则00AD AE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0,10.2x z x y z -+=⎧⎪⎨-++=⎪⎩可取=n .设m 是平面AEC 的法向量,则00AC AE ⎧⋅=⎪⎨⋅=⎪⎩,,m m同理可取(0,=-m .则cos ,7⋅==n m n m n m ,所以二面角D -AE -C。