高一数学教案 直线与圆复习
《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。
2. 引导学生通过观察和思考,探索直线与圆的位置关系。
教学内容:1. 直线与圆的定义。
2. 直线与圆的位置关系的分类。
教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。
2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。
练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。
2. 引导学生通过观察和思考,探索直线与圆相交的性质。
教学内容:1. 直线与圆相交的定义。
2. 直线与圆相交的性质。
教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。
2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。
练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。
2. 引导学生通过观察和思考,探索直线与圆相切的性质。
教学内容:1. 直线与圆相切的定义。
2. 直线与圆相切的性质。
教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。
2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。
练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。
2. 引导学生通过观察和思考,探索直线与圆相离的性质。
【精品】(解析几何)直线与圆、圆与圆复习优秀教案.docx

总第74. 75教时课题:直线与圆、圆与圆的位置关系教学目标:1、知道直线和圆相交,相切,相离的定义并会根据定义来判断直线和圆的位置关系;2、能根据圆心到直线的距离与圆的半径之间的数量关系来揭示直线和圆的位置关系;也能根据联立方程组的解的个数来判断直线与圆的位置关系。
3、掌握直线和圆的位置关系的应用,能解决弦长、切线以及最值问题。
4、掌握圆和圆的五种位置关系。
使学生掌握各种位置关系中圆心距与半径之间的数量关系,并了解它是性质又是判定。
培养学生分析问题、解决问题、归纳总结的能力。
高考要求:教学重点:直线和圆位置关系的判断和应用两圆相交、相切的及两圆相切的性质和判定。
教学难点:通过解方程组来研究直线和圆的位置关系。
各种位置关系中圆心距与半径之间的数量关系的应用。
教具:多媒体教时安排:2教时教程:第一教时一、知识点复习回顾(一)、直线与圆的位置关系1、直线与圆有三种位置关系:相离、相切和相交。
有两种判断方法:A > 0 <=>相交(1)代数法(判别式法)< △ = 0 o 相切,A<0 o相离d < r o相交(2)(几何法)(〃为圆心到直线的距离)圆心到直线的距离{d = ^o 相切d〉r <=>相离注意:一般宜用儿何法。
2、圆的切线方程:主要元素:切点坐标、切线方程、切线长等问题:直线/与圆C相切意味着什么:圆心C到直线/的距离恰好等于半径厂(1 )过圆X2 + y2 =厂彳上一点M(兀0,儿)的切线的方程为y Q y = r2(2 )过圆(兀一°)2 +(y-/?)2 =厂$上一点M(兀0,儿)的切线的方程为(x0 -6Z)(x-6Z)+ (y0-bXy-b) = r2(3 )过圆x2 + y2 + Dx+ Ey + F = 0上一点M(兀。
,儿)的切线方程为“+y°y+D.d+E.Z±21+F=02 2(4 )自圆外一点M(兀o,y°)作圆x2 + y2 = r2的两条切线,则点A/(x0,y0)关于该圆的切点弦所在的直线方程是兀()兀+ y()y = r2(5)常见题型一一求过定点的切线方程①切线条数:点在圆外--- 两条;点在圆上---- 条;点在圆内--- 无②求切线方程的方法及注意点• • •(1)点在圆外如定点卩(兀0,儿),圆:(%-。
《直线和圆的位置关系(第三课时)》教案

《直线和圆的位置关系(第三课时)》教案教学目标教学目标:1. 理解切线的性质定理;2.会运用切线的性质定理进行计算与证明.教学重点:用切线的性质定理进行计算与证明.教学难点:用反证法证明切线的性质定理.教学过程时间教学环节主要师生活动2min活动一:复习回顾1.圆的切线是如何定义的?如果直线和圆只有一个公共点,那么这条直线叫圆的切线.2.判断一条直线是圆的切线有哪些方法?切线的判定方法有三种:(1)当直线和圆只有唯一公共点的时候,这条直线是圆的切线;(2)当圆心到直线的的距离等于半径的时候,这条直线是圆的切线;(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.文图式经过半径的外端并且垂直于这条半径的直线是圆的切线.∵OA为⊙O半径,直线l⊥OA于A,∴直线l与⊙O相切于A.(直线l是⊙O的切线.)3.今天我们一起探讨圆的切线有什么性质?9min 活动二:探索性质根据切线的定义我们可以得到切线的如下性质:(如图)(1)切线l和⊙O有且只有一个公共点A (这个公共点A就是切点);(2)圆心O到切线l的距离等于圆的半径.切线的判定定理,实际上可以看成:①OA为⊙O的半径(点A在⊙O上),②直线l⊥OA于A.③直线l是⊙O的切线.(交换判定定理的条件和结论,如果已知直线l是⊙O的切线,下面又可分为“切点已知”和“切点未知”这两种情况分别研究,我们先看“切点已知”的情况)问1:如图,已知直线l是⊙O的切线,切点为A,连接OA,直线l⊥OA吗?从现有知识看,不具备直接证明垂直的条件,我们可以考虑用反证法. 已知:直线l是⊙O的切线,切点为A,连接OA.求证:l⊥OA.证明:假设OA与直线l不垂直,则过点O作OM⊥l,垂足为M,根据垂线段最短,得OM<OA,即圆心O到直线l的距离OM<半径OA.∴直线l与⊙O相交,这与直线l是⊙O的切线矛盾.∴假设不成立,即l⊥OA.这样,我们就得到了切线的性质定理:切线的性质定理:圆的切线垂直于过切点的半径.结合图形分析切线性质定理的条件和结论:文图式圆的切线垂直于过切点的半径.∵直线l与⊙O相切于A,(直线l是⊙O的切线,点A 是切点,)∴直线l⊥OA.可以看成:①OA为⊙O的半径,③直线l是⊙O的切线,点A是切点.②直线l⊥OA于A.(我们再来看“切点未知”的情况)问2:如图,已知⊙O的切线l,但切点未知,你能作出切点A吗?我们过O作直线l的垂线,设垂足是T,也就是OT⊥l于T.假设切点是A,由切线的性质定理,过切点A的半径OA⊥l于A,由于“平面内过一点有且只有一条直线与已知直线垂直”,所以垂足T就是切点A.也就是说,过圆心作切线的垂线,垂足就是切点.由此得到结论1:经过圆心且垂直于切线的直线一定经过切点.文图式经过圆心且垂直于切线的直线一定经过切点. ∵直线l与⊙O相切(直线l 是⊙O的切线),l⊥OA于A,∴点A为切点.实际上可以看成:③直线l是⊙O的切线,②直线l⊥OA于A . ①OA为⊙O 的半径.问3:请同学们课后研究:结论2: 经过切点垂直于切线的直线一定经过圆心.9min 活动三:性质的应用例1.如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.分析:根据切线的判定定理,要证明AC是⊙O的切线,只要证明由点O向AC所作的垂线段OE是⊙O的半径就可以了,而由切线的性质,OD是⊙O的半径,因此只需证明OD = OE.证明:如图,过点O作OE⊥AC,垂足为E,连接OD,OA.∵⊙O与AB相切于点D,∴OD⊥AB.又△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线.又∵OE⊥AC,OD⊥AB,∴OE=OD,即OE是⊙O的半径.∵OE为⊙O的半径,OE⊥AC于E,∴AC与⊙O相切.例2.如图,AB为⊙O的直径,AC是弦,D是⌒AC的中点,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥ED;(2)若OA = AE = 4,求弦AC的长.分析:这里有三个条件:(1)AB为⊙O的直径;(2)D是⌒AC的中点;(3)ED切⊙O于D. 特别要关注D的作用:它即是弧的中点,又是切点.(1)证明:连接OC,OD.∵ED切⊙O于D,∴OD⊥ED.∴∠1 = 90°.∵D是⌒AC的中点,∴⌒AD= ⌒CD,∴∠2 = ∠3,又∵OA = OC,∴OD⊥AC,∴∠4 = 90° =∠1,∴AC∥ED.(2)连接AD.∵∠ODE = 90°,OA = AE = 4,∴142AD=EO=.又∵OA = OD = 4,∴△ADO为等边三角形.由(1)OD⊥AC,设垂足为F,∴12AF=AC,在Rt△ADF中,可得23AF=,∴243AC=AF=.2min 活动四:课堂小结课堂小结:1.切线的判定与性质的关系:(1)切线的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线.①OA为⊙O的半径(A在⊙O上),②直线l⊥OA于A.③直线l是⊙O的切线.(2)切线的性质定理:圆的切线垂直于过切点的半径.①OA为⊙O的半径,③直线l是⊙O的切线, 点A是切点. ②直线l⊥OA于A.(3)结论:结论1: 经过圆心且垂直于切线的直线必过切点;③直线l是⊙O的切线,②直线l⊥OA于A.①OA为⊙O的半径.结论2: 经过切点垂直于切线的直线必过圆心.2.已知圆的切线,要利用切线的性质时常添的常用辅助线:切点的位置如果确定,常常是连接圆心和切点;切点位置如果不确定,可以过圆心作切线的垂线,垂足就是切点.1min 活动五:布置作业1.如图,已知⊙O的直径AB与弦AC的夹角为35°,过点C的切线PC与AB的延长线相交于点P,则∠P=_______°.2.如图,已知⊙O的半径为3,直线AB是⊙O的切线,OC交AB于点C,且∠OCA = 30°,则OC的长为_________.3. 如图,在Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB = 2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.知能演练提升一、能力提升1.已知☉O的半径为R,直线l和☉O有公共点,若圆心到直线l的距离是d,则d与R的大小关系是()A.d>RB.d<RC.d≥RD.d≤R2.若☉O的直径为5,直线l与☉O相交,圆心O到直线l的距离是d,则d的取值范围是()A.4<d<5B.d>5C.2.5<d<5D.0≤d<2.53.已知☉O的半径为5,圆心O到直线AB的距离为2,则☉O上到直线AB的距离为3的点的个数为()A.1B.2C.3D.44.如图,在平面直角坐标系中,☉O的半径为1,则直线y=-x+√2和☉O的位置关系是()A.相离B.相交C.相切D.以上三种情形都有可能5.已知直线l与☉O相切,若圆心O到直线l的距离是5,则☉O的半径是.6.如图,☉O的半径OC=10 cm,直线l⊥CO,垂足为H,交☉O于A,B两点,AB=16 cm,为使直线l与☉O相切,则需把直线l .7.如图,给定一个半径为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4.由此可知:(1)当d=3时,m= ;(2)当m=2时,d的取值范围是.8.如图,∠AOB=60°,M为OB上的一点,OM=5,若以M为圆心,2.5为半径画☉M,请通过计算说明OA和☉M不相切.★9.已知等边三角形ABC的面积为3√3,若以A为圆心的圆和BC所在的直线l:(1)没有公共点;(2)有唯一的公共点;(3)有两个公共点.求这三种情况下☉A的半径r的取值范围.二、创新应用★10.如图,在△ABC中,∠C=90°,∠B=60°,AO=x,☉O的半径为1,问:当x在什么范围内取值时,AC所在的直线和☉O相离、相切、相交?知能演练·提升一、能力提升1.D2.D3.C4.C直线y=-x+√2与x轴的交点A的坐标为(√2,0),与y轴的交点B的坐标为(0,√2),则AB=2,△ABO的面积为1.由等面积法得点O到直线y=-x+√2的距离为1.因此d=r,故相切.5.56.向左平移4 cm或向右平移16 cm连接OA,设CO的延长线交☉O于点D.因为l⊥OC,所以OC平分AB.所以AH=8 cm.在Rt△AHO中,OH=√AO2-AH2=√102-82=6(cm),所以CH=4 cm,DH=16 cm.所以把直线l向左平移4 cm或向右平移16 cm时可与圆相切.7.(1)1(2)1<d<3(1)当d=3时,由于圆的半径为2,故只有圆与OM的交点符合题意,所以m=1;(2)当m=2时,即圆上到直线l的距离等于1的点的个数为2,当d<1时,m=4,当d=1时,m=3,当d=3时,m=1,当d>3时,m=0,故m=2时,1<d<3.8.解如图,过点M作MC⊥OA于点C.在Rt△OMC中,∠AOB=60°,∴∠OMC=30°.∴OC=12OM=2.5.∴MC=√52-2.52=5√32>2.5,即☉M和OA不相切.9.解在等边三角形ABC中,过点A作AD⊥BC,垂足为D(图略),得BD=12BC.在Rt△ABD中,由勾股定理,得AD=√AB2-BD2=√BC2-(12BC)2=√32BC.由三角形面积公式,得12BC·AD=12BC·√32BC=3√3,所以BC=2√3.所以AD=√32BC=3.(1)当☉A和直线l没有公共点时,r<AD,即0<r<3(如图①);(2)当☉A和直线l有唯一公共点时,r=AD,即r=3(如图②);(3)当☉A和直线l有两个公共点时,r>AD,即r>3(如图③).二、创新应用10.分析由于直线和圆的位置关系取决于圆心到直线的距离d与圆的半径r之间的数量关系,所以作OD⊥AC于点D,分别由AC和☉O相离、相切、相交可得相应的OD和☉O的半径r之间的关系式,从而求出x的范围.解如图,作OD⊥AC,垂足为点D,在Rt△ABC中,∠C=90°,∠B=60°,所以∠A=30°.所以OD=12AO=12x.当12x>1,即x>2时,AC和☉O相离;当12x=1,即x=2时,AC和☉O相切;当0≤12x<1,即0≤x<2时,AC和☉O相交.。
直线与圆复习导学案

2.2 直线与圆的复习一、学习目标1.了解圆的定义,掌握圆的标准方程与一般方程;2.掌握点与圆的位置关系、直线与圆的位置关系;3.掌握圆与圆的位置关系;4.会求圆的切线方程;5.掌握求有关弦的问题的方法.二、知识梳理1.圆的定义 .2.圆的方程(1)圆的标准方程 .(2)圆的一般方程 ,它所表示的圆的圆心是 ,半径长为 ,可化为标准方程 .3.点与圆的位置关系设点:),(00y x P ,设圆C :222)()(r b y a x =-+-(0>r )(1)当满足 ,则点P 在圆外;(2)当满足 ,则点P 在圆上;(3)当满足 ,则点P 在圆内.4.直线与圆的位置关系设直线l :0=++C By Ax (B 、A 不同时为0),设圆C :222)()(r b y a x =-+-(0>r )(1)直线与圆相交⇔ ;(2)直线与圆相切⇔ ;(3)直线与圆相离⇔ .5.圆与圆的位置关系设圆1C :)0()()(1212121>=-+-r r b y a x ,圆2C :)0()()(2222222>=-+-r r b y a x (1)圆与圆外离⇔ ;(2)圆与圆外切⇔ ;(3)圆与圆相交⇔ ;(4)圆与圆内切⇔ ;(5)圆与圆内含⇔ .6.求圆的切线方程问题(1)求过圆上一点),(00y x P 的切线方程的步骤是什么?(2)求过圆外一点),(00y x P 的切线方程的步骤是什么?7.圆中有关弦的问题构造直角三角三角形,利用勾股定理,得到半径、弦心距、半弦长三者关系 .三、知识运用例1.已知圆C :4)3()2(22=-+-y x ,直线l :87)12()2(+=+++m y m x m 。
(1)证明:无论m 为何值,直线l 和圆C 恒相交;(2)当直线l 被圆C 截得的线段最短时,求m 的值.变式训练:圆2226150x y x y ++--=与直线(13)(32)4170m x m y m ++-+-=的交点个数是几个?例2.若过点)0,4(A 的直线l 与圆1)2(22=+-y x 有公共点,则求直线l 的斜率取值范围.变式训练:过点)2,1(总可以作两条直线与圆0152222=-++++k y kx y x 相切,则求实数k 的取值范围.例3.已知两点)0,2(-A ,)2,0(B ,点C 是圆0222=-+x y x 上任意一点,则ABC ∆面积的最小值.变式训练:已知圆的方程是08622=--+y x y x ,设该圆过点)5,3(的最长弦和最短弦分别为BD 、AC ,则求四边形ABCD 的面积.例4.自点)5,3(A 作圆C :1)3()2(22=-+-y x 的切线l ,求切线l 的方程.例5.已知点)5,0(P 及圆C :02412422=+-++y x y x .(1)若直线l 过点P 且被圆C 截得的线段长为34,求直线l 的方程;(2)求过点P 的圆C 的弦的中点的轨迹方程.四、当堂反馈1.若方程02)22(2222=+-+-+m y m mx y x 表示一个圆,且该圆的圆心位于第一象限,求实数m 的取值范围 .2.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是 .3.若直线:10 (0,0)l ax by a b ++=>>始终平分圆M :228210x y x y ++++=的周长,则14a b+的最小值为________________.五、小结反思。
高中数学第十节讲解教案

高中数学第十节讲解教案
主题:直线与圆的位置关系
一、教学目标:
1. 理解直线和圆的位置关系的基本概念。
2. 掌握直线与圆的位置关系的判定方法。
3. 能够应用直线与圆的位置关系解决相关问题。
二、教学重点:
1. 直线与圆的位置关系的基本概念。
2. 直线与圆的位置关系的判定方法。
三、教学难点:
1. 圆的切线与切点的概念。
2. 如何判断一条直线与圆的位置关系。
四、教学过程:
1. 复习:回顾上节课所学的直线和圆的相关知识。
2. 引入:通过一个实际问题引入直线与圆的位置关系的概念,激发学生的学习兴趣。
3. 学习:讲解直线与圆的位置关系的基本概念,并介绍判定直线与圆位置关系的方法。
4. 实践:让学生通过练习题巩固所学知识,提出问题并引导学生解决。
5. 总结:对本节课所学知识进行总结,强调重点和难点,帮助学生理清思路。
六、作业布置:
1. 完成课堂练习题。
2. 自主学习相关知识,做好预习。
七、教学反思:
通过本节课的教学,学生对直线与圆的位置关系有了更深入的理解,掌握了相关判定方法,并能够运用所学知识解决相关问题。
在教学过程中,要充分引导学生思考,灵活运用知识,培养学生的解决问题能力和创新意识。
直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1. 理解直线与圆的位置关系,掌握相关概念。
2. 学会利用直线与圆的位置关系解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
教学重点:1. 直线与圆的位置关系的判定。
2. 直线与圆的位置关系的应用。
教学难点:1. 理解并掌握直线与圆的位置关系的判定条件。
2. 解决实际问题时,如何正确运用直线与圆的位置关系。
教学准备:1. 教学课件或黑板。
2. 直线与圆的位置关系的相关例题和练习题。
教学过程:第一章:直线与圆的基本概念1.1 直线的定义及性质1.2 圆的定义及性质1.3 直线与圆的位置关系的基本概念第二章:直线与圆的位置关系的判定2.1 直线与圆相交的判定条件2.2 直线与圆相切的判定条件2.3 直线与圆相离的判定条件第三章:直线与圆的位置关系的应用3.1 求圆的方程3.2 求直线的方程3.3 求直线与圆的位置关系第四章:实际问题中的应用4.1 求点到直线的距离4.2 求点到圆心的距离4.3 求直线与圆的交点坐标第五章:综合练习5.1 判断直线与圆的位置关系5.2 求直线与圆的位置关系5.3 解决实际问题教学反思:通过本章的学习,学生应能掌握直线与圆的位置关系的基本概念,判定条件以及应用。
在教学过程中,应注意引导学生运用数学知识解决实际问题,培养学生的空间想象能力和逻辑思维能力。
通过练习题的训练,使学生巩固所学知识,提高解题能力。
第六章:直线与圆的位置关系的性质6.1 直线与圆相交的性质6.2 直线与圆相切的性质6.3 直线与圆相离的性质本章主要学习直线与圆的位置关系的性质。
学生将学习到在直线与圆相交、相切、相离的情况下,直线和圆的特定性质。
这些性质包括交点的数量、切点的位置、距离的关系等。
教学活动:通过图形和实例,让学生观察和总结直线与圆相交、相切、相离时的性质。
引导学生通过几何推理证明这些性质。
提供练习题,让学生应用这些性质解决具体问题。
教学评估:通过课堂讨论和练习题,评估学生对直线与圆位置关系性质的理解程度。
点、直线与圆的位置关系(中考复习教案)

点、直线与圆的位置关系(中考复习教案)第一章:复习导入1.1 复习点、直线、圆的基本概念1.2 复习点与直线的位置关系:点在直线上、点在直线外1.3 复习直线与圆的位置关系:直线与圆相交、直线与圆相切、直线与圆相离第二章:点的几何性质2.1 点到直线的距离公式2.2 点到圆心的距离与圆的位置关系2.3 点在圆上、圆内、圆外的判定第三章:直线与圆的位置关系3.1 直线与圆相交的条件3.2 直线与圆相切的条件3.3 直线与圆相离的条件第四章:圆的方程与性质4.1 圆的标准方程4.2 圆的半径、直径与弦的关系4.3 圆心到直线的距离与圆的位置关系第五章:点、直线与圆的综合应用5.1 点在圆上、圆内、圆外的判定与应用5.2 直线与圆相交、相切、相离的应用5.3 点、直线与圆的位置关系的实际例子分析第六章:复习与巩固6.1 复习点、直线、圆的基本概念及性质6.2 复习点与直线、直线与圆的位置关系6.3 解答学生疑问,巩固知识点第七章:中考题型分析7.1 点在圆上、圆内、圆外的判定题型7.2 直线与圆相交、相切、相离的题型7.3 点、直线与圆的综合应用题型第八章:中考模拟试题8.1 点、直线与圆的位置关系单项选择题8.2 点、直线与圆的位置关系填空题8.3 点、直线与圆的位置关系解答题第九章:错题解析与反思9.1 分析学生在点、直线与圆的位置关系方面的常见错误9.2 讲解典型错题,引导学生反思9.3 提高学生对点、直线与圆的位置关系的理解和应用能力10.2 鼓励学生在中考复习过程中加强对点、直线与圆的位置关系的学习10.3 展望学生在中考中取得优异成绩的信心第六章:点的几何性质(续)6.1 点到直线的距离公式的应用6.2 点到圆心的距离与圆的位置关系的应用6.3 点在圆上、圆内、圆外的判定与应用的例题解析第七章:直线与圆的位置关系(续)7.1 直线与圆相交的条件在实际问题中的应用7.2 直线与圆相切的条件在几何问题中的应用7.3 直线与圆相离的条件在实际问题中的应用第八章:圆的方程与性质(续)8.1 圆的标准方程在实际问题中的应用8.2 圆的半径、直径与弦的关系在几何问题中的应用8.3 圆心到直线的距离与圆的位置关系在实际问题中的应用第九章:点、直线与圆的综合应用(续)9.1 点在圆上、圆内、圆外的判定与应用的综合例题解析9.2 直线与圆相交、相切、相离的应用的综合例题解析9.3 点、直线与圆的位置关系的实际例子分析与拓展第十章:中考复习策略与建议10.1 中考点、直线与圆的位置关系的复习策略10.2 中考点、直线与圆的位置关系的解题技巧与方法10.3 对学生中考复习点、直线与圆的位置关系的学习建议与展望重点和难点解析第一章:复习导入中的点、直线、圆的基本概念和位置关系的复习,是整个教案的基础部分,对于学生来说是理解和掌握后续内容的前提。
新课标高三数学第一轮复习直线和圆的方程详细教案

高三数学第一轮复习直线和圆的方程详细教案知识结构第一节直线的倾斜角和斜率学习目标1.了解直线的方程、方程的直线的定义;2.掌握直线的倾斜角、直线的斜率的定义及其取值范围;3.掌握过两点的直线的斜率公式,会运用公式求出有关直线的斜率和倾斜角.重点难点本节重点:正确地理解斜率的概念,熟练地掌握已知直线上两点求直线斜率的公式,这是学好直线这部分内容的关键.本节难点:正确理解直线倾斜角定义中的几个条件,如直线与x轴相交与不相交,按逆时针方向旋转、最小正角等.求倾斜角时,要特别注意其取值范围是高考中,由于本节内容是解析几何成果中最基础的部分,一般是隐含在综合题中进行考查.典型例题【分析】【解】【点评】【分析】【解】【点评】【解法一】代数方法:套两点斜率公式.【解法二】【点评】“解析几何的特点之一是数形结合,数无形时少直观,形无数时难入微.”在学习数学时,应该记住华罗庚的这段话.教材上还涉及证明三点共线的练习题,怎样证明三点共线呢?请看下面例4.【分析】证明三点共线,可以用代数方法、几何方法,可以用直接证法、间接证法,你能想出至少一个方法吗?下面是同学们讨论出的几种证法供参考.【证法一】【证法二】【证法三】第二节直线的方程学习目标掌握直线方程的点斜式、两点式、参数式、一般式,并能根据条件熟练地求出直线的方程式.重点难点本节重点:直线方程的点斜式和一般式,点斜式是推导直线方程其他形式的基础,一般式是直线方程统一的表述形式.本节难点:灵活运用直线方程的各种形式解题.在高考中几乎每年都要考查这部分内容,题型以选择题、填空题居多.典型例题【分析】关键是确定直线方程中的待定系数.【解】【点评】学习直线的方程常犯的错误是忽略方程各种形式的应用条件,因此造成丢解.本例中各个小题均为两解,你做对了吗?第(4)小题的解法一要用到下节学到的公式,解法二用到课外知识,供有兴趣的同学欣赏.【解法一】【解法二】【解法三】【点评】灵活运用直线方程的各种形式,常常要和平面几何的有关知识相结合.本题还有别的解法,不再一一列举.【解法一】【解法二】【解法三】【证明】【点评】【分析】【解法一】【解法二】【解法三】【点评】第三节两条直线的位置关系学习目标1.掌握两条直线平行与垂直的条件,以及两条直线的夹角和点到直线的距离公式.2.能够根据直线的方程判断两条直线的位置关系.重点难点本节重点:两条直线平行与垂直的条件,点到直线的距离公式.本节难点:了解解析几何的基本思想,并用解析几何方法研究角.在高考中,两条直线的位置关系几乎年年必考,常常单独出现在选择题和填空题中,或作为综合题的一部分出现在解答题中.典型例题学习了本节以后,应该对两条直线平行与垂直的充要条件,怎样求直线的斜率、距离与角有哪些公式等问题进行归纳小结,以便提纲挈领地掌握有关知识,并灵活运用这些知识解决问题.1.两条直线平行、垂直的充要条件是什么?答:2.怎样求直线的斜率?答:3.距离和角有哪些公式?能灵活运用吗?答:【解】用下面的例题检验是否理解和掌握了以上这些内容.1.两条直线的位置关系【解】2.两条直线所成的角【解】【解法一】【解法二】3.有关交点的问题(A)1 (B)2 (C)3 (D)4【解法一】【解】【解法二】4.点到直线的距离【错误的解】【正确的解】【解法一】【解法二】【解法三】【解法四】第四节简单的线性规划学习目标1.了解用二元一次不等式表示平面区域.2.了解线性规划的意义,并会简单的应用.重点难点典型例题学习了简单的线性规划以后,常见的题型是用二元一次不等式表示平面区域,以及用线性规划的知识来解决一些简单的问题.下面的例题可检验是否掌握了这些内容.1.二元一次不等式表示的区域【分析】【解】【点评】例2 试讨论点线距离公式中,去掉绝对值符号的规律?【分析】【解】【点评】2.线性规划初步例3钢管长11.1米,需要截下1.5米和2.5米两种不同长度的小钢管,问如何截取可使残料最少?【分析】关键是利用约束条件,列出线性目标函数.【解】【评析】例4 用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().(A)5种(B)6种(C)7种(D)8种【解法一】【解法二】【解法三】列表数点.故选(C).【点评】本题为1999年全国高考试题第14题,难度系数0.47.如果有利用二元一次不等式表示平面区域的知识,此题将不再困难.【分析】甲的解法错误,错在(1)、(2)(3)、(4),反之不行,用必要不充分条件代替原条件,使解的范围扩大,[6,10]是[5,11]的子集.乙的解法正确.本题数形结合,利用本节的知识还可以有以下的解法.【解】【点评】第六节曲线和方程学习目标1.掌握曲线的方程、方程的曲线等概念.2.了解解析几何的基本思想和解析法,学习运动变化、对立统一等辩证唯物主义思想.重点难点本节重点:了解曲线的点集与方程的解集之间的一一对应关系,从而掌握曲线的方程和方程的曲线这两个重要概念,并掌握由曲线的已知条件求方程的方法和步骤,熟悉解析法.本节难点:理解曲线和方程的概念,以及求曲线的方程的方法.在高考中,曲线和方程常是重点考查的内容,出现在解答题中.典型例题学习了本节后主要要掌握求曲线的方程的步骤,以及用解析法解题的步骤,以下归纳供参考.求曲线的方程的步骤是:一建--选取适当的点和直线,建立坐标系;二设--设曲线上点,以及利用已知条件设出其他有关点的坐标等;三列式--根据动点符合的条件,列出含、的方程0;四化简--化方程0为最简形式;五证明--证曲线上点的坐标都是方程的解,以这个方程的解为坐标的点都在曲线上(这一步不要求写出).解析法的主要步骤是:一建--建立适当的坐标系.建系原则是使已知条件好用,使表达式简明,运算简便.因此,尽量利用已知点和已知直线;二设--选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程;三算--通过运算,得到所要的结果.用以下例题检验是否理解和掌握了这些内容.1.怎样求轨迹方程【解法一】【解法二】【点评】【错误解法】【正确解法】【点评】【解法一】【解法二】【点评】2.解析法与综合法【证法一】【证法二】【证法三】【证法四】【点评】不同证法,以解析法较简便,复数将在高三年级学习,这里的证法实质和解析法一样,不过是换个说法.【分析】【解】【点评】解析法与综合法的特点,从中你体会到了吗?解析法的优点是程序固定(一建二设三算),操作简便,但一般运算量较大;综合法的优点是思路灵活,但如何添加辅助线不易掌握.【解法一】【解法二】【解法三】【解法四】【点评】“是否可以用代数中的计算过程代替几何中的证明?”“让代数和几何中一切最好的东西互相取长补短”等是笛卡儿创立解析几何的初衷.解析几何既然是用代数方法来研究几何对象的特征和性质,当然对运算能力要求较高.运算能力是一种计算化了的推理能力,是逻辑思维能力与计算知识、方法、技能和技巧的结合.在解析几何中,如果不注意运算方法上的特点和技能,就可能陷入有思路但算不出或很难算出正确结果的窘境,如本题的思路一、二.解析几何中常用的运算方法和技能是:①注意利用平面几何知识,如思路四;②不忘利用定义,尤其是圆锥曲线的定义解题;③充分利用一元二次方程根与系数的关系,并不忘对判别式的要求,如思路三;④合理利用曲线系;⑤数形结合,依形判数,就数论形;⑥灵活运用字母的可轮换性,减少同类量的重复运算.以上方法和技能,要在实际解题中逐步掌握.第七节圆的方程学习目标1.掌握圆的标准方程和一般方程,理解圆的参数方程.2.初步了解直线和圆中反映出的运动变化、对立统一等辩证思想和观点.重点难点本节重点:圆的标准方程、一般方程、参数方程及其相互转化.本节难点:直线和圆的综合运用.在高考中,圆的方程在选择题、填空题、解答题等各类题型中出现.本节要掌握三种类型的问题,之一是求圆的方程,之二是直线和圆的综合题,之三是应用直线和圆的知识解决一些问题.1.圆的方程有哪些形式?典型例题用下面的例题检验是否理解和掌握了圆的方程的三种形式:【解法一】【解法二】【解法三】【点评】怎样求圆的方程?这三条思路具有典型意义.【解法一】【解法二】【点评】【解法一】【解法二】【点评】【分析】关键确定圆心坐标和半径.【解】【点评】本题为1997年全国高考理科第25题,难度系数0.20.难在什么地方呢?第一文字叙述较长,有同学读不懂题;第二涉及众多知识,有同学不会运用;第三丢解,忽略了不同的位置关系.会不会用知识和怎样用知识,是一个人有没有能力和能力高低的重要标志,努力吧!2.直线和圆综合题【分析】【解】【点评】【解法一】【解法二】【分析】【点评】【解】【点评】【解法一】【解法二】【点评】分类是自然科学的基本方法,数学中的分类讨论的思想方法,就是依据数学对象的共同点和差异点,将其区分为不同种类,分类讨论并归纳结论,这一思想方法,在近代数学和现代数学中占有重要地位,是应该学习和掌握的重要思想方法.3.怎样利用直线和圆的知识解题?【分析】数形结合,将代数式或方程赋予几何意义.【解】【点评】从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化,是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.【解法一】【解法二】【解法三】【点评】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆 复习
(一) 直线的倾斜角α与斜率k 求k 方法:
1.已知直线上两点1p (1x ,1y )2p (2x ,2y )(1x ≠2x ) 则 2.已知α时,k=tan α(α≠900) k 不存在(α=900) 3.直线Ax+By+C=0,(A ,B 不全为0,) B=0时k 不存在, B ≠0时 k=-B
A
(二)直线方程
(三)位置关系判定方法:
当直线不平行于坐标轴时(要特别注意这个限制条件)
1212
y y x x k --=
(四)点P(x0,y0)到直线Ax+By+C=0的距离是 d=
两平行直线Ax+By+C1=0和Ax+By+C2=0间的距离为 d= .
(五)直线过定点。
如直线(3m+4)x+(5-2m)y+7m -6=0,不论m 取
何值恒过定点(-1,2) (六)直线系方程
(1)与已知直线Ax+By+C=0平行的直线的设法: Ax+By+m=0 (m ≠C)
( 2 ) 与已知直线Ax+By+C=0垂直的直线的设法: Bx -Ay+m=0
(3)经过直线1l ∶1A x+1B y+1C =0,2l ∶2A x+2B y+2C =0交点的直线设法: 1A x+1B y+1C +λ(2A x+2B y+2C )=0(λ为参数,不包括2l )
2
200B A C
By Ax +++222
1B A C C +-
(七)关于对称
(1)点关于点对称(中点坐标公式)
(2)线关于点对称(转化为点关于点对称,或代入法,两条直线平行) (3)点关于线对称(点和对称点的连线被线垂直平分,中点在对称轴上、
kk’= -1二个方程)
(4)线关于线对称(求交点,转化为点关于线对称)
(八)圆的标准方程: 222b)-(y a)-(x r =+ 圆心(a,b ) 半径r >0
圆的一般方程:022=++++F Ey Dx y x (F E D 422-+>0)
圆心(2,2E D ) r=
(九)点与圆的位置关系
设圆C ∶222b)-(y a)-(x r =+,点M(00,y x )到圆心的距离为d ,则有:
(1)d >r 点M 在圆外;
(2)d=r 点M 在圆上; (3)d <r 点M 在圆内. (十)直线与圆的位置关系
设圆 C ∶222b)-(y a)-(x r =+,直线l 的方程Ax+By+C=0,圆心(a ,b)到直线l 的距离为d,判别式为△,则有:(几何特征) (1)d <r 直线与圆相交; (2)d=r 直线与圆相切; (3)d >r 直线与圆相离; 弦长公式:
或(代数特征)
(1)△>0 直线与圆相交,圆C 和直线l 组成的方程组有两解; (2)△=0 直线与圆相切, 圆C 和直线l 组成的方程组有一解; (3)△<0 直线与圆相离, 圆C 和直线l 组成的方程组无解。
(十一)圆与圆的位置关系
设圆C1:222b)-(y a)-(x r =+和圆C2:222n)-(y m )-(x r =+ (R,r >0)且设两圆
2
422F E D -+222d r l -=
圆心距为d ,则有: (1) d >R+r 两圆外离; (2) d=R+r 两圆外切;
(3) │R -r │<d <│R +r │两圆相交; (4) d= │R -r │ 两圆内切; (5) d <│R -r │ 两圆内含; (十二)圆的切线和圆系方程
1.过圆上一点的切线方程:圆222r y x =+,圆上一点为(00,y x ),则过此点的切线方程为0x x+ 0y y= 2r (课本命题).
圆222r y x =+,圆外一点为(00,y x ),则过此点的两条切线与圆相切,切点弦方程为200r y y x x =+。
2.圆系方程: ①
设
圆
C1
∶
11122=++++F y E x D y x 和圆C2∶
022222=++++F y E x D y x .若两圆相交,则过交点的圆系方程为11122F y E x D y x +++++λ(22222F y E x D y x ++++)=0(λ为参数,圆系中不
包括圆C2,λ=-1为两圆的公共弦所在直线方程).
②设圆C ∶022=++++F Ey Dx y x 与直线l :Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为F Ey Dx y x ++++22+λ(Ax+By+C)=0(λ为参数).。