基因工程基因克隆所需的工具酶

合集下载

基因工程常用的工具酶

基因工程常用的工具酶
Py dCMP、dTMP Pu dAMP、dGMP
2024/10/14
.
6
识别序列呈典型的旋转对称型回文结构
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
回文结构:两条核苷酸链的核酸序列呈双重旋转对称排列的 DNA双螺旋结构
2024/10/14
.
14
第三节 DNA聚合酶
2024/10/14
.
15
DNA聚合酶:能够催化DNA复制和修复DNA分子损伤 的一类酶
❖作用特点
能够把脱氧核苷酸分子连续的加到DNA分子引物链的3’-OH末端,催 化核苷酸的聚合
❖作用条件
➢ 脱氧核苷酸原料:四种脱氧核苷三磷酸dNTP(dATP、dTTP、 dCTP、dGTP)
属名
种名
株名
Haemophilus influenzae d
HindΙ、 HindⅡ、 Hind Ⅲ
不同限制修饰系统
2024/10/14
.
4
三、Ⅱ型限制酶的特性-识别序列
识别双链DNA分子中特定的4 - 8对核苷酸序列
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
5‘ HO 3‘ HO
T4-PNP
5‘ p 3‘ HO
OH 3‘ OH 5‘
Mg2+ pppATP(g-32P-ATP)
OH 3‘
5‘ HO
BAP / CIP

基因工程中常用的三种工具酶

基因工程中常用的三种工具酶

一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。

2.类型:来自原核生物,有三种类型。

Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。

Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。

另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。

同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。

与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。

常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。

显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。

但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。

Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。

三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。

基因工程基因工程工具酶

基因工程基因工程工具酶

基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。

在基因工程的过程中,基因工程工具酶发挥着关键的作用。

本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。

一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。

它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。

1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。

它们通常识别的序列是4到8个碱基对长,具有一定的对称性。

一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。

1.3 应用限制性内切酶在基因工程中有着广泛的应用。

它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。

通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。

二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。

在基因工程中,连接酶通常被用于连接目标基因和载体。

2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。

它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。

2.3 应用连接酶在基因工程中的应用非常广泛。

它们可以用于构建重组DNA分子、进行目标基因的插入等。

通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。

三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。

在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。

3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。

它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。

3.3 应用修饰酶在基因工程中起着重要的作用。

它们可以用于DNA甲基化的分析、目标基因的修饰等。

基因工程的基本工具_基因工程的原理及技术_基因工程和蛋白质工程的应用-高中生物知识点

基因工程的基本工具_基因工程的原理及技术_基因工程和蛋白质工程的应用-高中生物知识点

基因工程的基本工具_基因工程的原理及技术_基因工程和蛋白质工程的应用-高中生物知识点·基因工程基因工程三种工具原理及基因工程的四个步骤一、基因工程需要三个工具:1、剪刀:限制酶。

2、针线:DNA连接酶。

3、运输:运载体。

二、基因工程四个步骤:1、目的基因的获取。

2、基因表达载体的构建目的基因与运载体结合。

3、将目的基因导入受体细胞。

4、目的基因的检测与表达。

基因工程又称基因拼接技术和DNA重组技术。

是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。

基因工程技术为基因的结构和功能的研究提供了有力的手段。

基因工程,又称基因操作,DNA重组技术,基因克隆,分子克隆等。

克隆就是来自同一祖先的相同副本或拷贝的集合,而获得同一拷贝的过程则称为克隆化,也就是无性繁殖。

蛋白质工程是研究蛋白质的结构及结构与功能的关系,然后人为地设计一个新蛋白质,并按这个设计的蛋白质结构去改变其基因结构,从而产生新的蛋白质。

1983年,美国生物学家厄尔默首先提出了“蛋白质工程”的概念,随即被广泛接受和采用。

蛋白质工程是以蛋白质结构与功能关系的知识为基础,通过周密的分子设计,把蛋白质改造为合乎人类需要的新的蛋白质。

人们利用分子遗传学的知识和对蛋白质结构的了解,在实验室条件下,设计出全新的优良蛋白质。

利用基因工程生产的胰岛素就是蛋白质工程的第一个成功范例。

由于蛋白质工程是在基因工程的基础上发展起来的,在技术方面有许多同基因工程技术相似的地方,因此人们也把蛋白质工程称为第二代基因工程。

蛋白质工程与基因工程的区别蛋白质工程就是根据蛋白质的精细结构与功能之间的关系,利用基因工程的手段,按照人类自身的需要,定向地改造天然的蛋白质,甚至创造新的、自然界本不存在的、具有优良特性的蛋白质分子。

蛋白质工程自诞生之日起,就与基因工程密不可分。

基因工程-第二章--基因克隆所需的工具酶

基因工程-第二章--基因克隆所需的工具酶
2010-11-8 苏州科技学院生物系 叶亚新
常用限 制性内 切酶种 类及特 性
2010-11-8
苏州科技学院生物系
叶亚新
2010-11-8
苏州科技学院生物系
叶亚新
6、限制性内切酶的星号活性
在某些反应条件下,限制酶识别顺序的 特异性可能发生变化,结果一种限制酶 酶切同一种DNA片断会产生新的酶切位点, 得到不同的酶切片断,这就是限制酶的 星号活性( activity) 星号活性(star activity) EcoR 1 GAATTC---- AATT
第二章 基因克隆所需的工具酶
限制性内切酶—主要用于DNA分子的特异切割 限制性内切酶 DNA甲基化酶 甲基化酶—用于DNA分子的甲基化 DNA甲基化酶 核酸酶—用于DNA和RNA的非特异性切割 核酸酶 核酸聚合酶—用于DNA和RNA的合成 核酸聚合酶 核酸连接酶—用于DNA和RNA的连接 核酸连接酶 核酸末端修饰酶—用于DNA和RNA的末端修饰 核酸末端修饰酶 其它酶类--用于生物细胞的破壁,转化,核酸纯化,检测等 其它酶类
2010-11-8
苏州科技学院生物系
叶亚新
四.限制酶的特点
1. 识别顺序和酶切位点 识别4 1)识别4-8个相连的核苷酸 MboI NGATCN; NGATCN;AvaII GG(A/T)CC Bam HI GGATCC; GGATCC;PpuMI PuGG(A/T)CCPy Not I GCGGCCGC; GCGGCCGC; SfiI GGCC N N N N N GGCC N’ N N N CCGG N N’N’N’N’ CCGG Fok I 5 -GGATG(N)9-3’ 5’-GGATG( )93’-CCTAC(N)13-5’ 外侧,产生5’-端突 -CCTAC( )13- 外侧,产生5 起 富含GC 2)富含GC

基因工程常用的工具酶

基因工程常用的工具酶
基因工程被用于培育抗病、抗 虫、抗除草剂等新品种,提高
农作物的产量和质量。
医学领域
基因工程被用于治疗遗传性疾 病、癌症、感染性疾病等,以 及制备疫苗和单克隆抗体。
工业领域
基因工程被用于生产高价值的化 学品、生物燃料和生物材料等, 降低生产成本和提高产品质量。
基础研究
基因工程被用于研究基因的结构 和功能、蛋白质的表达和调控等
常见的限制性核酸内切酶包括EcoRI、BamHI、HindIII等。
DNA聚合酶
DNA聚合酶是催化DNA复制过程中 DNA聚合反应的酶。
常见的DNA聚合酶包括Taq酶和T7噬 菌体DNA聚合酶等。
DNA聚合酶具有合成DNA的功能,可以在 模板DNA的指导下,将脱氧单核苷酸逐个加 到引物RNA的3'-OH末端,形成新的互补链 。
,促进生命科学领域的发展。
02 基因工程常用的工具酶概 述
工具酶的定义与分类
定义
工具酶是指用于基因工程操作的一类 酶,能够催化DNA或RNA的切割、连 接、修饰等反应,是基因工程实验中 必不可少的工具。
分类
根据功能的不同,工具酶可以分为限 制性核酸内切酶、DNA聚合酶、反转 录酶、T4核酸连接酶等。
工具酶在生物制药和农业生产中应用广泛,如基因工程的抗体药物、疫
苗、农作物改良等领域,能够提高产品的产量和质量。
工具酶的来源与生产
来源
工具酶主要来源于微生物、植物和动 物等生物体,其中微生物来源的酶是 最常用的。
生产
工具酶的生产通常采用基因工程技术 ,通过克隆和表达酶的基因来获得相 应的酶蛋白,再经过纯化和复性等步 骤得到高活性的工具酶。
VS
转录激活因子
激活特定基因的表达,实现基因治疗。

分子克隆技术常用的工具酶

分子克隆技术常用的工具酶
经修饰的DNA不再被限制酶降解。
已分离到与许多Ⅱ类限制酶相对应的甲基化酶。其命名是在 对应II类限制酶名称前加一个M表示。
如M.EcoR I是能使EcoR I识别序列中(GAATTC)3’-端的A甲
基化(GAm6ATTC)的酶
识别序列中某些碱基甲基化对II类限制酶的影响至 少有3种:
①敏感的,甲基化后不能再切割;
DNA用的乙醇。
2)甲基化
识别序列中某些碱基甲基化后会阻碍酶活性。 限制酶识别序列内或其邻近的胞嘧啶、腺嘌呤或尿嘧啶被甲基化后,会 阻碍限制酶的酶解活性。 受甲基化影响的酶在商品说明书中都会有标示。
所用符号为:m4C表示N4-甲基化胞嘧啶,m5C为C5-甲基胞嘧啶。
3)底物性状
随底物的不同而活性发生改变
仅2003年1-4月份就有150余种新的酶被登录入网,至2003年 04月19日, REBASE (The Restriction Enzyme Database) 收集的 编号已有7096种;其中Ⅱ类酶有3845种.
根据其识别和切割序列的特性、催化条件及修饰活性等, 一般将限制酶分为I,Ⅱ,Ⅲ 三大类。
②不敏感的.甲基化后仍可切割;
③依赖于甲基化的,只有甲基化后才能切割。
一、大肠杆菌DNA聚合酶 I
1 三种酶活性 1 )DNA聚合活性
5' A T
||| |
3' T A C G dTTTP
5'
5’ 5’
引物
2)核酸外切酶活性
5’ A G C T T C A G G A T A
(-) 放线菌素D (-)
DNA合成
RNA
DNA(前病毒)
RNA
逆转录酶的应用:
应用于基因工程

基因工程试题及答案

基因工程试题及答案

基因工程试题及答案# 基因工程试题及答案## 一、选择题1. 基因工程中常用的工具酶是:A. 限制性内切酶B. DNA聚合酶C. 逆转录酶D. DNA连接酶2. 基因工程中,用于目的基因的克隆通常使用:A. 质粒B. 噬菌体C. 人工染色体D. 转座子3. 下列哪项不是基因工程的应用领域?A. 农业改良B. 疾病治疗C. 能源开发D. 武器制造## 二、填空题1. 基因工程中,常用的宿主细胞包括________、________和________。

2. 基因枪法是一种________技术,可以将目的基因直接导入植物细胞。

## 三、简答题1. 简述基因工程的基本操作步骤。

2. 基因工程在医药领域的应用有哪些?## 四、论述题1. 论述基因工程对现代农业的影响及其潜在风险。

## 参考答案### 一、选择题1. 答案:A, D。

限制性内切酶和DNA连接酶是基因工程中用于切割和连接DNA片段的常用工具酶。

2. 答案:A。

质粒是基因工程中常用的载体,用于克隆和表达目的基因。

3. 答案:D。

基因工程的应用领域广泛,但武器制造不属于其应用范围。

### 二、填空题1. 答案:大肠杆菌、酵母菌、哺乳动物细胞。

这些是基因工程中常用的宿主细胞,用于表达外源基因。

2. 答案:基因转移。

基因枪法是一种基因转移技术,通过高速微粒子将DNA射入细胞内。

### 三、简答题1. 答案:基因工程的基本操作步骤包括:目的基因的获取、载体的选择与构建、目的基因与载体的连接、转化宿主细胞、筛选含有目的基因的细胞、目的基因的表达与检测。

2. 答案:基因工程在医药领域的应用包括:生产重组蛋白药物、基因治疗、疫苗开发、疾病诊断等。

### 四、论述题1. 答案:基因工程对现代农业的影响主要体现在作物改良、提高产量、增强抗病虫害能力等方面。

通过基因工程,可以培育出抗旱、抗盐碱、抗病的作物新品种,提高作物的适应性和产量。

然而,基因工程也存在潜在风险,如基因流可能导致非目标物种的基因改变,以及转基因作物对生态环境的影响等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 天然DNA的制备
天然DNA的来源
染色体DNA、病毒和噬菌体DNA、质粒 DNA、线粒体和叶绿体DNA
天然DNA的提取
准备生物材料 裂解细胞 分离和抽提DNA
2020/4/4
苏州科技学院生物系
叶亚新
第三节 限制性核酸内切酶和DNA片断化
限制性核酸内切酶(restriction endonuclease)
EcoRI—Escherichia coli RI HindⅢ—Haemophilus influensae d Ⅲ SacI (II)—Streptomyces achromagenes I (Ⅱ)
2020/4/4
苏州科技学院生物系
叶亚新
四.限制酶的特点
1. 识别顺序和酶切位点 1)识别4-8个相连的核苷酸
influenzae)中发现并分离到HindII限制酶。
3. SV40 限制图谱和转录图谱的绘制
D. Nathans(1971年)用HindII绘制SV40的限制酶谱。
2020/4/4
苏州科技学院生物系
叶亚新
二、限制修饰系统的种类
1. I型:由三个基因构成,hsdR;hsdM;hsdS(host
specificity for DNA restriction modification and specificity) 位于染色体上,三个基因构成一个复合体,限制酶需要ATP、Mg2+、 SAM(5—腺苷甲硫氨酸)。
2020/4/4
苏州科技学院生物系
叶亚新
四.限制酶的特点
3)对称性—双对称
EcoRI 5’-G A A T T C-3’
3’-C T T A A G-5’
4)切点大多数在识别顺序之内,也有例外
5)限制酶切后产生两个末端,末端结构是5’-P和3’-OH
2. 末端种类
1)3’-端突起,个数为2或4个核苷酸
EcoR 1 GAATTC----AATT
2020/4/4
苏州科技学院生物系
叶亚新
6、限制性内切酶的星号活性
引起星号活性的可能因素
甘油浓度过高 离子强度不合适 阳离子的变化 溶液中PH值的变化
在基因工程操作中,应避免星号反应的出 现
2020/4/4
苏州科技学院生物系
叶亚新
二、限制酶的使用方法
叶亚新
三. 限制性内切酶的定义、命名
1. 定义:广义指上述三个系统中的限制酶; 狭义指II型限制 酶。
2. 命名:限制酶由三部分构成,即细菌种属名、菌系编号、 分离顺序。
例如:HindⅢ 前三个字母来自于菌种名称H. influenzae,“d”表示菌系为d型血清型;“Ⅲ”表示分离
到的第三个限制酶。
2020/4/4
苏州科技学院生物系
叶亚新
影响限制酶消化DNA的若干因素
DNA的纯度的影响
限制酶作用于纯度不高的DNA时,会进行 不完全酶解(部分酶切)
RNA或其他DNA的污染影响小 蛋白质污染并与DNA结合后,可能降低或终止
酶切反应
解决办法:用酚和氯仿抽提除去蛋白质
是一类能识别双链DNA中特殊核苷酸序列.并使每条链的一个磷酸二
酯键断开的内脱氧核糖核酸酶 一 . 限制性内切酶的发现
1. 细菌限制修饰系统的发现 Werner Arber于1962-1968年发现,1968年分离到I型限制酶。
2. 限制酶HindII的发现 H.O.Smith 和Wilox 于1970年首次从流感嗜血杆菌(H.
b)能识别简并顺序的,如:AvaI
AvaI 5’-CPyCGPuG-3’
CCCGGG; C TCGGG; CCCGAG; CTCGAG
2020/4/4
苏州科技学院生物系
叶亚新
五. 异源同序酶(isoschizomer, 同裂酶)
1. 定义:能识别相同序列但来源不同的两 种或多种限制 酶 2. 特点:1)识别相同顺序
叶亚新
四.限制酶的特点
3) 平齐末端
SmaI 5’-CCCGGG-3’
5’-CCC GGG-3’
3’-GGGCCC-5’
3’-GGG CCC-5’
4)非互补的粘性末端
a)切点在识别顺序之外的,如:FokI
Fok I 5’-GGATG(N)9-3’ 5’-GGATG(N)9
3’-CCTAC(N)13-5’ 3’-CCTAC(N)13
2. II型:限制与修饰基因产物独立起作用,在E. coli中这两种基
因位于质粒上。
3. III型:修饰酶与I型酶相同,hsdM与hsdS基因产物结合成一
亚单位,限制酶是独立存在的。 上述三个系统中,只有II型限制酶与甲基化酶具有相当高的核苷酸
识别特异性,因而被广泛用于基因工程中。
2020/4/4
苏州科技学院生物系
MboI NGATCN;AvaII GG(A/T)CC Bam HI GGATCC;PpuMI PuGG(A/T)CCPy Not I GCGGCCGC; SfiI GGCC N N N N N GGCC
CCGG N’ N’N’N’N’ CCGG
Fok I 5’-GGATG(N)9-3’
3’-CCTAC(N)13-5’ 外侧,产生5’-端突起 2)富含GC
用限制酶消化DNA(酶切)是基因工程 最基本的实验技术
最常用的消化条件: 反应体积:20ul 10xBuffer:2ul DNA浓度:0.5—1.0ul
2020/4/4
苏州科技学院生物系
叶亚新
二、限制酶的使用方法
1、影响限制酶消化DNA的若干因素
DNA的纯度的影响 DNA浓度的影响 酶浓度的影响 酶反应条件的影响 双酶消化
Pst I 5’-CTGCAG-3’
5’-CTGCA
G-3’
3’-GACGTC-5’
3’-G
ACGTC-5’
2)5’-端突起,个数为2或4个核苷酸
EcoRI 5’-GAATTC-3’
5’-GOH
PAATTC-3’
3’-CTTAAG-5’
3’-CTTAAP
HOG-5’
2020/4/4
苏州科技学院生物系
2)切割位点的异同
KpnI GGTAC C Asp718 G GTACC SstI CCGC GG SacI CCGC GG
2020/4/4制性内切酶的星号活性
在某些反应条件下,限制酶识别顺序的 特异性可能发生变化,结果一种限制酶 酶切同一种DNA片断会产生新的酶切位 点,得到不同的酶切片断,这就是限制 酶的星号活性(star activity)
相关文档
最新文档