【人教A版】高中数学同步辅导与检测:选修1-1 章末评估验收(二)
27、【人教A版】高中数学同步辅导与检测(选修1-1)模块综合评价(二)

模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“存在x 0∈R ,2x 0≤0”的否定是( ) A .不存在x 0∈R ,2x 0>0 B .存在x 0∈R ,2x 0≥0 C .对任意的x ∈R ,2x ≤0 D .对任意的x ∈R ,2x >0 解析:特称命题的否定是把存在量词改为全称量词,再把结论进行否定.答案:D2.“sin A =12” 是“A =30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:因为sin 30°=12,所以“sin A =12”是“A =30°”的必要条件,又150°,390°等角的正弦值也是12,故“sin A =12”不是“A =30°”的充分条件.答案:B3.已知f (x )=sin x +cos x +π2,则f ′⎝ ⎛⎭⎪⎫π2等于( )A .-1+π2 B.π2+1 C .1 D .-1解析:f ′(x )=cos x -sin x ,所以 f ′⎝ ⎛⎭⎪⎫π2=cos π2-sin π2=-1.答案:D4.关于命题p :若a·b >0,则a 与b 的夹角为锐角;命题q :存在x ∈R ,使得sin x +cos x =32.下列说法中正确的是( )A .“p ∨q ”是真命题B .“p ∧q ”是假命题C .綈p 为假命题D .綈q 为假命题解析:本题考查含有逻辑联结词的命题真假的判断.当a·b >0时,a 与b 的夹角为锐角或0°,所以 命题p 是假命题;因为sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2<32,所以 命题q 是假命题.答案:B5.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( )A .5B .5或8C .5或3D .20解析:由焦距为2,得c =1,讨论焦点在x 轴上,还是在y 轴上.当4>m 时,由1=4-m ,得m =3;当4<m 时,由1=m -4,得m =5. 故m 的值为5或3. 答案:C6.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )解析:由函数f(x)的导函数y=f′(x)的图象自左至右是先增后减,可知函数y=f(x)图象的切线的斜率自左至右先增大后减小.答案:B7.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的()A.极大值为427,极小值为0B.极大值为0,极小值为4 27C .极小值为-427,极大值为0D .极小值为0,极大值为-427解析:由题意可知⎩⎨⎧f ′(1)=0,f (1)=0,所以⎩⎨⎧3-2p -q =0,1-p -q =0,解得⎩⎨⎧p =2,q =-1,所以f (x )=x 3-px 2-qx =x 3-2x 2+x ,进而可求得f (1)=0是极小值,f ⎝ ⎛⎭⎪⎫13=427是极大值.答案:A8.已知椭圆E :x 28+y 24=1的左、右焦点分别为F 1,F 2,点P为椭圆上一点,若以(1,0)为圆心的圆C 与直线PF 1,PF 2均相切,则点P 的横坐标为( )A. 5 B .2 C. 3D .1解析:由已知得,PC 为∠F 1PF 2的平分线,因此|PF 1|∶|PF 2|=|F 1C |∶|F 2C |=3∶1,又|PF 1|+|PF 2|=2a =42,所以|PF 2|=2,设P (x ,y ),则(x -2)2+y 2=2,与椭圆方程联立可解得x =2或x =6(舍去),故点P 的横坐标2,选B.答案:B9.若直线y =2x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有公共点,则双曲线的离心率的取值范围为( )A .(1,5)B .(5,+∞)C .(1,5]D .[5,+∞)解析:双曲线的两条渐近线中斜率为正的渐近线为y =ba x .由条件知,应有b a >2,故e =ca=a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2> 5. 答案:B10.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>(a )D .f (c )>f (e )>f (d )解析:依题意得,当x ∈(-∞,c )时,f ′(x )>0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ),选C.答案:C11.若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T 性质的是()A.y=sin x B.y=ln xC.y=e x D.y=x3解析:若y=f(x)的图象上存在两点(x1,f(x1)),(x2f(x2)),使得函数图象在这两点处的切线互相垂直,则f′(x1)·f′(x2)=-1.对于A:y′=cos x,若有cos x1·cos x2=-1,则当x1=2kπ,x2=2kπ+π(k∈Z)时,结论成立;对于B:y′=1x,若有1x1·1x2=-1,即x1x2=-1,因为x>0,所以不存在x1,x2,使得x1x2=-1;对于C:y′=e x,若有e x1·e x2=-1,即e x1+x2=-1,显然不存在这样的x1,x2;对于D:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.综上所述,选A.答案:A12.已知点O为坐标原点,点F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,点A,B分别为C的左、右顶点.点P为椭圆C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则椭圆C的离心率为()A.13B.12C.23D.34解析:如图所示,设OE 的中点为N ,在△AOE 中,因为MF ∥OE , 所以|MF ||OE |=|AF ||AO |=a -ca.① 在△MFB 中,因为ON ∥MF , 所以|ON ||MF |=|BO ||BF |=aa +c =12|OE ||MF |,所以2aa +c=|OE ||MF |,即|MF ||OE |=a +c2a .②由①②可得a -c a =a +c2a,解得a =3c ,从而得e =c a =13.答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.綈A 是命题A 的否定,如果B 是綈A 的必要不充分条件,那么綈B 是A 的________条件.解析:B ⇐綈A 且綈AB .所以 ⎩⎨⎧綈B ⇒A ,A 綈B ,则綈B 是A 的充分不必要条件.答案:充分不必要14.已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为双曲线E 的两个焦点,且2|AB |=3|BC |,则双曲线E 的离心率是________.解析:如图,由题意知|AB |=2b 2a,|BC |=2c .又2|AB |=3|BC |,所以2×2b 2a =3×2c ,即2b 2=3ac ,所以2(c 2-a 2)=3ac ,两边同除以a 2, 整理得2e 2-3e -2=0,解得e =2(负值舍去). 答案:215.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值范围是________.解析:f ′(x )=3kx 2+6(k -1)x .由题意知⎩⎨⎧k ≥0,f ′(4)≤0或⎩⎨⎧k <0,f ′(0)≤0,解得k ≤13.答案:k ≤1316.已知F 是抛物线C :y 2=4x 的焦点,A ,B 是C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积等于________.解析:根据图形综合分析(草图略),设A (x 1,y 1),B (x 2,y 2),线段AB 所在的直线方程为y =k (x -2)+2,由⎩⎨⎧y 2=4x ,y =k (x -2)+2得y 2-4y k +8k-8=0, 所以 y 1+y 2=4k=2×2.所以 k =1.所以 线段AB 所在的直线方程为y =x .所以 线段AB 的两端点坐标分别为(0,0),(4,4),不妨令A 点坐标为(0,0),B 点坐标为(4,4),则S △ABF =12|OF |·y B =2.答案:2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知命题p :lg(x 2-2x -2)≥0,命题q :⎪⎪⎪⎪⎪⎪1-x 2<1.若p 是真命题,q 是假命题,求实数x 的取值范围.解:由p 是真命题,知lg(x 2-2x -2)≥0, 所以x 2-2x -2≥1⇔x 2-2x -3≥0, 解得x ≤-1或x ≥3. 由q 是假命题知⎪⎪⎪⎪⎪⎪1-x 2≥1,故1-x 2≤-1或1-x2≥1,解得x ≥4或x ≤0.所以x 的取值范围是{x |x ≤-1或x ≥4}. 18.(本小题满分12分)设函数f (x )=e x -x -2. (1)求f (x )的单调区间;(2)当x ∈[-3,2]时,求函数的最值. 解:(1)f ′(x )=e x -1,令f ′(x )=e x -1>0,e x >1,x >0; 令f ′(x )=e x -1<0,e x <1,x <0.所以f (x )的单调增区间为(0,+∞),单调减区间为(-∞,0).(2)x>0,f′(x)>0,x<0,f′(x)<0,所以f(0)=e0-0-2=-1,为函数的极小值.所以f(-3)=e-3+3-2=e-3+1,f(2)=e2-2-2=e2-4.比较可知,当x∈[-3,2]时,f(x)最大值为e2-4,最小值为-1.19.(本小题满分12分)河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽为4米,高2米,载货后船露出水面的部分高0.75米,问水面上涨到与抛物线拱顶距多少时,小船开始不能通行?解:建立平面直角坐标系,设拱桥型抛物线方程为x2=-2py(p>0).将B(4,-5)代入得p =1.6.所以x2=-3.2 y船两侧与抛物线接触时不能通过.则A(2,y A),由22=-3.2y A,得y A =-1.25.因为船露出水面的部分高0.75米, 所以h =|y A |+0.75=2(米),即当水面上涨到与抛物线拱顶距2米时,小船开始不能通行. 20.(本小题满分12分)设函数f (x )=ax 3+bx 2+cx ,在x =1,x =-1处有极值且f (1)=-1,求a 、b 、c 的值及函数f (x )的极值.解:f ′(x )=3ax 2+2bx +c ,因为在x =1,x =-1处有极值且f (1)=-1, 所以 ⎩⎪⎨⎪⎧f ′(1)=0,f ′(-1)=0,f (1)=-1,所以 a =12,b =0,c =-32,所以 f ′(x )=32x 2-32.令f ′(x )=0,得x =±1.当x 变化时,f ′(x )、f (x )的变化情况如下表: ↗↘↗所以 y 极大值=f (-1)=1,y 极小值=f (1)=-1.21.(本小题满分12分)已知椭圆C 经过点A ⎝ ⎛⎭⎪⎫1,32,两个焦点为(-1,0)、(1,0).(1)求椭圆C 的方程;(2)E 、F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.(1)解:由题意,c =1,可设椭圆方程为x 21+b 2+y 2b 2=1.因为A 在椭圆上,所以11+b2+94b 2=1,解得b 2=3,b 2= -34(舍去),所以椭圆方程为x 24+y 23=1. (2)证明:设直线AE 的方程为y =k (x -1)+32,代入x 24+y 23=1.得(3+4k 2)x 2+4k (3-2k )x +4⎝ ⎛⎭⎪⎫32-k 2-12=0.设E (x E ,y E ),F (x F ,y F ).因为点A ⎝⎛⎭⎪⎫1,32在椭圆上,所以x E =4⎝ ⎛⎭⎪⎫32-k 2-123+4k2,y E =kx E +32-k .又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代替k ,可得x F =4⎝ ⎛⎭⎪⎫32+k 2-123+4k 2,y F =-kx F +32+k ,所以直线EF 的斜率k EF =y F -y Ex F -x E =-k (x E +x F )+2k x F -x E=12, 即直线EF 的斜率为定值,其值为12.22.(本小题满分12分)设函数f (x )=x 4+ax 3+2x 2+b (x ∈R),其中a ,b ∈R.(1)当a =-103时,讨论函数f (x )的单调性;(2)若函数f (x )仅在x =0处有极值,求a 的取值范围; (3)若对于任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成立,求b 的取值范围.解:(1)f ′(x )=4x 3+3ax 2+4x =x (4x 2+3ax +4).当a =-103时,f ′(x )=x (4x 2-10x +4)=2x (2x -1)(x -2).令f ′(x )=0,得x 1=0,x 2=12,x 3=2.当x 变化时,f ′(x ),f (x )的变化情况如下表: ↘↗↘↗所以f (x )在⎝⎭⎪0,12和(2,+∞)上是增函数,在(-∞,0)和⎝⎭⎪12,2上是减函数.(2)f ′(x )=x (4x 2+3ax +4),显然x =0不是方程4x 2+3ax +4=0的根.由于f (x )仅在x =0处有极值,则方程4x 2+3ax +4=0有两个相等的实根或无实根,Δ=9a 2-64≤0,解此不等式,得-83≤a ≤83.这时,f (0)=b 是唯一极值.因此满足条件的a 的取值范围是.(3)由(2)知,当a ∈[-2,2]时,4x 2+3ax +4>0恒成立. 所以 当x <0时,f ′(x )<0,f (x )在区间(-∞,0]上是减函数.因此函数f (x )在[-1,0]上的最大值是f (-1).又因为对任意的a ∈[-2,2],不等式f (x )≤1在[-1,0]上恒成立,所以 f (-1)≤1,即3-a +b ≤1.于是b ≤a -2在a ∈[-2,2]上恒成立.所以 b ≤-2-2, 即b ≤-4.因此满足条件的b 的取值范围是(-∞,-4].。
人教A版高中数学选修一教学质量评估 (2).docx

高中数学学习材料唐玲出品肇庆市中小学教学质量评估 2011—2012学年第二学期统一检测题高二数学(文科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知点P 的极坐标为)4,2(π,则点P 的直角坐标为A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2. 计算=-2)1(iA. 2iB. -2iC. 2+2iD. 2-2i3. 一物体作直线运动,其运动方程为t t t s 2)(2+-=,则t =0时其速度为A. -2B. -1C. 0D. 2 4. 设bi a z +=(R b a ∈,),则z 为纯虚数的必要不充分条件是A. a ≠0且b =0B. a ≠0且b ≠0C. a =0D. a =0且b ≠0 5. 直线⎩⎨⎧︒-=︒-=)20sin(,20cos 3t y t x (t 为参数)的倾斜角是A. 20︒B. 70︒C. 110︒D. 160︒6. 曲线3x y =在点P 处的切线斜率为k =3,则点P 的坐标为A.(2,8)B.(-2,-8)C.(1,1)或(-1,-1)D. )81,21(-- 7. 若x 是纯虚数,y 是实数,且i y y i x )3(12--=+-,则=+y xA. i 251+B. i 251+-C. i 251-D. i 251-- 8. 函数x x x f ln 2)(2-=的单调增区间是A. )21,0(B. ),21(+∞C. )21,21(-D. )21,(--∞和),21(+∞9. 函数x x x f -+=11)(,记)()(1x f x f =,)]([)(1x f f x f k k =+(*N k ∈),则=)(2012x f A. x 1- B. x C. 11+-x x D. xx -+1110.实数a ,b ,c 满足a +b +c =0,abc >0,则cb a 111++的值A. 一定是正数B. 可能是零C. 一定是负数D. 无法确定二、填空题:本大题共4小题,每小题5分,共20分. 11.已知复数i z 43+-=,则=||z ▲ . 12.圆心在)2,1(πA ,半径为1的圆的极坐标方程是 ▲ .13.定点A (-1,-1)到曲线⎩⎨⎧=+=θθsin cos 1y x (θ为参数)上的点的距离的最小值是 ▲ .14.设20πθ<<,已知θcos 21=a ,n n a a +=+21,则猜想n a 的值为 ▲ .三、解答题:本大题共6小题,共80分,解答应写出证明过程或演算步骤. 15.(本小题满分12分)随机抽取100个行人,了解他们的性别与对交通规则的态度之间的关系,得到如下的统计表:男行人 女行人 合计 遵守交通规则 31 49 80 不遵守交通规则19 1 20 合计5050100(1)求男、女行人遵守交通规则的概率分别是多少;(2)能否有99.9%的把握认为男、女行人遵守交通规则有差别?附:)(2k K P ≥0.10 0.05 0.025 0.01 0.005 0.001 k2.7063.8415.0246.6357.87910.828))()()(()(22d b c a d c b a bc ad n K ++++-=.16.(本小题满分12分)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4(1)求小李这5天的平均投篮命中率;(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.(线性回归方程a x b yˆˆˆ+=中系数计算公式∑∑==---=ni ini i ix xy y x xb 121)())((ˆ,x b y aˆˆ-=,其中x ,y 表示样本均值.17.(本小题满分14分)设函数c bx x a x x f ++-=23231)(,其中0>a ,曲线)(x f y =在点P (0,f (0))处的切线方程为1=y .(1)求b ,c 的值;(2)求函数)(x f 的单调区间.18.(本小题满分14分)设数列}{n a 的前n 项和为S n ,已知11=a ,n n a n S )1(2+=(*N n ∈).(1)求2a ,3a ,4a 的值; (2)猜想n a 的表达式,并加以证明.19.(本小题满分14分)如图,用铁丝弯成一个上面是半圆,下面是矩形的图形,其面积为a m 2. 为使所用材料最省,底宽应为多少?20.(本小题满分14分)已知函数xxx a x f +-+=11ln )(. (1)若函数)(x f 在(0,+∞)上单调递增,求实数a 的取值范围;(2)设0>≥q p ,求证:qp qp q p +-≥-ln ln .2011—2012学年第二学期统一检测题 高二数学(文科)参考答案及评分标准一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案 ABDCACDBBC二、填空题11. 5 12. θρsin 2= 13. 15- 14. 12cos2-n θ三、解答题15.(本小题满分12分)解:(1)男行人遵守交通规则的概率为62.05031=; (3分) 女行人遵守交通规则的概率为98.05049=. (6分) (2)25.2050502080)1949131(100))()()(()(222=⨯⨯⨯⨯-⨯=++++-=d c b a d b c a bc ad n K . (10分) 因为828.1025.202>=K ,所以有99.9%的把握认为男、女行人遵守交通规则有差别. (12分)16.(本小题满分12分)证明:(1)小李这5天的平均投篮命中率为5.054.06.06.05.04.0=++++=y . (4分)(2)小李这5天打篮球的平均时间3554321=++++=x (小时) (5分) 01.0210)1()2()1.0(21.011.000)1()1.0()2()())((ˆ22222121=+++-+--⨯+⨯+⨯+⨯-+-⨯-=---=∑∑==ni i ni i ix x y y x xb(7分)47.0301.05.0ˆˆ=⨯-=-=x b y a(9分) 所以47.001.0ˆˆˆ+=+=x a x b y(10分) 当x =6时,53.0ˆ=y,故预测小李该月6号打6小时篮球的投篮命中率为0.53. (12分)17.(本小题满分14分)解:(1)b ax x x f +-='2)( (2分)由题意,得⎩⎨⎧='=,0)0(,1)0(f f 即⎩⎨⎧==.0,1b c (6分)(2)由(1),得)()(2a x x ax x x f -=-='(a >0) (7分)当x ∈(-∞,0)时,0)(>'x f ; (9分) 当x ∈(0,a )时,0)(<'x f ; (11分) 当x ∈(a ,+∞)时,0)(>'x f . (13分)故函数)(x f 的单调增区间为(-∞,0)与(a ,+∞),单调减区间为(0,a ).(14分)18.(本小题满分14分)解:(1)因为11=a ,n n a n S )1(2+=(*N n ∈),所以,当n =2时,2213)(2a a a =+,得22=a ; (1分) 当n =3时,33214)(2a a a a =++,得33=a ; (2分) 当n =4时,443215)(2a a a a a =+++,得44=a . (3分)(2)猜想)(*N n n a n ∈=. (7分)由n n a n S )1(2+= ①,可得)2(211≥=--n na S n n ②, (8分) ①-②,得1)1(2--+=n n n na a n a , (10分) 所以1)1(-=-n n na a n ,即)2(11≥-=-n n a n a n n , (12分) 也就是1121121===-=-=--a n a n a n a n n n ,故)(*N n n a n ∈=. (14分)19.(本小题满分14分)解:如图,设矩形的底宽为x m ,则半圆的半径为2xm , 半圆的面积为28x πm 2,所以矩形的面积为)8(2x a π-m 2,所以矩形的另一边长为)8(x x a π-m. (2分) x m因此铁丝的长为xax x x a x xx l 2)41()8(22)(++=-++=πππ,πa x 80<<, (7分) 所以2241)(xax l -+='π. (9分) 令0241)(2=-+='xax l π,得π+±=48a x (负值舍去). (10分) 当)48,0(π+∈a x 时,0)(<'x l ;当)8,48(ππaa x +∈时,0)(>'x l . (12分) 因此,π+=48ax 是函数)(x l 的极小值点,也是最小值点. (13分) 所以,当底宽为π+48am 时,所用材料最省. (14分)20.(本小题满分14分)解:(1)函数)(x f 的定义域为(0,+∞). (1分)222)1(2)1()1(2)(x x xx a x x a x f +-+=+-='. (3分) 因为)(x f 在(0,+∞)上单调递增,所以0)(≥'x f 在(0,+∞)上恒成立,即02)1(2≥-+x x a 在(0,+∞)上恒成立. (5分)当x ∈(0,+∞)时,由02)1(2≥-+x x a 得2)1(2x xa +≥. (6分)设)0(212)1(2)(2>++=+=x xx x xx g ,所以21)(≤x g (当且仅当x =1时取等号),(7分) 所以21≥a ,即实数a 的取值范围为⎪⎭⎫⎢⎣⎡+∞,21. (8分) (2)要证q p q p q p +-≥-ln ln,只需证qp qp q p +-≥-2ln ln , (9分)只需证11ln 21+-≥qp q p q p ,只需证011ln 21≥+-+qp qp q p . (10分) 设xxx x h +-+=11ln 21)(,由(1)知)(x h 在(1,+∞)上单调递增, (12分) 又1≥q p ,所以0)1()(=≥h qph ,即011ln 21≥+-+qp q pq p 成立, (13分) 所以当0>≥q p ,qp qp q p +-≥-ln ln 成立. (14分)。
【人教A版】高中数学同步辅导与检测:选修1-2全集单元评估验收(二)

单元评估验收(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列有关“三段论”推理“凡是自然数都是整数,4是自然数,所以4是整数”的说法正确的是()A.推理正确B.推理形式错误C.大前提错误D.小前提错误解析:三段论中大前提、小前提及推论形式均正确,所以结论正确.答案:A2.用反证法证明命题“2+3是无理数”时,假设正确的是()A.假设2是有理数B.假设3是有理数C.假设2或3是有理数D.假设2+3是有理数解析:假设应为“2+3不是无理数”,即“2+3是有理数”.答案:D3.下列推理过程属于演绎推理的为()A.老鼠、猴子与人在身体结构上有相似之处,某医药先在猴子身上试验,试验成功后再用于人体试验B.由1=12,1+3=22,1+3+5=32…得出1+3+5+…+(2n-1)=n2C.由三角形的三条中线交于一点联想到四面体四条中线(四面体每一个顶点与对面重心的连线)交于一点D.通项公式形如a n=cq n(cq≠0)的数列{a n}为等比数列,则数列{-2n}为等比数列解析:A是类比推理,B是归纳推理,C是类比推理,D为演绎推理.答案:D4.已知c>1,a=c+1-c,b=c-c-1,则正确的结论是()A.a>b B.a<bC.a=b D.a,b大小不定解析:a=c+1-c=1c+1+c,b=c-c-1=1c+c-1,因为c+1>c-1>0,所以c+1+c>c+c-1>0,所以a<b.答案:B5.求证:3+7<25的证明过程如下:因为3+7和25都是正数,所以为了证明3+7<25,只需证明(3+7)2<(25)2,展开得10+221<20,即21<5,只需证明21<25.因为21<25成立, 所以不等式3+7<25成立.上述证明过程应用了( )A .综合法B .分析法C .反证法D .综合法、分析法合用解析:结合证明特征可知,上述证明过程用了分析法,其属于直接证明法.答案:B6.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2a 3…a 9=2×9D .a 1+a 2+…+a 9=2×9 解析:由等差数列性质,有a 1+a 9=a 2+a 8=…=2a 5.易知选项D 正确.答案:D7.设f (x )(x ∈R)为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52 D .5解析:因为f (x +2)=f (x )+f (2),所以令x =-1,则有f (1)=f (-1)+f (2).。
【人教A版】高中数学同步辅导与检测:必修1全集单元评估验收(二)

单元评估验收(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.设a ∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x a 的定义域为R 且为奇函数的所有a 值为( )A .1,3B .-1,1C .-1,3D .-1,1,3 解析:易知y =x 和y =x 3满足题设条件.答案:A2.函数y =1log 0.5(4x -3)的定义域为( ) A.⎝ ⎛⎭⎪⎫34,1 B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞)D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞) 解析:要使函数有意义,应满足⎩⎪⎨⎪⎧log 0.5(4x -3)>0,4x -3>0,即⎩⎪⎨⎪⎧0<4x -3<1,4x -3>0,解得34<x <1. 答案:A3.已知幂函数y =f (x )的图象过点(9,3),则log 4f (2)的值为( ) A.14 B .-14C .2D .-2 解析:设幂函数为f (x )=x α,则有3=9α,得α=12,所以f (x )=x 12,f (2)=2,所以log 4f (2)=log 42=log 4414=14. 答案:A 4.函数y =2|x |的大致图象是( )解析:易知函数y =2|x |是偶函数,其图象关于y 轴对称,在区间(0,+∞)上是增函数,观察图象知B 选项正确.答案:B5.函数f (x )=|log 12x |的单调递增区间是( )A.⎝ ⎛⎭⎪⎫0,12 B .(0,1)C .(0,+∞)D .[1,+∞) 解析:画f (x )=|log 12x |的图象如图所示:由图象知单调增区间为[1,+∞).答案:D6.计算⎝ ⎛⎭⎪⎫51160.5+(-1)-1÷0.75-2+⎝ ⎛⎭⎪⎫21027-23=( )A .-49B .-94 C.49 D.94解析:原式=94+(-1)×⎝ ⎛⎭⎪⎫342+⎝ ⎛⎭⎪⎫43-2=94-916+916=94. 答案:D7.已知函数f (x )=e -x -e x x,则其图象( ) A .关于x 轴对称B .关于y =x 轴对称C .关于原点对称D .关于y 轴对称解析:函数的定义域为{x |x ≠0},f (-x )=e x -e -x -x=e -x -e x x =f (x ),所以函数f (x )的偶函数,其图象关于y 轴对称.答案:D8.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:依据给出的分段函数,分别求出f (-2)与f (log 212)的值,然后相加即可.∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6. ∴f (-2)+f (log 212)=3+6=9.故选C.答案:C9.已知方程log 2x +log 2(x -1)=1的解集为M ,方程2·2x +1-9·2x。
【人教A版】高中数学同步辅导与检测:选修2第二章章末评估验收(二)

章末评估验收(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列随机试验的结果,不能用离散型随机变量表示的是( ) A .将一枚均匀正方体骰子掷两次,所得点数之和 B .某篮球运动员6次罚球中投进的球数 C .电视机的使用寿命D .从含有3件次品的50件产品中,任取2件,其中抽到次品的件数解析:易知电视机的使用寿命无法一一列举,故不能用离散型随机变量表示.答案:C2.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跑的概率的两倍,如图所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )A.13B.29C.49D.827解析:青蛙跳三次要回到A 只有两条途径: 第一条:按A →B →C ,P 1=23×23×23=827;第二条,按A →C →B , P 2=13×13×13=127.所以跳三次之后停在A 叶上的概率为 P =P 1+P 2=827+127=13.答案:A3.已知离散型随机变量ξ的概率分布列如下:则数学期望E (ξ)A .1 B .0.6 C .2+3m D .2.4 解析:由题意得m =1-0.5-0.2=0.3,所以E (ξ)=1×0.5+3×0.3+5×0.2=2.4,故选D.答案:D4.投掷3枚硬币,至少有一枚出现正面的概率是( ) A.38 B.12 C.58 D.78解析:P (至少有一枚正面)=1-P (三枚均为反面)=1-⎝ ⎛⎭⎪⎫123=78.答案:D5.已知随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则D (2X +1)等于( )A .6B .4C .3D .9解析:因为D (2X +1)=D (X )×22=4D (X ),D (X )=6×12×⎝ ⎛⎭⎪⎫1-12=32,所以D (2X +1)=4×32=6.答案:A6.在比赛中,如果运动员A 胜运动员B 的概率是23,那么在五次比赛中运动员A 恰有三次获胜的概率是( )A.40243 B.80243 C.110243 D.20243解析:所求概率为C 35⎝ ⎛⎭⎪⎫233×⎝⎛⎭⎪⎫1-232=80243. 答案:B7.设X ~N ⎝ ⎛⎭⎪⎫-2,14,则X 落在(-∞,-3.5)∪(-0.5,+∞)内的概率是( )A .95.45%B .99.73%C .4.55%D .0.27%解析:由X ~N ⎝ ⎛⎭⎪⎫-2,14知,μ=-2,σ=12,则P (-3.5≤X ≤-0.5)=P ⎝⎛⎭⎪⎫-2-3×12≤X ≤-2+3×12=0.997 3.故所求概率为1-0.997 3=0.002 7=0.27%. 答案:D8.有编号分别为1、2、3、4、5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为( )A.521B.27C.13D.821解析:从10个球中任取4个,取法有C 410=210(种),取出的编号互不相同的取法有C 45·24=80(种),所以所求概率P =80210=821.答案:D9.如果随机变量ξ表示抛掷一个各面分别有1,2,3,4,5,6的均匀的正方体向上面的数字,那么随机变量ξ的均值为( )A .2.5B .3C .3.5D .4解析:P (ξ=k )=16(k =1,2,3,…,6),所以E (ξ)=1×16+2×16+…+6×16=(1+2+…+6)×16=3.5.答案:C10.一批型号相同的产品,有2件次品,5件正品,每次抽一件测试,将2件次品全部区分出后停止,假定抽后不放回,则第5次测试后停止的概率是( )A.121B.521C.1021D.2021解析:P =27×56×45×34×13+57×26×45×34×13+57×46×25×34×13+57×46×35×24×13+57×46×35×24×13=521. 答案:B11.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为( )A .(90,100]B .(95,125]C .(100,120]D .(105,115]解析:因为X ~B (110,52),所以μ=110,σ=5. 所以5760=0.95≈P (μ-2σ<X ≤μ+2σ)=P (100<X ≤120).答案:C12.某次国际象棋比赛规定,胜一局得3分,平一局得1分,负一局得0分,某参赛队员比赛一局胜的概率为a ,平局的概率为b ,负的概率为c (a ,b ,c ∈[0,1)),已知他比赛一局得分的数学期望为1,则ab 的最大值为( )A.13B.12C.112D.16解析:由条件知,3a +b =1,所以ab =13(3a )·b ≤13⎝⎛⎭⎪⎫3a +b 22=112,等号在3a =b =12,即a =16,b =12时成立.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.如果随机变量ξ服从N (μ,σ),且E (ξ)=3,D (ξ)=1,那么μ=________,σ=________.解析:因为ξ~N (μ,σ),所以E (ξ)=μ=3,D (ξ)=σ2=1, 所以σ=1. 答案:3 114.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,敌机被击中的概率为________.解析:P (敌机被击中)=1-P (甲未击中敌机)P (乙未击中敌机)=1-(1-0.6)(1-0.5)=1-0.2=0.8.答案:0.815.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=________.解析:由条件知,P(A)=34,P(AB)=C23C24=12,所以P(B|A)=P(AB)P(A)=23.答案:2 316.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.解析:此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.答案:0.128三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某班有6名班干部,其中男生4人,女生2人,任选3人参加学校的义务劳动.(1)设所选3人中女生人数为X,求X的分布列;(2)求男生甲或女生乙被选中的概率.解:(1)X的所有可能取值为0,1,2,依题意得P(X=0)=C34C36=15,P(X=1)=C24C12C36=35,P(X=2)=C14C22C36=15.所以X的分布列为:(2)设“甲、乙都不被选中”为事件C,则P(C)=C34C36=15,所以所求概率为P(C)=1-P(C)=1-15=45.18.(本小题满分12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)解:(1)由古典概型的概率计算公式知所求概率为P=C34+C33 C39=5 84.(2)X的所有可能值为1,2,3,且P(X=1)=C24C15+C34C39=1742;P(X=2)=C13C14C12+C23C16+C33C39=4384;P(X=3)=C22C17C39=112.故X的分布列为:从而E (X )=1×1742+2×4384+3×112=4728.19.(本小题满分12分)某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ).解:(1)ξ的所有可能取值为0,1,2,依题意得P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15.所以ξ的分布列为:(2)设“则P (C )=C 34C 36=420=15.所以所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12;P (B |A )=C 14C 25=410=25.20.(本小题满分12分)某城市有甲、乙、丙3个旅游景点,一位游客浏览这3个景点的概率分别是0.4,0.5,0.6,且游客是否浏览哪个景点互不影响,用X 表示该游客离开该城市时游览的景点数与没有游览和景点数之差的绝对值.(1)求X 的分布列及期望;(2)记“f (x )=2Xx +4在[-3,-1]上存在x 0,使f (x 0)=0”为事件A ,求事件A 的概率.解:(1)设游客游览甲、乙、丙景点分别为事件A 1,A 2,A 3,已知A 1,A 2,A 3相互独立,且P (A 1)=0.4,P (A 2)=0.5,P (A 3)=0.6.游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以X 的可能取值为1,3,则P (X =3)=P (A 1A 2A 3)+=P (A 1)·P (A 2)·P (A 3)+P ()·P ()·P ()=2×0.4×0.5×0.6=0.24.P (X =1)=1-0.24=0.76. 所以分布列为:X13P 0.76 0.24所以E (X )=1×0.76(2)因为f (x )=2Xx +4在[-3,-1]上存在x 0, 使得f (x 0)=0,所以f (-3)·f (-1)≤0,即(-6X +4)(-2X +4)≤0, 解得23≤X ≤2.所以P (A )=P ⎝ ⎛⎭⎪⎫23≤X ≤2=P (X =1)=0.76.21.(本小题满分12分)甲、乙两射击运动员进行射击比赛,射击相同的次数,已知两运动员射击的环数X稳定在7,8,9,10环.他们的这次成绩画成频率分布直方图分别如图1和图2所示:(1)根据这次比赛的成绩频率分布直方图推断乙击中8环的概率P(X乙=8),并求甲、乙同时击中9环以上(包括9环)的概率;(2)根据这次比赛的成绩估计甲、乙谁的水平更高.解:(1)由題图2可知:P(X乙=7)=0.2,P(X乙=9)=0.2,P(X乙=10)=0.35.所以P(X乙=8)=1-0.2-0.2-0.35=0.25.同理P(X甲=7)=0.2,P(X甲=8)=0.15,P(X甲=9)=0.3.所以P(X甲=10)=1-0.2-0.15-0.3=0.35.因为P(X甲≥9)=0.3+0.35=0.65,P(X乙≥9)=0.2+0.35=0.55.所以甲、乙同时击中9环以上(包含9环)的概率为P=P(X甲≥9)·P(X乙≥9)=0.65×0.55=0.357 5.(2)因为E(X甲)=7×0.2+8×0.15+9×0.3+10×0.35=8.8,E(X乙)=7×0.2+8×0.25+9×0.2+10×0.35=8.7,E(X甲)>E(X乙),所以估计甲的水平更高.22.(本小题满分12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:得到如下统计表:(1)记P(A)的估计值;(2)记B为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30 200=0.3,故P(B)的估计值为0.3.(3)由所给数据得:0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.。
人教A版高中数学选修1-1:单元质量评估(二) Word版含答案

温馨提示:此套题为Word版,请按住Ctr l,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(二)第二章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆+=1与双曲线-=1有相同的焦点,则k应满足的条件是( )A.k>3B.2<k<3C.k=2D.0<k<2【解析】选C. k>0,=,所以k=2.2.(2016·菏泽高二检测)若双曲线的顶点为椭圆x2+=1长轴的端点,且双曲线的离心率与该椭圆的离心率的积为1,则双曲线的方程为( )A.x2-y2=1B.y2-x2=1C.x2-y2=2D.y2-x2=2【解析】选D.由题意设双曲线方程为-=1,离心率为e,椭圆x2+=1长轴端点为(0,),所以a=,又椭圆的离心率为,所以双曲线的离心率为,所以c=2,b=,则双曲线的方程为y2-x2=2.3.(2016·浙江高考)已知椭圆C1:+y2=1(m>1)与双曲线C2:-y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<1【解题指南】根据椭圆与双曲线离心率的定义求解,注意a2,b2与c2的关系.【解析】选A.由题意知m2-1=n2+1,即m2=n2+2,(e1e2)2=·=,因为m2=n2+2,m>1,n>0,所以m>n,(e1e2)2>1,所以e1e2>1.4.(2016·潍坊高二检测)设椭圆+=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为( )A.+=1B.+=1C.+=1D.+=1【解析】选B.因为y2=8x的焦点为(2,0),所以+=1的右焦点为(2,0),所以m>n且c=2.又e==,所以m=4.因为c2=m2-n2=4,所以n2=12.所以椭圆方程为+=1.【补偿训练】(2016·成都高二检测)已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M,N两点,MN中点的横坐标为-,则此双曲线的方程是( )A.-=1B.-=1C.-=1D.-=1【解题指南】先根据题意设出双曲线的方程-=1,然后与直线方程联立方程组,消元得二元一次方程,根据根与系数的关系及MN中点的横坐标建立a,b的一个方程,又双曲线中有c2=a2+b2,则另得a,b的一个方程,最后解a,b的方程组即得双曲线方程.【解析】选B.设双曲线方程为-=1,将y=x-1代入-=1,整理得(b2-a2)x2+2a2x-a2-a2b2=0,由根与系数的关系得x1+x2=,则==-.又c2=a2+b2=7,解得a2=2,b2=5,所以双曲线的方程为-=1.5.P是长轴在x轴上的椭圆+=1上的点,F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|·|PF2|的最大值与最小值之差一定是( )A.1B.a2C.b2D. c2【解析】选D.由椭圆的几何性质得|PF1|∈,|PF1|+|PF2|=2a,所以|PF1|·|PF2|≤=a2,当且仅当|PF1|=|PF2|时取等号.|PF1|·|PF2|=|PF1|(2a-|PF1|)=-|PF1|2+2a|PF1|=-(|PF1|-a)2+a2≥-c2+a2=b2,所以|PF1|·|PF2|的最大值与最小值之差为a2-b2=c2.6.(2016·天津高二检测)已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p= ( )A.1B.C.2D.3【解析】选 C.因为e=2,所以b2=3a2,双曲线的两条渐近线方程为y=±x,不妨设A=,B,则AB=p,又三角形的高为,则S△AOB=××p=,即p2=4,又因为p>0,所以p=2.7.(2016·东营高二检测)已知点P是抛物线y2=-8x上一点,设点P到此抛物线准线的距离是d1,到直线x+y-10=0的距离是d2,则d1+d2的最小值是( )A. B.2C.6D.3【解析】选C.抛物线y2=-8x的焦点F(-2,0),根据抛物线的定义知,d1+d2=|PF|+d2,显然当由点F向直线x+y-10=0作垂线与抛物线的交点为P时,d1+d2取到最小值,即=6.8.若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k等于( )A.2或-1B.-1C.2D.1±【解析】选C.由消去y得,k2x2-4(k+2)x+4=0,故Δ=2-4k2×4=64(1+k)>0,解得k>-1,由x1+x2==4,解得k=-1或k=2,又因为k>-1,故k=2.【易错警示】本题易忽略Δ>0而错选A.9.(2016·邯郸高二检测)设双曲线-=1(a>0,b>0)的虚轴长为2,焦距为2,则双曲线的渐近线方程为( )A.y=±xB.y=±xC.y=±xD.y=±2x【解析】选A.由题意得解得所以a==,因此双曲线的方程为-y2=1,所以渐近线方程为y=±x.10.(2015·福建高考)已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是( )A. B.C. D.【解析】选A.不妨设左焦点为F2,连接AF2,BF2,由椭圆的对称性可知四边形AFBF2的对角线互相平分,所以四边形AFBF2为平行四边形,所以+=+=2a=4,所以a=2,设M(0,b),所以d=b≥⇒b≥1,所以e==≤=,又e∈(0,1),所以e∈.11.(2016·哈尔滨高二检测)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A,B两点.若AB的中点坐标为(1,-1),则E的标准方程为( )A.+=1B.+=1C.+=1D.+=1【解析】选D.设A点坐标为(x1,y1),B点坐标为(x2,y2),所以两式相减得,=,即=,因为x1+x2=2,y1+y2=-2,所以k==,又因为k==,所以=,又因为c2=a2-b2=2b2-b2=b2,c2=9,所以b2=9,a2=18,即E的标准方程为+=1.12.(2016·宝鸡高二检测)设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF 为直径的圆过点A(0,2),则C的方程为( )A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x【解析】选C.由已知得F,A(0,2),M,因为AF⊥AM,所以k AF·k AM=-1,即×=-1,所以-8y0+16=0,所以y0=4,所以M,因为|MF|=5,所以5=,所以=9.所以-=3或-=-3,所以9p2-36p-64=0,①或9p2+36p-64=0,②由①得p=-(舍),p=.由②得p=,p=-,所以C的方程为y2=4x或y2=16x.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.椭圆mx2+ny2=1与直线l:x+y=1交于M,N两点,过原点与线段MN中点的直线斜率为,则= .【解析】设M(x1,y1),N(x2,y2),所以m+n=1 ①m+n=1 ②又因为=-1,所以①-②得:m=n·,因为==,所以m=n,所以=.答案:14.直线y=kx+1(k∈R)与椭圆+=1恒有公共点,则m的取值范围为.【解析】将y=kx+1代入椭圆方程,消去y并整理,得(m+5k2)x2+10kx+5-5m=0.由m>0,5k2≥0,知m+5k2>0,故Δ=100k2-4(m+5k2)(5-5m)≥0对k∈R恒成立.即5k2≥1-m对k∈R恒成立,故1-m≤0,所以m≥1.又因为m≠5,所以m的取值范围是m≥1且m≠5.答案:m≥1且m≠5【易错警示】本题易忽略隐含条件m≠5而出错.15.(2015·山东高考)过双曲线C:-=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P,若点P的横坐标为2a,则C的离心率为.【解题指南】本题是双曲线性质的综合应用,应从焦点和渐近线出发构造a,b,c的关系,进而求出离心率e.【解析】将y=(x-c)代入-=1消去y得-=1,因为x P=2a<c,所以-=1,化简得3a2=(2a-c)2,即a=c-2a,所以e=2+.答案:2+【补偿训练】(2016·济宁高二检测)已知椭圆+=1(a>b>0),F1,F2分别是椭圆的左、右焦点,椭圆上总存在点P使得PF1⊥PF2,则椭圆的离心率的取值范围为( )A. B.C. D.【解析】选A.由PF1⊥PF2,知△F1PF2是直角三角形,所以|OP|=c≥b,即c2≥a2-c2,所以a≤c,因为e=,0<e<1,所以≤e<1.16.(2015·浙江高考)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.【解题指南】利用已知条件求出点Q的坐标,从而求出a,b,c的关系.【解析】设F(c,0)关于直线y=x的对称点为Q(m,n),则有解得m=,n=,所以Q在椭圆上,即有+=1,解得a2=2c2,所以离心率e==.答案:三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线的顶点在原点,它的准线过双曲线-=1的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交点为P,求抛物线方程和双曲线方程.【解析】依题意,设抛物线方程为y2=2px(p>0),因为点在抛物线上,所以6=2p×,所以p=2,所以所求抛物线方程为y2=4x.因为双曲线左焦点在抛物线的准线x=-1上,所以c=1,即a2+b2=1,又点在双曲线上,所以-=1,由解得a2=,b2=.所以所求双曲线方程为4x2-y2=1.【补偿训练】若已知椭圆+=1与双曲线x2-=1有相同的焦点,又椭圆与双曲线交于点P,求椭圆及双曲线的方程.【解析】由椭圆与双曲线有相同的焦点得10-m=1+b,即m=9-b,①又因为点P在椭圆、双曲线上,所以y2=m,②y2=.③解由①②③组成的方程组得m=1,b=8,所以椭圆方程为+y2=1,双曲线方程为x2-=1.18.(12分)求以直线x+2y=0为渐近线,且截直线x-y-3=0所得弦长为的双曲线的标准方程.【解析】由于双曲线的渐近线方程为x+2y=0,故可设双曲线方程为x2-4y2=λ(λ≠0).设直线x-y-3=0与双曲线的交点为A(x1,y1),B(x2,y2).联立方程组消去y,整理得3x2-24x+36+λ=0.由Δ=(-24)2-3×4(36+λ)>0,解得λ<12.由根与系数关系可得代入弦长公式中,|AB|=|x1-x2|=·=·=,于是=,解得λ=4(与λ<12符合).故所求的双曲线的标准方程为-y2=1.19.(12分)已知过抛物线y2=2px(p>0)的焦点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点,且|AB|=9.(1)求该抛物线的方程.(2)O为坐标原点,C为抛物线上一点,若=+λ,求λ的值.【解析】(1)直线AB的方程是y=2,与y2=2px联立,从而有4x2-5px+p2=0,所以x1+x2=,由抛物线定义得|AB|=x1+x2+p=9,所以p=4,从而抛物线方程是y2=8x.(2)由p=4,方程4x2-5px+p2=0可化为x2-5x+4=0,从而x1=1,x2=4,y1=-2,y2=4,从而A(1,-2),B(4,4).设=(x3,y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2),又=8x3,即2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.20.(12分)已知点P(3,4)是椭圆+=1(a>b>0)上的一点,F1,F2为椭圆的两焦点,若PF1⊥PF2,试求:(1)椭圆的方程.(2)△PF1F2的面积.【解析】(1)令F1(-c,0),F2(c,0)(c>0),则b2=a2-c2.因为PF1⊥PF2,所以·=-1,即·=-1,解得c=5,所以设椭圆方程为+=1.因为点P(3,4)在椭圆上,所以+=1.解得a2=45或a2=5.又因为a>c,所以a2=5(舍去).故所求椭圆方程为+=1.(2)由椭圆定义知|PF1|+|PF2|=6,①又|PF1|2+|PF2|2=|F1F2|2=100,②①2-②得2|PF1|·|PF2|=80,所以=|PF1|·|PF2|=20.【补偿训练】已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA 与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.【解析】(1)将(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求的抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.另一方面,由直线OA到l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.21.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线y=x2的焦点,离心率为.(1)求椭圆C的标准方程.(2)过椭圆C的右焦点F作直线l交椭圆C于A,B两点,交y轴于点M,若=m,=n,求m+n的值.【解析】(1)设椭圆C的标准方程为+=1(a>b>0).抛物线方程可化为x2=4y,其焦点为(0,1),则椭圆C的一个顶点为(0,1),即b=1.由e===.得a2=5,所以椭圆C的标准方程为+y2=1.(2)易求出椭圆C的右焦点F(2,0),设A(x1,y1),B(x2,y2),M(0,y0),显然直线l的斜率存在,设直线l的方程为y=k(x-2),代入方程+y2=1,得(1+5k2)x2-20k2x+20k2-5=0.所以x1+x2=,x1x2=.又=(x1,y1-y0),=(x2,y2-y0),=(x1-2,y1),=(x2-2,y2).因为=m,=n,所以m=,n=,所以m+n=,又2x1x2-2(x1+x2)==-,4-2(x1+x2)+x1x2=4-+=,所以m+n=10.22.(12分)(2016·北京高考)已知椭圆C:+=1过A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率.(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【解题指南】(1)把A,B两点代入可求得a,b.(2)设P(x0,y0),表示出直线AP,BP方程,求出点M,N坐标,表示出面积.再利用点P在椭圆上化简整理为定值.【解析】(1)把A(2,0),B(0,1)分别代入椭圆方程得a=2,b=1.所以椭圆C的方程为+y2=1. 因为c==,所以离心率e==.(2)设P(x0,y0),其中x0<0,y0<0.则直线AP方程为y=(x-2),直线BP方程为y=x+1.所以M,N.所以|AN|=2+,|BM|=+1.所以四边形ABNM的面积为S=|AN||BM|==××==.因为点P在椭圆C上,所以=4-4.代入上式得S ===2.因此,四边形ABNM的面积为定值2.关闭Word文档返回原板块高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
人教A版高中数学选修1-1全册同步练习及单元检测含答案
人教版高中数学选修1~1 全册同步练习及检测目录1.1命题及其关系1.2充分条件与必要条件11.2充分条件与必要条件21.3_1.4试题1.3简单的逻辑联结词1.4全称量词与存在量词同步测试第1章《常用逻辑用语》单元测试(1)第1章《常用逻辑用语》单元测试(2)第1章《常用逻辑用语》单元测试(3)第1章《常用逻辑用语》单元测试(4)2.1椭圆《椭圆的几何性质》2.1椭圆2.2双曲线双曲线几何性质2.2双曲线双曲线及其标准方程2.3抛物线习题精选2.3抛物线抛物线及其标准方程第2章《圆锥曲线与方程》单元测试(1)第2章《圆锥曲线与方程》单元测试(2)3.1变化率与导数3.2.2导数的运算法则3.2导数的计算3.3.3函数的最大值与最小值3.3《导数在研究函数中的应用》3.4生活中的优化问题举例第3章《导数及其应用》单元测试(1)第3章《导数及其应用》单元测试(2)1.1 命题及其关系测试练习第1题. 已知下列三个方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.答案:312a a a⎧⎫--⎨⎬⎩⎭或,剠.第2题. 若a b c ∈R ,,,写出命题“200ac ax bx c <++=若则,”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:()200ax bx c a b c ac ++=∈<R 有实根,则若,,,假;否命题:200ac ax bx c ++=若则,…(a b c ∈R ,,)没有实数根,假;逆否命题:()200ax bx c a b c ac ++=∈R 若没有两实根,则,,…,真.第3题. 在命题22a b a b >>若则“,”的逆命题、否命题、逆否命题中,假命题的个数为.答案:3.第4题. 用反证法证明命题“三角形的内角中至少有一个钝角”时反设是.答案:假设三角形的内角中没有钝角.第5题. 命题“若0xy =,则0x =或0y =”的逆否命题是. 答案:若0x ≠且0y ≠,则0xy ≠.第6题. 命题“若a b ,>则55a b -->”的逆否命题是( ) (A)若a b ,<则55a b --<(B)若55a b --,>则a b >(C) 若a b ,…则55a b --… (D)若55a b --,…则a b …答案:D第7题. 命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )(A)逆命题 (B)否命题 (C)逆否命题 (D)无关命题答案:A第8题. 命题“若60A ∠=,则ABC △是等边三角形”的否命题是( ) (A)假命题(B)与原命题同真同假(C)与原命题的逆否命题同真同假 (D)与原命题的逆命题同真同假答案:D第9题. )(A) (B)是有理数(C) (D)答案:D第10题. 命题“对顶角相等”的逆命题、否命题、逆否命题中,真命题是( ) (A)上述四个命题 (B)原命题与逆命题 (C)原命题与逆否命题 (D)原命题与否命题答案:C第11题. 原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是( ) (A)原命题是真命题 (B)逆命题是假命题 (C) 否命题是真命题 (D)逆否命题是真命题答案:C第12题. 命题“若a A b B ∈∈则,”的否定形式是( ) (A)a A b B ∉∉若则, (B)a A b B ∈∉若则, (C)a A b B ∈∈若则, (D)b A a B ∉∉若则,答案:B第13题. 与命题“能被6整除的整数,一定能被3整除”等价的命题是( ) (A)能被3整除的整数,一定能被6整除 (B)不能被3整除的整数,一定不能被6整除 (C)不能被6整除的整数,一定不能被3整除 (D)不能被6整除的整数,不一定能被3整除答案:B第14题. 下列说法中,不正确的是( ) (A)“若p q 则”与“若q p 则”是互逆的命题 (B)“若非p q 则非“与“若q p 则”是互否的命题 (C)“若非p q 则非”与“若p q 则”是互否的命题 (D)“若非p q 则非”与“若q p 则”是互为逆否的命题答案:B第15题. 以下说法错误的是( )(A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题 (B)如果一个命题的否命题为假命题,那么它本身一定为真命题(C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数 (D)一个命题的逆命题、否命题、逆否命题可以同为假命题答案:B第16题. 下列四个命题:⑴“若220x y +=,则实数x y ,均为0”的逆命题;⑵“相似三角形的面积相等“的否命题 ; ⑶“A B A A B =⊆ 则,”逆否命题;⑷“末位数不是0的数可被3整除”的逆否命题,其中真命题为( ) (A) ⑴⑵ (B)⑵⑶ (C)⑴⑶ (D)⑶⑷答案:C第17题. 命题“a b ,都是偶数,则a b +是偶数”的逆否命题是.答案:a b +不是偶数则a b ,不都是偶数.第18题. 已知命题:33p …;:34q >,则下列选项中正确的是() A .p 或q 为真,p 且q 为真,非p 为假; B .p 或q 为真,p 且q 为假,非p 为真; C .p 或q 为假,p 且q 为假,非p 为假; D .p 或q 为真,p 且q 为假,非p 为假答案:D第19题. 下列句子或式子是命题的有()个.①语文和数学;②2340x x --=;③320x ->;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上. A.1个 B.3个 C.5个 D.2个答案:A第20题. 命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有( ). A.①,②,④ B.①,④ C.②,④ D.④答案:A第21题. 若命题p 是的逆命题是q ,命题q 的否命题是r ,则q 是r 的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对答案:B第22题. 如果命题“p 或q ”与命题“非p ”都是真命题,那么q 为 命题.答案:真第23题. 下列命题:①“若1xy =,则x ,y 互为倒数”的逆命题;②4边相等的四边形是正方形的否命题;③“梯形不是平行四边形”的逆否命题;④“22ac bc >则a b >”的逆命题,其中真命题是 .答案:①,②,③第24题. 命题“若0ad =,则0a =或0b =”的逆否命题是 ,是 命题.答案:若0a ≠且0b ≠,则0ab ≠,真第25题. 已知命题:p N Z Ü,:{0}q ∈N ,由命题p ,q 构成的复合命题“p 或q ”是 ,是 命题;“p 且q ”是 ,是 命题;“非p ”是 ,是 命题.答案:p 或q :N Z Ü或{0}∈N ,为真;p 且q :N Z Ü且{0}∈N ,为假;非:p N Z Ú或=N Z ,为假.第26题. 指出下列复合命题构成的形式及构成它的简单命题,并判断复合命题的真假. (1)23≤;(2)()A A B Ú;(3)1是质数或合数;(4)菱形对角线互相垂直平分.答案:(1)这个命题是“p 或q ”形式,p :23<,q :23=.p 真q 假,p ∴或q 为真命题.(2)这个命题是“非p ”形式,:()p A A B ⊆ ,p 为真,∴非p 是假命题.(3)这个命题形式是p 或q 的形式,其中:1p 是命 数,:1q 是质数.因为p 假q 假,所以“p 或q ”为假命题.(4)这个命题是“p 且q ”形式,:p 菱形对角线互相垂直;:q 菱形对角线互相平分. 因为p 真q 真,所以“p 且q ”为真命题.第27题. 如果p ,q 是2个简单命题,试列出下列9个命题的直值表:(1)非p ;(2)非q ;(3)p 或q ;(4)p 且q ;(5)“p 或q ”的否定;(6)“p 且q ”的否定;(7)“非p 或非答案:第28题. 设命题为“若0m >,则关于x 的方程20x x m +-=有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.答案:否命题为“若0m >,则关于x 的方程20x x m +-=没有实数根”; 逆命题为“若关于x 的方程20x x m +-=有实数根,则0m >”; 逆否命题“若关于x 的方程20x x m +-=没有实数根,则0m ≤”. 由方程的判别式14m =+ 得0> ,即14m >-,方程有实根. 0m ∴>使140m +>,方程20x x m +-=有实数根,∴原命题为真,从而逆否命题为真.但方程20x x m +-=有实根,必须14m >-,不能推出0m >,故逆命题为假.1.2 充分条件与必要条件测试练习第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.1.2 充分条件与必要条件 同步测试第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.高中新课标数学选修(1-1)1.3~1.4测试题一、选择题1.若命题:21()p m m -∈Z 是奇数,命题:21()q n n +∈Z 是偶数,则下列说法正确的是( )A.p q ∨为真 B.p q ∧为真 C.p ⌝为真D.q ⌝为假答案:A2.在下列各结论中,正确的是( )①“p q ∧”为真是“p q ∨”为真的充分条件但不是必要条件; ②“p q ∧”为假是“p q ∨”为假的充分条件但不是必要条件; ③“p q ∨”为真是“p ⌝”为假的必要条件但不充分条件; ④“p ⌝”为真是“p q ∧”为假的必要条件但不是充分条件. A.①② B.①③ C.②④ D.③④ 答案:B3.由下列命题构成的“p q ∨”,“p q ∧”均为真命题的是( ) A.:p 菱形是正方形,:q 正方形是菱形 B.:2p 是偶数,:2q 不是质数 C.:15p 是质数,:4q 是12的约数 D.{}:p a a b c ∈,,,{}{}:q a a b c ⊆,, 答案:D4.命题:p 若a b ∈R ,,则1a b +>是1a b +>的充分条件但不是必要条件,命题:q 函数y =的定义域是(][)13--+ ,,∞∞,则下列命题( )A.p q ∨假B.p q ∧真C.p 真,q 假D.p 假,q 真答案:D5.若命题:p x ∀∈R ,22421ax x a x ++-+≥是真命题,则实数a 的取值范围是( )A.3a -≤或2a ≥ B.2a ≥ C.2a >-D.22a -<<答案:B6.若k M ∃∈,对x ∀∈R ,210kx kx --<是真命题,则k 的最大取值范围M 是( ) A.40k -≤≤ B.40k -<≤ C.40k -<≤D.40k -<<答案:C 二、填空题7.命题“全等三角形一定相似”的否命题是 ,命题的否定是 . 答案:两个三角形或不全等,则不一定相似;两个全等三角形不一定相似8.下列三个特称命题:(1)有一个实数x ,使2440x x ++=成立;(2)存在一个平面与不平行的两条直线都垂直;(3)有些函数既是奇函数又是偶函数.其中真命题的个数为 . 答案:29.命题p q ∧是真命题是命题p q ∨是真命题的 (填“充分”、“必要”或“充要”)条件. 答案:充分10.命题:p x ∃∈R ,2250x x ++<是 (填“全称命题”或“特称命题”),它是 命题(填“真”或“假”),它的否定命题:p ⌝ ,它是 命题(填“真”或“假”).答案:特称命题;假;x ∀∈R ,2250x x ++≥;真11.若x ∀∈R ,11x x a -++>是真命题,则实数a 的取值范围是 .答案:(2)-,∞ 12.若x ∀∈R ,2()(1)x f x a =-是单调减函数,则a 的取值范围是 .答案:(1)- 三、解答题13.已知命题2:10p x mx ++=有两个不相等的负根,命题2:44(2)10q x m x +-+=无实根,若p q ∨为真,p q ∧为假,求m 的取值范围.解:210x mx ++=有两个不相等的负根24020m m m ⎧->⇔⇔>⎨-<⎩,. 244(2)10x m +-+=无实根2216(2)160430m m x ⇔--<⇔-+<13m ⇔<<.由p q ∨为真,即2m >或13m <<得1m >;p q ∧∵为假,()p q p ⌝∧⇒⌝∴或q ⌝为真,p ⌝为真时,2m ≤,q ⌝为真时,1m ≤或3m ≥. p ⌝∴或q ⌝为真时,2m ≤或3m ≥.∴所求m 取值范围为{}123m m m <,或|≤≥.14.若x ∀∈R ,函数2()(1)f x m x x a =-+-的图象和x 轴恒有公共点,求实数a 的取值范围.解:(1)当0m =时,()f x x a =-与x 轴恒相交;(2)当0m ≠时,二次函数2()(1)f x m x x a =-+-的图象和x 轴恒有公共点的充要条件是14()0m m a ∆=++≥恒成立,即24410m am ∆=++≥恒成立,又24410m am ++≥是一个关于m 的二次不等式,恒成立的充要条件是2(4)160a '∆=-≤,解得11a -≤≤.综上,当0m =时,a ∈R ;当0m ≠,[]11a ∈-,.15.有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”,乙说:“甲未获奖,乙也未获奖”,丙说:“是甲或乙获匀”,丁说:“是乙获奖”,四位歌手的话中有两句是对的,请问哪位歌手获奖. 甲获奖或乙获奖.解:①乙说的与甲、丙、丁说的相矛盾,故乙的话是错误的;②若两句正确的话是甲说的和丙说的,则应是甲获奖,正好对应于丁说的错,故此种情况为甲获奖;③若两句正确的话是甲说的和丁说的,两句话矛盾;④若两句正确的话是丙说的和丁说的,则为乙获奖,对应甲说的错,故此种情况乙获奖. 由以上分析知可能是甲获奖或乙获奖.《1.3简单的逻辑联结词》测试题A卷一.选择题:1.如果命题“p或q”是真命题,“非p”是假命题,那么()A 命题p一定是假命题 B命题q一定是假命题C命题q一定是真命题 D命题q是真命题或者是假命题2.在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“ p”为假的必要不充分条件④“ p”为真是“p且q”为假的必要不充分条件A①② B①③ C②④ D③④3.对下列命题的否定说法错误的是()A p:能被3整除的整数是奇数; p:存在一个能被3整除的整数不是奇数B p:每一个四边形的四个顶点共圆; p:存在一个四边形的四个顶点不共圆C p:有的三角形为正三角形; p:所有的三角形都不是正三角形D p: x∈R,x2+2x+2≤0; p:当x2+2x+2>0时,x∈R4.已知p: 由他们构成的新命题“p且q”,“p或q”, “ ”中,真命题有()A 1个B 2个C 3个D 4个5.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A存在实数m,使得方程x2+mx+1=0无实根B不存在实数m,使得方程x2+mx+1=0有实根C对任意的实数m,使得方程x2+mx+1=0无实根D至多有一个实数m,使得方程x2+mx+1=0有实根6.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有()A. p真,q真B. p假,q假C. p真,q假D. p假,q真二.填空题:7.命题“ x∈R,x2+1<0”的否定是__________________。
人教A版高中数学选修1-1:单元质量评估(一) Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
单元质量评估(一)第一章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·宜昌高二检测)下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的个数是( )A.1B.2C.3D.4【解析】选D.①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直,矩形的对角线不一定垂直.【补偿训练】下列命题是真命题的是( )A.y=tanx的定义域是RB.y=的值域为RC.y=的递减区间为(-∞,0)∪(0,+∞)D.y=sin2x-cos2x的最小正周期是π【解析】选D.当x=kπ+,k∈Z时,y=tanx无意义,A错;函数y=的定义域为.答案:【拓展延伸】完美解决参数问题通过已知条件,探索命题的真假,然后求解参数的取值范围,是逻辑用语部分常见的、基本的题型.解决此类问题要从三个方面入手:(1)熟练掌握真值表,判断单个命题p,q的真假.(2)具备丰富的基础知识储备,求解单个命题成立的参数范围.(3)辅助应用集合的运算确定参数的最后范围.15.(2016·徐州高二检测)已知命题p:≤1,命题q:x2-2x+1-m2<0(m>0),若p是q的充分不必要条件,则实数m的范围是.【解析】命题p首先化简为-1≤x≤3,命题q是二次不等式,p是q的充分不必要条件说明当-1≤x≤3时不等式x2-2x+1-m2<0恒成立,故又m>0,故可解得m>2.答案:(2,+∞)16.给出下列命题:①数列,3,,,3…的一个通项公式是;②当k∈(-3,0)时,不等式2kx2+kx-<0对一切实数x都成立;③函数y=sin2-sin2是周期为π的奇函数;④两两相交且不过同一点的三条直线必在同一个平面内.其中,真命题的序号是.【解析】①数列,3=,,,3=…的被开方数构成一个以3为首项,以6为公差的等差数列,故它的一个通项公式是,故①正确;②当k∈(-3,0)时,因为Δ=k2+3k<0,故函数y=2kx2+kx-的图象开口朝下,且与x轴无交点,故不等式2kx2+kx-<0对一切实数x都成立,故②正确;③函数y=sin2-sin2=sin2-cos2=-cos=sin2x,是周期为π的奇函数,故③正确;④两两相交且不过同一点的三条直线必在同一个平面内,故④正确.故真命题的序号是①②③④.答案:①②③④【补偿训练】下列正确命题有.①“sinθ=”是“θ=30°”的充分不必要条件;②如果命题“(p或q)”为假命题,则p,q中至多有一个为真命题;③设a>0,b>1,若a+b=2,则+的最小值为3+2;④函数f(x)=3ax+1-2a在(-1,1)上存在x0,使f(x0)=0,则a的取值范围是a<-1或a>.【解析】①由θ=30°可得sinθ=,反之不成立,因此“sinθ=”是“θ=30°”的必要不充分条件;②命题“(p或q)”为假命题,则p,q都是假命题;③a+b=2,所以a+b-1=1,+=(a+b-1)=3++≥3+2,最小值为3+2;④由题意得f(-1)f(1)<0,所以(-5a+1)(a-1)<0,所以a<-1或a>.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)判断下列命题是全称命题还是特称命题,并判断其真假.(1)对数函数都是单调函数.(2)至少有一个整数,它既能被11整除,又能被9整除.(3)∀x∈{x|x>0},x+≥2.(4)∃x0∈Z,log2x0>2.【解析】(1)本题隐含了全称量词“所有的”,其实命题应为“所有的对数函数都是单调函数”,是全称命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是特称命题,真命题.(3)命题中含有全称量词“∀”,是全称命题,真命题.(4)命题中含有存在量词“∃”,是特称命题,真命题.18.(12分)已知f(x)=x2,g(x)=-m,若对∀x1∈,∃x2∈,有f(x1)≥g(x2),求实数m的取值范围.【解析】根据题意知,f(x1)min≥g(x2)min,当x1∈时,f(x1)min=0.当x2∈时,g(x2)=-m的最小值为g(2)=-m.因此0≥-m,解之得m≥.故实数m的取值范围是.19.(12分)(2016·马鞍山高二检测)已知曲线C:x2+y2+Gx+Ey+F=0(G2+E2-4F>0),求曲线C在x轴上所截的线段的长度为1的充要条件,证明你的结论.【解题指南】先求出必要条件,再证明其充分性.【解析】必要性:令y=0,则x2+Gx+F=0.设x1,x2为此方程的根,若|x1-x2|==1,则G2-4F=1.充分性:若G2-4F=1,x2+Gx+F=0有两根为x1,x2,且x1+x2=-G,x1·x2=F,|x1-x2|2=(x1+x2)2-4x1·x2=G2-4F=1.故所求的充要条件是G2-4F=1.20.(12分)(2016·汕头高二检测)已知p:-2≤1-≤2,q:x2-2x+1-m2≤0(m>0),且p是q的必要不充分条件,求实数m的取值范围.【解题指南】先解不等式求出p真和q真的条件.p真:-2≤x≤10;q真:1-m≤x≤1+m,然后利用p是q的必要不充分条件,根据集合之间的包含关系建立关于m的不等式,求出m的取值范围.【解析】由x2-2x+1-m2≤0,得1-m≤x≤1+m,所以q:A={x|x>1+m或x<1-m,m>0}.由-2≤1-≤2,得-2≤x≤10.所以p:B={x|x>10或x<-2},因为p是q的必要不充分条件,所以A B,所以21.(12分)(2016·聊城高二检测)设命题p:函数f(x)=lg的定义域为R:命题q:3x-9x<a 对一切的实数x恒成立,如果命题“p且q”为假命题,求实数a的取值范围.【解析】要使函数f(x)=lg的定义域为R,则不等式ax2-x+>0对于一切x∈R恒成立, 若a=0,则不等式等价为-x>0,解得x<0,不满足恒成立.若a≠0,则满足条件即解得即a>2,所以p:a>2.因为g(x)=3x-9x=-+≤,所以要使3x-9x<a对一切的实数x的恒成立,则a>,即q:a>.要使p且q为假,则p,q至少有一个为假命题.当p,q都为真命题时,满足即a>2,所以p,q至少有一个为假命题时有a≤2,即实数a的取值范围是a≤2.22.(12分)(2016·福州高二检测)已知a>0,b>0,函数f(x)=ax-bx2.(1)求证:∀x∈R均有f(x)≤1是a≤2的充分条件.(2)当b=1时,求f(x)≤1,x∈恒成立的充要条件.【解析】(1)f(x)=ax-bx2=-b+,因为∀x∈R,f(x)≤1,所以≤1,又a>0,b>0,所以a≤2,所以∀x∈R均有f(x)≤1是a≤2的充分条件.(2)因为b=1,所以f(x)=ax-x2,当x=0时,f(x)=0≤1成立,当x∈(0,1]时,f(x)≤1恒成立,即a≤x+在(0,1]上恒成立,又=2,此时x=1,所以0<a≤2,当0<a≤2时,a≤x+在(0,1]上恒成立,所以f(x)≤1在(0,1]上恒成立,所以f(x)≤1,x∈(0,1]上恒成立的充要条件为0<a≤2.关闭Word文档返回原板块。
25、【人教A版】高中数学同步辅导与检测(选修1-1)第三章章末评估验收(三)
章末评估验收(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数f (x )可导,则 f (1-Δx )-f (1)-Δx 等于( )A .f ′(1)B .不存在 C.13f ′(1) D .以上都不对解析:f (1-Δx )-f (1)-Δx= f (1-Δx )-f (1)1-Δx -1=f ′(1).答案:A2.曲线y =f (x )=x 3-3x 2+1在点(2,-3)处的切线方程为( ) A .y =-3x +3 B .y =-3x +1 C .y =-3D .x =2解析:因为y ′=f ′(x )=3x 2-6x ,则曲线y =x 3-3x 2+1在点(2,-3)处的切线的斜率k =f ′(2)=3×22-6×2=0,所以切线方程为y -(-3)=0×(x -2),即y =-3.答案:C3.函数f (x )=x 3-3x +1的单调递减区间是( ) A .(1,2) B .(-1,1)C .(-∞,-1)D .(-∞,-1),(1,+∞)解析:f′(x)=3x2-3,由f′(x)<0,可得-1<x<1.答案:B4.函数f(x)=x3+ax2+3x-9,在x=-3时取得极值,则a等于()A.2 B.3 C.4 D.5解析:f′(x)=3x2+2ax+3.由f(x)在x=-3时取得极值,即f′(-3)=0,即27-6a+3=0,所以a=5.答案:D5.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,归纳可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()A.f(x) B.-f(x) C.g(x) D.-g(x)解析:观察可知,偶函数f(x)的导函数g(x)是奇函数,所以g(-x)=-g(x).答案:D6.若函数f(x)=13x3-f′(1)·x2-x,则f′(1)的值为() A.0 B.2 C.1 D.-1解析:f′(x)=x2-2f′(1)·x-1,则f′(1)=12-2f′(1)·1-1,解得f′(1)=0.答案:A7.某商场从生产厂家以每件20元的价格购进一批商品.设该商品零售价定为P元,销售量为Q件,且Q与P有如下关系:Q=8 300-170P-P2,则最大毛利润为(毛利润=销售收入-进货支出)()A .30元B .60元C .28 000元D .23 000元解析:设毛利润为L (P )元,由题意知L (P )=PQ -20Q =Q (P -20)=(8 300-170P -P 2)(P -20)=-P 3-150 P 2+11 700 P -166 000,所以L ′(P )=-3P 2-300P +11 700.令L ′(P )=0,解得P =30或P =-130(舍去).当20≤P <30时,L ′(P )>0,L (P )为增函数;当P >30时,L ′(P )>0,L (P )为减函数,故P =30为L (P )的极大值点,也是最大值点,此时L (30)=23 000,即最大毛利润为23 000元.答案:D8.设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝ ⎛⎭⎪⎫1e ,1(1,e)内均有零点B .在区间⎝ ⎛⎭⎪⎫1e ,1(1,e)内均无零点 C .在区间⎝ ⎛⎭⎪⎫1e ,1内无零点,在区间(1,e)内有零点 D .在区间⎝⎛⎭⎪⎫1e ,1内有零点,在区间(1,e)内无零点解析:由题意得f ′(x )=x -33x ,令f ′(x )>0得x >3;令f ′(x )<0得0<x <3;f ′(x )=0得x =3,故知函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)为增函数,在点x =3处有极小值1-ln 3<0;又f (1)=13>0,f (e)=e3-1<0,f ⎝ ⎛⎭⎪⎫1e =13e+1>0.答案:C9.设f(x),g(x)是R上的可导函数,f′(x),g′(x)分别为f(x),g(x)的导函数,且f′(x)g(x)+f(x)g′(x)<0,则当a<x<b时,有() A.f(x)g(b)>f(b)g(x) B.f(x)g(a)>f(a)g(x)C.f(x)g(x)>f(b)g(b) D.f(x)g(x)>f(a)g(a)解析:因为[f(x)g(x)]′=f′(x)g(x)+g′(x)·f(x)<0,所以函数y=f(x)g(x)是减函数.所以当a<x<b时,f(a)g(a)>f(x)g(x)>f(b)g(b).故选C.答案:C10.函数y=x2-2sin x的图象大致是()A BC D解析:y ′=12-2cos x ,令y ′=0,解得cos x =14,根据三角函数的知识可知此方程有无穷多个解,即函数y =x2-2sin x 有无穷多个极值点,又函数y =x2-2sin x 是奇函数,所以图象关于坐标原点对称,故选C.答案:C11.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( )A .0≤a ≤21B .a =0或a =7C .a <0或a >21D .a =0或a =21解析:f ′(x )=3x 2+2ax +7a ,令f ′(x )=0,即3x 2+2ax +7a =0,对于此方程,Δ=4a 2-84a ,当Δ≤0,即0≤a ≤21时,f ′(x )≥0恒成立,函数不存在极值点.答案:A12.若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:函数的导数为f ′(x )=12x 2-2ax -2b ,由函数f (x )在x =1处有极值,可知函数f ′(x )在x =1处的导数值为0,即12-2a -2b =0,所以a +b =6,由题意知a ,b 都是正实数,所以ab ≤⎝ ⎛⎭⎪⎪⎫a +b 22=⎝ ⎛⎭⎪⎫622=9,当且仅当a =b =3时取到等号. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若曲线y =x a +1(a ∈R)在点(1,2)处的切线经过坐标原点,则a =________.解析:由题意,知y ′=ax a -1,故在点(1,2)处的切线的斜率a ,又因为切线过坐标原点,所以a =2-01-0=2.答案:214.函数f (x )=xx -1(x ≥2)的最大值为________.解析:先利用导数判断函数的单调性,再进一步求解函数的最大值.f ′(x )=(x -1)-x (x -1)2=-1(x -1)2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.答案:215.当x ∈[-1,2]时,x 3-x 2-x <m 恒成立,则实数m 的取值范围是________.解析:记f (x )=x 3-x 2-x , 所以f ′(x )=3x 2-2x -1. 令f ′(x )=0,得x =-13或x =1.又因为f ⎝ ⎛⎭⎪⎫-13=527,f (2)=2,f (-1)=-1,f (1)=-1,所以当x ∈[-1,2]时,(f (x ))max =2,所以m >2. 答案:(2,+∞)16.已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.解析:设x >0,则-x <0,f (-x )=e x -1+x . 因为f (x )为偶函数,所以f (-x )=f (x ), 所以f (x )=e x -1+x .因为当x >0时,f ′(x )=e x -1+1, 所以f ′(1)=e 1-1+1=1+1=2.所以曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1),即2x -y =0. 答案:2x -y =0三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)因为f ′(x )=(x 3+x -16)′=3x 2+1,所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-x4+3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, 所以x 0=±1,所以⎩⎨⎧x 0=1,y 0=-14或⎩⎨⎧x 0=-1,y 0=-18.即切点坐标为(1,-14)或(-1,-18).切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.18.(本小题满分12分)设函数y =f (x )=4x 3+ax 2+bx +5在x =32与x =-1处有极值.(1)写出函数的解析式; (2)指出函数的单调区间; (3)求f (x )在[-1,2]上的最值.解:(1)y ′=12x 2+2ax +b ,由题设知当x =32与x =-1时函数有极值,则x =32与x =-1满足y ′=0,即⎩⎪⎨⎪⎧12×⎝⎛⎭⎪⎫322+2a ·32+b =0,12×(-1)2+2a ·(-1)+b =0,解得⎩⎨⎧a =-3,b =-18,所以 y =4x 3-3x 2-18x +5.(2)y ′=12x 2-6x -18=6(x +1)(2x -3),列表如下: ↗↘↗由上表可知(-∞,-1)和(32,+∞)为函数的单调递增区间,⎝⎛⎭⎪⎫-1,32为函数的单调递减区间.(3)因为f (-1)=16,f ⎝ ⎛⎭⎪⎫32=-614,f (2)=-11,所以f (x )在[-1,2]上最小值是-614,最大值为16.19.(本小题满分12分)有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P 万元和Q 万元,它们与投入资金x 万元的关系有经验公式:P =x5,Q =35x .现有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得的最大利润是多少?解:设对乙种商品投资x 万元,则甲种商品投资为(3-x )万元,总利润为y 万元.根据题意,得y =3-x 5+35x (0≤x ≤3),y ′=-15+310·1x .令y ′=0,解得x =94.由实际意义知x =94即为函数的极大值点,也是最大值点,此时3-x =34.因此为获得最大利润,对甲、乙两种商品的资金投入应分别为0.75万元和2.25万元,获得的最大利润为1.05万元.20.(本小题满分12分)若函数f (x )=4x 3-ax +3在[-12,12]上是单调函数,则实数a 的取值范围为多少?解:f ′(x )=12x 2-a ,若f (x )在⎣⎢⎡⎦⎥⎤-12,12上为单调增函数, 则f ′(x )≥0在⎣⎢⎡⎦⎥⎤-12,12上恒成立, 即12x 2-a ≥0在⎣⎢⎡⎦⎥⎤-12,12上恒成立. 所以 a ≤12x 2在[-12,12]上恒成立, 所以 a ≤(12x 2)min =0.当a =0时,f ′(x )=12x 2≥0恒成立[只有x =0时f ′(x )=0]. 所以 a =0符合题意.若f (x )在⎣⎢⎡⎦⎥⎤-12,12上为单调减函数, 则f ′(x )≤0,在⎣⎢⎡⎦⎥⎤-12,12上恒成立, 即12x 2-a ≤0在⎣⎢⎡⎦⎥⎤-12,12上恒成立, 所以 a ≥12x 2在⎣⎢⎡⎦⎥⎤-12,12上恒成立, 所以 a ≥(12x 2)max =3.当a =3时,f ′(x )=12x 2-3=3(4x 2-1)≤0恒成立(且只有x =±12时f ′(x )=0.因此,a 的取值范围为a ≤0或a ≥3.21.(本小题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )在区间[1,e]上的最大值、最小值;(2)求证:在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3的图象的下方.(1)解:由f (x )=12x 2+ln x 得f ′(x )=x +1x , 因为当x ∈[1,e]时,f ′(x )>0,所以函数f (x )在[1,e]上是增函数.f (x )max =f (e)=12e 2+1,f (x )min =f (1)=12. (2)证明:设F (x )=f (x )-g (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=(1-x )(1+x +2x 2)x. 因为x >1,所以F ′(x )<0,所以函数F (x )在(1,+∞)上是减函数,又因为F (1)=-16,故在[1,+∞)上有F (x )<0,即f (x )<g (x ),所以在区间[1,+∞)上,函数f (x )的图象在函数g (x )=23x 3的图象的下方. 22.(本小题满分12分)已知函数f (x )=2x 3-3x .(1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切(只需写出结论)?解:(1)由f (x )=2x 3-3x ,得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22.因为f (-2)= -10,f ⎝ ⎛⎭⎪⎫-22=2,f ⎝ ⎛⎭⎪⎫22=-2,f (1)=1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎪⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3,所以切线方程为y -y 0=(6x 20-3)(x -x 0),因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0.设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同的零点”.g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g ′(x )与g (x )的变化情况如下:所以g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.当g(0)=t+3≤0,即t≤-3时,g(x)在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.当g(1)=t+1≥0,即t≥-1时,g(x)在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.当g(0)>0且g(1)<0,即-3<t<-1时,因为g(-1)=t-7<0,g(2)=t+11>0,所以g(x)分别在区间[-1,0],[0,1)和[1,2)上恰有1个零点.由于g(x)在区间(-∞,0)和(1,+∞)上单调,所以g(x)分别在区间(-∞,0)和[1,+∞]上恰有1个零点.综上可知,当过点P(1,t)存在3条直线与曲线y=f(x)相切时,t 的取值范围是(-3,-1).(3)过点A(-1,2)存在3条直线与曲线y=f(x)相切,过点B(2,10)存在2条直线与曲线y=f(x)相切,过点C(0,2)存在1条直线与曲线y=f(x)相切.。
人教A版高中数学选修1章末检测2第二章直线和圆的方程
第二章章末检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0【答案】A【解析】设与直线x -2y -2=0平行的直线方程为x -2y +c =0(c ≠-2),将点(1,0)代入直线方程x -2y +c =0,得1-2³0+c =0,解得c =-1.所以所求直线方程为x -2y -1=0.2.直线l 的方程为3x +3y -1=0,则直线l 的倾斜角为( ) A .150° B .120° C .60° D .30° 【答案】A【解析】设直线l 的倾斜角为θ,θ∈[0,π),直线l 的方程为3x +3y -1=0,则k =tan θ=-33,解得θ=5π6.所以直线l 的倾斜角为150°.故选A . 3.直线l 1:ax -y -3=0和直线l 2:x +(a +2)y +2=0平行,则实数a 的值为( ) A .3 B .-1 C .-2 D .3或-1【答案】B【解析】由a ²(a +2)+1=0,即a 2+2a +1=0,解得a =-1.经检验成立,所以a =-1.4.无论m 取何实数,直线l :mx +y -1+2m =0恒过一定点,则该定点坐标为( ) A .(-2,1) B .(-2,-1) C .(2,1) D .(2,-1)【答案】A【解析】直线l :mx +y -1+2m =0可整理为m (x +2)+y -1=0,当⎩⎪⎨⎪⎧x +2=0,y -1=0,解得x =-2,y =1,无论m 为何值,直线总过定点(-2,1).5.已知圆心在y 轴上的圆C 与直线x =3切于点M (3,2).若直线3x +4y +m =0与圆C 相切,则m 的值为( )A .9B .7C .-21或9D .-23或7【答案】D【解析】圆心在y 轴上的圆C 与直线x =3切于点M (3,2),可得圆C 的半径为3,圆心为(0,2).因为直线3x +4y +m =0与圆C 相切,所以|8+m |32+42=3,解得m =-23或m =7.故选D .6.(2021年哈尔滨期末)圆(x -1)2+(y +2)2=2关于直线l :x +y -2=0对称的圆的方程为( )A .(x -4)2+(y -1)2=2 B .(x +4)2+(y +1)2=2 C .(x -4)2+(y +1)2=2 D .(x +4)2+(y -1)2=2【答案】A【解析】由于圆心(1,-2)关于直线x +y -2=0对称的点的坐标为(4,1),半径为2,故圆(x -1)2+(y +2)2=2关于直线x +y -2=0对称的圆的方程为(x -4)2+(y -1)2=2.故选A .7.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-8【答案】B【解析】圆x 2+y 2+2x -2y +a =0化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,弦心距为d =|-1+1+2|12+12=2.因为圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦长为4,所以22+(2)2=2-a ,所以a =-4.8.圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4外切,则m 的值为( ) A .2 B .-5 C .2或-5 D .不确定【答案】C【解析】由圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4,得C 1(m ,-2),C 2(-1,m ),半径分别为3和2.∵两圆外切,∴m +122-m2=3+2,化简得(m +5)(m -2)=0,∴m =-5或m =2.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若直线过点A (1,2),且在两坐标轴上截距的绝对值相等,则直线l 的方程可能为( )A .x -y +1=0B .x +y -3=0C .2x -y =0D .x -y -1=0【答案】ABC【解析】当直线经过原点时,斜率为k =2-01-0=2,所求的直线方程为y =2x ,即2x -y=0;当直线不过原点时,设所求的直线方程为x ±y =k ,把点A (1,2)代入可得1-2=k 或1+2=k ,解得k =-1或k =3,故所求的直线方程为x -y +1=0或x +y -3=0.综上,所求的直线方程为2x -y =0或x -y +1=0或x +y -3=0.10.已知直线l :3x -y +1=0,则下列结论正确的是( ) A .直线l 的倾斜角是π6B .若直线m :x -3y +1=0,则l ⊥mC .点(3,0)到直线l 的距离是2D .过(23,2)与直线l 平行的直线方程是3x -y -4=0 【答案】CD【解析】对于A ,直线l 的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B ,因为直线m 的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C ,点(3,0)到直线l 的距离d =|3²3-0+1|3212=2,故C 正确;对于D ,过点(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得3x -y -4=0,故D 正确.11.已知圆(x -1)2+(y -1)2=4与直线x +my -m -2=0,下列选项正确的是( ) A .圆的圆心坐标为(1,1) B .直线过定点(-2,1)C .直线与圆相交且所截最短弦长为2 3D .直线与圆可以相切 【答案】AC【解析】由题意,圆(x -1)2+(y -1)2=4的圆心C (1,1),半径r =2,A 对.直线x +my -m -2=0变形得x -2+m (y -1)=0,得直线过定点A (2,1),B 错.∵|CA |=2-121-12=1<2,∴直线与圆必相交,D 错.如图,由平面几何知识可知,当直线与过定点A 和圆心的直线垂直时,弦长有最小值,此时弦长为2r 2-|CA |2=23,C 对.12.在同一平面直角坐标系中,直线y =ax +a 2与圆(x +a )2+y 2=a 2的位置不可能是( )A B C D【答案】ABD【解析】直线y =ax +a 2经过圆(x +a )2+y 2=a 2的圆心(-a,0),且斜率为a ,故不可能为A ,B ,D .三、填空题:本题共4小题,每小题5分,共20分.13.在△ABC 中,已知A (2,1),B (-2,3),C (0,1),则BC 边上的中线所在的直线的一般方程为__________.【答案】x +3y -5=0【解析】BC 的中点D (-1,2),BC 边上的中线所在的直线的方程为y -1=2-1-1-2(x -2),即x +3y -5=0.14.若直线l 1:y =kx -3与l 2:2x +3y -6=0的交点M 在第一象限,则直线l 1恒过定点________;l 1的倾斜角α的取值范围是________.【答案】(0,-3) ⎝⎛⎭⎪⎫π4,π2【解析】直线l 1:y =kx -3恒过定点(0,-3).直线l 2:2x +3y -6=0在x 轴和y 轴上的截距分别为3,2,如图所示,因为k PA =1,所以直线PA 的倾斜角为π4,由图可知,要使直线l 1:y =kx -3与l 2:2x +3y -6=0的交点M 在第一象限,则l 1的倾斜角的取值范围是⎝ ⎛⎭⎪⎫π4,π2.15.已知圆x 2-2x +y 2-2my +2m -1=0,当圆的面积最小时,直线y =x +b 与圆相切,则b =________.【答案】± 2【解析】将x 2-2x +y 2-2my +2m -1=0化为(x -1)2+(y -m )2=m 2-2m +2,所以圆的半径为m 2-2m +2.当圆面积最小时,圆的半径最小,此时m =1,圆的方程为(x -1)2+(y -1)2=1.因为直线y =x +b 与圆相切,所以|1-1+b |2=1,解得b =±2.16.已知圆O :x 2+y 2=1,l 为过点(0,2)的动直线,若l 与圆O 相切,则直线l 的倾斜角为________.【答案】π3或2π3【解析】若直线l 与圆相切,则l 的斜率肯定存在,设l :y =kx +2,则d =2k 2+1=1,所以k =±3.所以直线l 的倾斜角为π3或2π3.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 经过两条直线l 1:x +y -4=0和l 2:x -y +2=0的交点,直线l 3:2x -y -1=0.(1)若l ∥l 3,求l 的直线方程; (2)若l ⊥l 3,求l 的直线方程.解:(1)由⎩⎪⎨⎪⎧x +y -4=0,x -y +2=0,得⎩⎪⎨⎪⎧x =1,y =3,∴l 1与l 2的交点为(1,3).设与直线2x -y -1=0平行的直线为2x -y +c =0,则2-3+c =0,∴c =1. ∴所求直线方程为2x -y +1=0.(2)设与直线2x -y -1=0垂直的直线为x +2y +c =0, 则1+2³3+c =0,解得c =-7. ∴所求直线方程为x +2y -7=0.18.(12分)已知直线l :(1+2m )x +(m -1)y +7m +2=0. (1)求证:不论m 为何实数,直线恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被点M 平分,求直线l 1的方程. (1)证明:直线l 整理得(x -y +2)+m (2x +y +7)=0.联立⎩⎪⎨⎪⎧x -y +2=0,2x +y +7=0,解得⎩⎪⎨⎪⎧x =-3,y =-1.所以无论m 为何实数,直线l 恒过定点(-3,-1).(2)解:当直线l 1的斜率不存在或等于零时,显然不合题意. 设直线l 1的方程为y =k (x +3)-1(k ≠0). 令x =0,则y =3k -1; 令y =0,则x =1k-3.所以直线l 1与坐标轴的交点为A (0,3k -1),B ⎝ ⎛⎭⎪⎫1k-3,0.由于过定点M (-3,-1)作一条直线l 1,使夹在两坐标轴之间的线段被点M 平分, 则点M 为线段AB 中点, 即⎩⎪⎨⎪⎧3k -12=-1,12⎝ ⎛⎭⎪⎫1k -3=-3,解得k =-13.所以直线l 1的方程为y =-13x -2,即x +3y +6=0.19.(12分)已知直线l :y =kx 与圆C 1:(x -1)2+y 2=1相交于A ,B 两点,C 2与圆C 1相外切,且与直线l 相切于点M (3,3).(1)求k 的值,并求AB 的长; (2)求圆C 2的方程.解:(1)直线l :y =kx 经过点M (3,3), 所以3=3k ,得k =33. 圆C 1:(x -1)2+y 2=1的圆心为C 1(1,0),半径为1,直线l :3x -3y =0, 点C 1(1,0)到直线l 的距离d =33+9=12,所以|AB |=212-⎝ ⎛⎭⎪⎫122=3.(2)设过点M 作与直线l 垂直的直线l 1,l 1的方程是y -3=-3(x -3),即y =-3x +43.设C 2(a ,-3a +43),又因为C 1(1,0),圆C 2与圆C 1相外切,且与直线l 相切于点M (3,3),所以|C 1C 2|=1+|MC 2|, 即a -12-3a +432=1+a -323a +43-32,化简得a 2-4a =0,解得a =4或a =0. 当a =4时,C 2(4,0),此时r 2=(4-3)2+(0-3)2=4,C 2:(x -4)2+y 2=4.当a =0时,C 2(0,43),此时r 2=(0-3)2+(43-3)2=36,C 2:x 2+(y -43)2=36.20.(12分)已知△ABC 的顶点C (2,-8),直线AB 的方程为y =-2x +11,AC 边上的高BH 所在直线的方程为x +3y +2=0.(1)求顶点A 和B 的坐标; (2)求△ABC 外接圆的一般方程.解:(1)由⎩⎪⎨⎪⎧y =-2x +11,x +3y +2=0,得顶点B (7,-3).由AC ⊥BH ,k BH =-13.所以可设AC 的方程为y =3x +b ,将C (2,-8)代入,得b =-14.由⎩⎪⎨⎪⎧y =-2x +11,y =3x -14,得顶点为A (5,1).所以点A 和B 的坐标分别为(5,1)和(7,-3). (2)设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,将点A (5,1),B (7,-3),C (2,-8)分别带入圆的方程代入, 得⎩⎪⎨⎪⎧5D +E +F +26=0,7D -3E +F +58=0,2D -8E +F +68=0,解得⎩⎪⎨⎪⎧D =-4,E =6,F =-12,所以△ABC 的外接圆的一般方程为x 2+y 2-4x +6y -12=0.21.(12分)某种体育比赛的规则是:进攻队员与防守队员均在安全线l 的垂线AC 上(C 为垂足),且分别位于距C 为2a 和a (a >0)的点A 和点B 处,进攻队员沿直线AD 向安全线跑动,防守队员沿直线方向拦截,设AD 和BM 交于点M ,若在点M ,防守队员比进攻队员先到或同时到,则进攻队员失败.已知进攻队员速度是防守队员速度的两倍,且他们双方速度不变,问进攻队员的路线AD 应为什么方向才能取胜?解:如图,以l 为x 轴,C 为原点建立平面直角坐标系.设防守队员速度为v ,则进攻队员速度为2v .设点M 的坐标为(x ,y ),进攻队员与防守队员跑到点M 所需时间分别为t 1=|AM |2v ,t 2=|BM |v. 若t 1<t 2,则|AM |<2|BM |, 即x2y -2a2<2x2y -a2,整理得x 2+⎝ ⎛⎭⎪⎫y -23a 2>⎝ ⎛⎭⎪⎫23a 2,这说明点M 应在圆E :x 2+⎝ ⎛⎭⎪⎫y -23a 2=⎝ ⎛⎭⎪⎫23a 2以外,进攻队员方能取胜.设AN 为圆E 的切线,N 为切点.在Rt △AEN 中,AE =2a -2a 3=4a 3,EN =2a 3,所以sin ∠EAN =EN AE =2a34a 3=12,故sin ∠EAN =30°.所以进攻队员的路线AD 与AC 所成角大于30°即可. 22.(12分)已知直线l :2x -3y +1=0,点A (-1,-2). (1)求点A 关于直线l 的对称点B 的坐标; (2)直线l 关于点A 对称的直线a 的方程;(3)以点A 为圆心,3为半径长作圆,直线b 过点M (2,2),且被圆A 截得的弦长为27,求直线b 的方程.解:(1)设点B (m ,n ),则⎩⎪⎨⎪⎧n +2m +1²23=-1,2²m -12-3²n -22+1=0,解得⎩⎪⎨⎪⎧m =-3313,n =413,所以点A 关于直线l 的对称点B 的坐标为⎝ ⎛⎭⎪⎫-3313,413. (2)设P (x ,y )是直线a 上任意一点,则点P (x ,y )关于点A (-1,-2)的对称点C (-2-x ,-4-y )在直线l 上, 所以2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0.(3)设圆心A 到直线b 的距离为d ,直线b 被圆A 截得的弦长为27,因此d =9-7=2.当直线b 斜率不存在时,x =2不满足条件;当直线b 斜率存在时,设其方程为y -2=k (x -2),则|3k -4|1+k 2=2, 解得k =12±467.综上,直线b 的方程为y =12+467x -10+2467或y =12-467x -10-2467.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末评估验收(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线3x 2-y 2=9的实轴长是( ) A .2 3 B .2 2 C .4 3 D .4 2 解析:因为3x 2-y 2=9,所以 x 23-y 29=1,所以 a =3,所以 2a =2 3. 答案:A2.抛物线y 2=4x 的焦点坐标是( ) A .(0,2) B .(0,1) C .(2,0)D .(1,0)解析:由y 2=4x 知p =2,故抛物线的焦点坐标为(1,0). 答案:D3.已知椭圆x 25+y 2m =1(m >0)的离心率e =105,则m 的值为( )A .3 B.253或3 C. 5D.5153或15解析:由题意知m >0,当5>m 时,a =5,b =m ,c =5-m ,所以e =ca =5-m 5=105,解得m =3;当5<m 时,a =m ,b =5,c =m -5,所以e =ca =m -5m=105,解得m =253.故选B.答案:B4.已知曲线x 2a +y 2b =1和直线ax +by +1=0(a ,b 为非零实数),在同一坐标系中,它们的大致图象可能为(如图所示)( )解析:若a >0且b >0,则曲线表示椭圆,直线ax +by +1=0在x ,y 轴上的截距分别为-1a ,-1b ,均为小于零的数,故A ,B 选项都不满足;若a >0且b <0,则曲线表示双曲线,直线ax +by +1=0在x ,y 轴上的截距分别为-1a ,-1b ,所以在x 轴上的截距小于0,在y 轴上的截距大于0.答案:C5.双曲线x 2-y23=1的焦点到渐近线的距离为( )A .1 B. 3 C .3D .4解析:依题意得,c 2=a 2+b 2=1+3=4,所以双曲线的右焦点坐标是(2,0),一条渐近线方程是y =3x ,即3x -y =0,因此焦点到渐近线的距离为23(3)2+1=3,故选B. 答案:B6.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0等于( )A .4B .2C .1D .8解析:如图所示,易知F ⎝ ⎛⎭⎪⎫14,0,过A 作AA ′⊥准线l ,则|AF |=|AA ′|,所以 54x 0=x 0+p2=x 0+14,所以 x 0=1. 答案:C7.若一个椭圆长轴的长度、短轴的长度和焦距成等比数列,则该椭圆的离心率是( )A.1-52B.5-12C.-1-52D.5+12解析:依题意有(2b )2=2a ·2c ,即4b 2=4ac , 所以 b 2=ac .又b 2=a 2-c 2,所以 a 2-c 2=ac .两边同除以a 2,得1-⎝ ⎛⎭⎪⎫c a 2-ca =0.即有e 2+e -1=0,解得e =5-12或e =-5-12(舍去).答案:B8.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c ,0),若垂直于x 轴且经过F 点的直线l与圆M 相切,则a 的值为( )A.34B .1C .2D .4 解析:圆M 的方程可化为(x +m )2+y 2=3+m 2, 则由题意得m 2+3=4,即m 2=1(m <0), 所以 m =-1,则圆心M 的坐标为(1,0). 由题意知直线l 的方程为x =-c , 又因为直线l 与圆M 相切,所以 c =1,所以 a 2-3=1,所以 a =2. 答案:C9.抛物线y =-x 2上的点到直线4x +3y -8=0的距离的最小值是( )A.43B.75C.85D .3 解析:设与直线4x +3y -8=0平行的直线方程为4x +3y +c =0,与抛物线联立方程组得⎩⎪⎨⎪⎧4x +3y +c =0,y =-x 2,消去y 得3x 2-4x -c =0,Δ=(-4)2-4×3×(-c )=0,解得c =-43,则抛物线与直线4x +3y -8=0平行的切线是4x+3y -43=0,问题转化为平行线间的距离,利用两平行线间的距离公式得d =|-43+8|42+32=43. 答案:A10.已知点M (-3,0),N (3,0),B (1,0),动圆C 与直线MN 切于点B ,过M ,N 与圆C 相切的两直线相交于P 点,则点P 的轨迹方程为( )A .x 2-y 28=1(x >1)B .x 2-y 28=1(x <-1)C .x 2+y 28=1(x >0)D .x 2-y 210=1(x >1)解析:设圆与直线PM ,PN 分别相切于E ,F , 则|PE |=|PF |,|ME |=|MB |,|NB |=|NF |. 所以 |PM |-|PN |=(|PE |+|ME |)-(|PF |+|NF |)= |MB |-|NB |=4-2=2.所以点P 的轨迹是以M (-3,0),N (3,0)为焦点的双曲线右支(去掉B 点),且a =1,所以 c =3,b 2=8,所以双曲线方程是x 2-y28=1(x >1).答案:A11.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8解析:由椭圆方程得F (-1,0),设P (x 0,y 0),则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20.因为P 为椭圆上一点,所以 x 204+y 203=1.所以 OP →·FP →=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=x 204+x 0+3=14(x 0+2)2+2.因为-2≤x 0≤2,所以 OP →·FP →的最大值在x 0=2时取得,且最大值等于6. 答案:C12.已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B.⎝ ⎛⎦⎥⎤0,12 C.⎝⎛⎭⎪⎫0,22D.⎣⎢⎡⎭⎪⎫22,1 解析:由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2,即e 2=c 2a 2<12.因为0<e <1,所以0<e <22,即椭圆离心率的取值范围是⎝⎛⎭⎪⎫0,22.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.双曲线x 216-y 29=1的两条渐近线的方程为___________.解析:双曲线x 216-y 29=1的渐近线方程为x 216-y 29=0,即y =±34x .答案:y =±34x14.已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF |=2,则|BF |=________.解析:设A 点(x 1,y 1),B 点(x 2,y 2),抛物线y 2=4x ,焦点为(1,0),准线为x =-1,|AF |=x 1-(-1)=2,所以x 1=1.则AF 与x 轴垂直,|BF |=|AF |=2.答案:215.如右图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析:将y =b2代入椭圆的标准方程,得x 2a 2+b 24b2=1,所以x =±32a ,故B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2.又因为F (c ,0),所以BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝⎛⎭⎪⎫c -32a ,-b 2.因为∠BFC =90°,所以BF→·CF →=0, 所以⎝⎛⎭⎪⎫c +32a ⎝ ⎛⎭⎪⎫c -32a +⎝ ⎛⎭⎪⎫-b 22=0,即c 2-34a 2+14b 2=0,将b 2=a 2-c 2代入并化简,得a 2=32c 2,所以 e 2=c 2a 2=23,所以e =63(负值舍去).答案:6316.抛物线y 2=x 上存在两点关于直线y =m (x -3)对称,则m 的范围是________.解析:设抛物线上两点A (x 1,y 1),B (x 2,y 2)关于直线y =m (x -3)对称,A ,B 中点M (x ,y ),则当m =0时,有直线y =0,显然存在点关于它对称.当m ≠0时,⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,⇒y 1-y 2x 1-x 2=1y 1+y 2=12y=-1m ,所以y =-m 2,所以M 的坐标为(52,-m2),因为M 在抛物线内,则有52>(-m2)2,得-10<m <10且m ≠0, 综上所述,m ∈(-10,10). 答案:(-10,10)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知抛物线C :x 2=4y 的焦点为F ,椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率e =32.求椭圆E 的方程. 解:因为椭圆焦点在x 轴上,所以设椭圆E 的方程为x 2a 2+y 2b 2=1,半焦距为c (a >0,b >0,c >0).由题意知F (0,1)为椭圆的短轴的上顶点, 所以b =1,又由ca =32,a 2=b 2+c 2,得a =2,c = 3.所以椭圆E 的方程为x 24+y 2=1.18.(本小题满分12分)如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.解:(1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y得x 2-4x -4b =0,(*)因为直线l 与抛物线C 相切,所以Δ=(-4)2-4×(-4b )=0,解得b =-1. (2)由(1)可知b =-1,故方程(*)即为x 2-4x +4=0, 解得x =2,代入x 2=4y ,得y =1.故点A (2,1),因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 与抛物线的准线y =-1的距离,即r =|1-(-1)|=2,所以圆A 的方程为(x -2)2+(y -1)2=4.19.(本小题满分12分)已知双曲线方程为x 2-y22=1,问:是否存在过点M (1,1)的直线l ,使得直线与双曲线交于P ,Q 两点,且M 是线段PQ 的中点?如果存在,求出直线的方程,如果不存在,请说明理由.解:显然x =1不满足条件,设l :y -1=k (x -1). 联立y -1=k (x -1)和x 2-y 22=1,消去y 得(2-k 2)x 2+(2k 2-2k )x -k 2+2k -3=0, 设P (x 1,y 1),Q (x 2,y 2),由Δ>0,得k <32,x 1+x 2=2(k -k 2)2-k 2,由M (1,1)为PQ 的中点,得x 1+x 22=k -k 22-k 2=1,解得k =2,这与k <32 矛盾,所以不存在满足条件的直线l .20.(本小题满分12分)已知椭圆C 1:x 24+y 2=1,椭圆C 2以椭圆C 1的长轴为短轴,且与C 1有相同的离心率.(1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和椭圆C 2上,OB →=2OA→,求直线AB 的方程. 解:(1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2),其离心率为32,故a 2-4a =32,则a =4,故椭圆C 2的方程为y 216+x 24=1.(2)设A ,B 两点的坐标分别为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上, 因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4,所以x 2A =41+4k 2,将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16, 所以x 2B =164+k 2, 由OB →=2OA →得x 2B =4x 2A, 即164+k 2=161+4k 2, 解得k =±1,故直线AB 的方程为y =x 或y =-x .21.(本小题满分12分)点A ,B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的点,M 到直线AP 的距离等于MB 的长,求椭圆上的点到点M 的距离d 的最小值.解:(1)由已知可得点A (-6,0),B (6,0),F (4,0).设点P 的坐标为(x ,y ),因为PA ⊥PF ,所以 k AP ·k PF =-1.故有方程组⎩⎨⎧x 236+y 220=1,y x +6·y x -4=-1,则2x 2+9x -18=0, 解得x =32或x =-6(舍去),所以 x =32, 由于y >0,故y =532. 所以 点P 的坐标是⎝ ⎛⎭⎪⎫32,532.(2)易知直线AP 的方程是x -3y +6=0.设点M 的坐标为(m ,0),则M 到直线AP 的距离是|m +6|2. 于是|m +6|2=|m -6|,又-6≤m ≤6,故m =2. 所以M 的坐标为(2,0).椭圆上的点(x ,y )到点M 的距离d 的平方为:d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2= 49⎝⎛⎭⎪⎫x -922+15. 由于-6≤x ≤6,所以当x =92时,d 取得最小值,最小值为15. 22.(本小题满分12分)已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB →的最小值.解:(1)设动点P 的坐标为(x ,y ),由题意有(x -1)2+y 2- |x |=1.化简得y 2=2x +2|x |.当x ≥0时,y 2=4x ;当x <0时,y =0.所以,动点P 的轨迹C 的方程为y 2=4x (x ≥0)和y =0(x <0).(2)由题意知,直线l 1的斜率存在且不为0,设为k ,则l 1的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=2+4k 2,x 1x 2=1. 因为l 1⊥l 2,所以l 2的斜率为-1k. 设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=2+4k 2,x 3x 4=1.故AD →·EB →=(AF →+FD →)·(EF →+FB →)=AF →·EF →+AF →·FB →+FD →·EF →+FD →·FB →=|AF →|·|FB →|+|FD →|·|EF →|=(x 1+1)(x 2+1)+(x 3+1)(x 4+1)=x 1x 2+(x 1+x 2)+1+x 3x 4+(x 3+x 4)+1=1+⎝ ⎛⎭⎪⎫2+4k 2+1+1+(2+4k 2)+1= 8+4⎝ ⎛⎭⎪⎫k 2+1k 2≥8+4×2k 2·1k2=16. 当且仅当k 2=1k2, 即k =±1时,AD →·EB →取得最小值16.。