搅拌功率准数与雷诺数的曲线

合集下载

搅拌器功率计算与

搅拌器功率计算与

p
H D
(0.35b
/
D)
• (sin)1.2
A 14 (b / D){670(dj / D 0.6)2 185} B 10{1.34(b / D0.5)2 1.14(dj / D)} p 1.1 4(b / D) 2.5(dj / D 0.5)2 7(b / D)4
已知条件: D dj b θ
搅拌器选型与功率计算
搅拌过程种类: 罐内介质:
溶解 水/固体
介质


称:
粘 度:
μ
0.009 Pa.s
密 度:
ρ
1200.0 kg/m3
罐体直径
D
罐体高度
H
挡板数量
挡板宽度
W
1/10D
1500 mm 1200 mm
4
搅拌器选型
搅拌器型式 参考值 涡轮式或浆式
取值
6片折叶开启 涡轮
θ=45°
全挡板
双叶浆式
θ=45°
45
搅拌过程的控制 因素
槽径D:浆径dj 参考值
槽高H:槽径D 浆宽b:浆径dj
取值 参考值 取值 参考值 取值
1、剪切速度
2、循环量 1.6:1~ 3.2:1 2.5:1 1:2~2:1 1:1 1:5~1:8 1:8
0.4 dj 0.125 b
搅拌转速: n
65 rpm
600 mm 75 mm
1.08 1.27 0.41 N 0.27 N 1.29 N 0.55 N
4.90 kgf.m/s 3.24 kgf.m/s 15.64 kgf.m/s 6.69 kgf.m/s
.
0.05 kW 0.03 kW 0.15 kW 0.07 kW

第六章-通风发酵设备-第二节搅拌器轴功率的计算

第六章-通风发酵设备-第二节搅拌器轴功率的计算
P0/( N 3D 5) =K [(ND2) / ] m
Np= K ReM m
圆盘六平直叶涡轮 Np=0.6 圆盘六弯叶涡轮 Np≡4.7 圆盘六剪叶涡轮 Np≡3.7
(二)多只涡轮在不通气条件 下输入搅拌液体的功率计算
在相同的转速下,多只涡轮比单只涡轮输出更 多的功率,其增加程度除叶轮的个数之外,还 决定于涡轮间的距离。
Pn=nP0
(三)通气情况下的搅拌功率 Pg的计算
同一搅拌器在相等的转速下输入通气液 体的功率比不通气流体的为低。
可能的原因是由于通气使液体的重度降 低导致搅拌功率的降低。
功率下降的程度与通气量及液体翻动量 等因素有关,主要地决定于涡轮周围气 流接触的状况。
通气准数:
Na=Q/ND3来关联功率的下降程度 Na<0.035 Pg/P0=1~12.6Na Na<0.035 Pg/P0=1~12.6Na Q——通气量 m3/min
生物工程设备
第六章 通风发酵设备
第二节 搅拌器轴功率的计算
一、搅拌器轴功率的计算 轴功率:搅拌器输入搅拌液体的功率,
是指搅拌器以既定的速度运转时,用以 克服介质的阻力所需的功率。它包括机 械传动的摩擦所消耗的功率,因此它不 是电动机的轴功率或耗用功率。
(一)搅拌功率计算的基本方 程式
单只涡轮在不通气条件下输送搅拌液体 的功率计算,
牛顿型流体:粘度μ只是温度的函数,与 流动状态无关。服从牛顿粘性定律。
非牛顿流体:粘度μ不仅是温度的函数, 随流动状态而变化。
(一)非牛顿型发酵醪的流变 等特性
牛顿型流体的流态式为直线,服从牛顿特性定 律:
=dw/dr
所有气体以及大多数低分子量的液体都属于牛 顿型流体,(2)彬汉塑型性流体

食工原理-第4章搅拌与混合

食工原理-第4章搅拌与混合

=1520kg/m3 m=6.6Pa.s
Re=d2n/m=0.92×5×1520/(6×6.6)=155 由图查得, F0.8,则 Eu=0.8 P= Eun3d5=0.8×1520×53×0.95/63=416W
第三节 均质和乳化
一、概述
胶体分散体系:分散相粒子的大小在0.1~0.001mm之间的体系
第四章 搅拌与混合
1、互溶液体的混合 2、不互溶液体的分散和接触 3、气液接触 4、固体颗粒在液体中的悬浮 5、强化液体与器壁的传热 搅拌既使物料混合,又大大加快了传质和反应; 非均相混合
均相混合
同时起到强化传热的作用。
第一节 混合的基本理论
混合:将两种或两种以上不同物料互相混杂,以达到一定 均匀度的单元操作。
8—搅拌轴
轴向叶轮:
径向叶轮:
二、打旋现象
当转速较高时,轴附近液体会形成较深“漩涡”, 造成各层液体无法均匀混合甚至分层,还可能引入大 量空气,造成搅拌器震动。
抑制“打旋”的措施
1、加设挡板
2、对直径小的容器, 将搅拌器偏心或偏心 倾向安装
三、搅拌功率
1、标准搅拌系统 (1)搅拌槽为圆筒形,平底,或带圆角的平底。 直径=D;
P113.表4-1查α、β值
P Eu n d
3
5
[例4-3]用三叶螺旋桨式标准搅拌系统将维生素浓缩液混入糖
蜜中。叶轮直径0.9m,转速50r/min,槽直径1.8m。已知糖蜜 的粘度为6.6Pa.s,密度为1520kg/m3,槽内液层深度2.25m。试
估算所需的功率。
解 d=0.9m n=50r/min=5/6s-1
36.5
33.0 49.0
1.60
1.15 2.75

搅拌性能测试技术简要说明

搅拌性能测试技术简要说明

技术简要说明:搅拌器性能测试平台,该平台由搅拌系统和数据采集控制系统组成;搅拌系统由釜体、搅拌器、搅拌轴、调速电机和减速器组成;数据采集控制系统由控制柜、密度传感器、温度传感器和粘度传感器组成;釜体和支撑架通过螺栓与底座连接,支撑架的顶端设有横梁,调速电机、减速器和联轴器均通过螺栓与横梁连接在一起,联轴器设置在釜体的上方,联轴器和搅拌轴连接,搅拌轴下端连接有搅拌器,调速电机通过减速器利用带传动形式带动搅拌轴转动;调速电机由控制柜控制,密度传感器、温度传感器和粘度传感器设在釜体中,密度传感器、温度传感器和粘度传感器的电讯号传回控制柜,调速电机的转速及功率信号通过变频器输入控制柜。

主权利要求:1.搅拌器性能测试平台,其特征是,该平台由搅拌系统和数据采集控制系统组成;搅拌系统由釜体、搅拌器、搅拌轴、调速电机和减速器组成;数据采集控制系统由控制柜、密度传感器、温度传感器和粘度传感器组成;釜体和支撑架通过螺栓与底座连接,支撑架的顶端设有横梁,调速电机、减速器和联轴器均通过螺栓与横梁连接在一起,联轴器设置在釜体的上方,联轴器和搅拌轴连接,搅拌轴下端连接有搅拌器,调速电机通过减速器利用带传动形式带动搅拌轴转动;调速电机由控制柜控制,密度传感器、温度传感器和粘度传感器设在釜体中,密度传感器、温度传感器和粘度传感器的电讯号传回控制柜,调速电机的转速及功率信号通过变频器输入控制柜。

搅拌器性能测定实验装置,搅拌过程中流体的混合要消耗能量,即通过搅拌器把能量输入到被搅拌的流体中。

因此搅拌釜内单位体积流体的能耗成为判断搅拌过程好坏的依据之一。

测定搅拌功率P,功率准数Np 随雷诺准数Re的变化关系。

搅拌器性能测定实验装置功能:1、掌握搅拌功率曲线的测定方法2、了解影响搅拌功率的因素及其关联方法。

3、用羧甲基纤维素纳(CMC)水溶液,测定液—液相搅拌功率曲线。

4、了解和掌握恒定干燥条件下物料的热量衡算、物料衡算的意义和计算方法。

生化工程-第五章-机械搅拌轴功率计算

生化工程-第五章-机械搅拌轴功率计算

第三章搅拌器轴功率计算
43
例题1
某细菌醪发酵罐: 罐直径 D=1.8m 圆盘六弯叶涡轮直径 d=0.60m,一只涡轮 罐内装四块挡板 搅拌器转速 168r/min 通气流率 Q=1.42m3/min(已换算为罐内状态的流量) 罐压 P=1.5×105Pa 醪液粘度μ=1.96×10-3N.s/m2 醪液密度ρ=1020kg/m3 要求计算 Pg
2020/10/25
第三章搅拌器轴功率计算
10
翼形轴流搅拌器
2020/10/25
第三章搅拌器轴功率计算
11
新型凹叶圆盘涡轮浆 圆盘弯叶涡轮和圆盘箭叶涡轮的改进型 通常与翼型轴流式搅拌叶轮形成组合浆
2020/10/25
第三章搅拌器轴功率计算
12
各种搅拌器的适用范围
2020/10/25
第三章搅拌器轴功率计算
2020/10/25
第三章搅拌器轴功率计算
38
Pg估算式:
Na ≤ 0.035 时,Pg / P0 = 1-12.6 Na Na ≥ 0.035 时,Pg / P0 = 0.62-1.85 Na
2020/10/25
第三章搅拌器轴功率计算
39
(2)依据Michel经验式计算
2020/10/25
第三章搅拌器轴功率计算
34
液体处于湍流状态: (1)圆盘六平直叶涡轮 (2)圆盘六弯叶涡轮 (3)圆盘六箭叶涡轮
Np ≈ 6 Np ≈ 4.7 Np ≈ 3.7
2020/10/25
第三章搅拌器轴功率计算
35
P0 = Np×N3 ×d5 ×ρ (W)
P0:不通气时搅拌器输入液体的功率(瓦); N :搅拌转速(转/秒);
31

搅拌器的搅拌功率的基本计算方法及影响因素

搅拌器的搅拌功率的基本计算方法及影响因素

搅拌器的搅拌功率的基本计算方法及影响因素搅拌器的搅拌功率的基本计算方法及影响因素搅拌器向液体输出的功率P,按下式计算:P=Kd5N3ρ式中K为功率准数,它是搅拌雷诺数Rej(Rej=d2Nρ/μ)的函数;d和N 分别为搅拌器的直径和转速;ρ和μ分别为混合液的密度和粘度。

对于一定几何结构的搅拌器和搅拌槽,K与Rej的函数关系可由实验测定,将这函数关系绘成曲线,称为功率曲线(图7)。

搅拌功率的基本计算方法理论上虽然可将搅拌功率分为搅拌器功率和搅拌作业功率两个方面考虑,但在实践中一般只考虑或主要考虑搅拌器功率,因搅拌作业功率很难予以准确测定,一般通过设定搅拌器的转速来满足达到所需的搅拌作业功率。

从搅拌器功率的概念出发,影响搅拌功率的主要因素如下。

①搅拌器的结构和运行参数,如搅拌器的型式、桨叶直径和宽度、桨叶的倾角、桨叶数量、搅拌器的转速等。

②搅拌槽的结构参数,如搅拌槽内径和高度、有无挡板或导流筒、挡板的宽度和数量、导流筒直径等。

③搅拌介质的物性,如各介质的密度、液相介质黏度、固体颗粒大小、气体介质通气率等。

由以上分析可见,影响搅拌功率的因素是很复杂的,一般难以直接通过理论分析方法来得到搅拌功率的计算方程。

因此,借助于实验方法,再结合理论分析,是求得搅拌功率计算公式的惟一途径。

由流体力学的纳维尔-斯托克斯方程,并将其表示成无量纲形式,可得到无量纲关系式(11-14)。

Np=P/ρN³dj5=f(Re,Fr)式中Np——功率准数Fr——弗鲁德数,Fr=N²dj/g;P——搅拌功率,W。

式(11-14)中,雷诺数反映了流体惯性力与粘滞力之比,而弗鲁德数反映了流体惯性力与重力之比。

实验表明,除了在Re﹥300的过渡流状态时,Fr数对搅拌功率都没有影响。

即使在Re﹥300的过渡流状态,Fr数对大部分的搅拌桨叶影响也不大。

因此在工程上都直接把功率因数表示成雷诺数的函数,而不考虑弗鲁德数的影响。

日本永田搅拌功率计算

日本永田搅拌功率计算

介质密度ρ=介质黏度μ=转速n=叶轮直径d=桨叶宽度b=液位高度H=容器直径D=桨叶倾角θ=A=28.3775B= 1.017419366p=1.399778516雷诺数Re=5474.944444功率准数Np=0.6634534320.342153搅拌功率P=0.357288531层流转变为过渡流时的临界雷诺数Rec=25.07246377功率准数Np= 2.197157274搅拌功率P=1.183231645倾角为θ的折叶桨临界雷诺数R θ=25.07246377功率准数Np= 2.197157274搅拌功率P=1.1832316450.056挡板宽度w=挡板数nb=①二叶平桨功率准数Np= 1.136848844搅拌功率P=0.612225417②二叶折叶功率准数Np= 1.136848844搅拌功率P=0.612225417挡板系数Kb=0.058114605永田进治的搅拌功率计算式1.对于无挡板搅拌罐的情况,对双叶平桨和双叶斜桨有如下搅拌功率计算式:2.二叶平桨在全挡板时的搅拌功率3.二叶折叶在全挡板时的搅拌功率4.部分挡板时的搅拌功率Kb=0.35,全挡板条件;0<Kb<0.35,部分挡板,Kb>0.35时,Kb增大,搅拌功率反而降低.圆盘涡轮搅拌功率计算功率准数Np=2.59(X1/d)^(-0.2)(D/D0)^0.065圆盘涡轮桨叶的厚度X1(0.01≦X1≦0.05)16mm圆盘涡轮直径d1100mm筒体直径D2200mmD01000mm液体的密度ρ1044kg/cm3搅拌转速n60rpm功率准数Np 6.353481634搅拌器的功率P=Np*ρ*(n/60)^3*(d/1000)^5=10.68256892kw折叶开启涡轮的搅拌功率计算功率准数Np.max=8.3(2*θ/π)^0.9(np^0.7*b*(sinθ)^1.6/d)折叶涡轮的折叶角θ90°叶片数量np4叶片宽度b0.288m搅拌器直径d 1.44m搅拌转速n66rpm液体密度ρ1044kg/m3功率准数Np 4.380766264搅拌器的功率P=Np*ρ*(n/60)^3*d^5=37.69129824kw布鲁马金式式搅拌器搅拌功率的计算在全挡板的情况下功率因数Np=72(d/D)^A*(b/D)^1.1(w/D-k(w/D)^2)*(COSθ)^1.05*np^0.812*ns^0.94搅拌器桨径d950mm罐体直径D3000mm叶片高度b330mm布鲁马金式叶片的径向宽度w118mm布鲁马金式叶片的端角θ45°一层叶轮上的叶片数np3叶轮层数ns4搅拌转速n95rpm液体密度ρ980kg/cm3则A=-2.3+16.2(w/D)-76.4(w/D)^2-1.780999289K=7.5+15(SIN(θ)-1)*(d/D) 6.108757211w/D0.0393333330.5/k0.081849709* 若w/D≧0.5/k时,取w/D=0.5/k则搅拌功率因数Np12.57756457搅拌器的功率P=Np*ρ*(n/60)^3*d^5=37.85800484kw* 若w/D﹤0.5/k时则搅拌功率准数Np9.183854419搅拌器的功率P=Np*ρ*(n/60)^3*d^5=27.64306262kw三叶后掠式搅拌器的功率计算桨径d950mm0.95罐径D3000mm桨叶宽度b267mm挡板系数Kb0.080.08~0.34后掠角α30°搅拌转速n106rpm液体密度ρ1000kg/cm30.128 0.32812*ns^0.94左边经验公式适用范围:d/D=0.28~0.54,b/D=0.09~0.14w/D=0.04~0.10,θ=30°,40°,50°np=3、4 ns=1、2、3。

搅拌功率准数与雷诺数的曲线

搅拌功率准数与雷诺数的曲线

搅拌功率准数与雷诺数的关系对于不同的搅拌设备和流体系统会有所差异。

一般来说,搅拌功率准数与雷诺数之间存在一个正相关关系。

雷诺数(Reynolds number)是描述流体流动情况的一个无量纲数,可以表示为Re=VD/ν,其中V为流体的速度,D为特征长度(如搅拌器直径),ν为流体的运动粘度。

雷诺数决定了流体的流动方式,可以分为层流和湍流。

对于一定几何结构的搅拌器和搅拌槽,K与Rej的函数关系可由实验测定,将这函数关系绘成曲线,称为功率曲线。

对于具体的搅拌设备和流体系统,可以通过实验测定或查阅相关文献资料来获取功率曲线。

此外,在选择搅拌器时,需要根据工艺对搅拌作业的目的和要求,确定搅拌器型式、电动机功率、搅拌速度,然后选择减速机、机架、搅拌轴、轴封等各部件。

以上信息仅供参考,建议咨询专业人士获取更准确的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

搅拌功率准数与雷诺数的曲线
【实用版】
目录
1.搅拌功率准数与雷诺数的定义
2.搅拌功率准数与雷诺数的关系
3.搅拌功率准数与雷诺数的曲线
4.曲线的应用和意义
正文
一、搅拌功率准数与雷诺数的定义
搅拌功率准数(Np)是描述搅拌过程中功率分布的参数,它反映了搅拌器在不同搅拌条件下的搅拌效果。

雷诺数(Re)是流体力学中用来描述流体流动特性的无量纲数,它反映了流体的惯性力和粘性力之间的相对关系。

二、搅拌功率准数与雷诺数的关系
搅拌功率准数与雷诺数之间的关系密切,它们共同决定了搅拌过程中的流体动力学行为。

当雷诺数较小时,流体表现为层流,搅拌功率准数与雷诺数呈线性关系;当雷诺数较大时,流体表现为湍流,搅拌功率准数与雷诺数的关系变得复杂,不再呈线性关系。

三、搅拌功率准数与雷诺数的曲线
通过实验和理论分析,可以得到搅拌功率准数与雷诺数的曲线。

该曲线可以帮助我们了解不同搅拌条件下的流体动力学行为,为搅拌器的设计、操作和优化提供理论依据。

四、曲线的应用和意义
搅拌功率准数与雷诺数的曲线在搅拌器设计、操作和优化中具有重要
的应用价值。

通过分析曲线,可以确定搅拌器的最佳工作点,以达到最佳的搅拌效果和节能效果。

此外,曲线还可以为搅拌器的选型、搅拌过程的调控和优化提供参考依据。

相关文档
最新文档