实数指数幂--参考教案
实数指数幂及运算法则教案

实数指数幂及运算法则一、教学目标知识目标:1、掌握实数指数幂的运算法则; 2、会用实数指数幂运算法则进行化简; 3、能运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算; 能力目标:1、培养学生的观察、分析、归纳等逻辑思维能力; 2、培养学生勇于发现、勇于探索、勇于创新的精神; 3、培养学生用事物之间普遍联系的观点看问题; 二、教学重点、难点1、重点 实数指数幂的运算法则及应用2、难点 运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算 三.学法与教具:1.学法:讲授法、讨论法. 2.教具:投影仪 四、教学过程 1、温知(1)0a =1(非零数的零次方等于1)1n na a -=(一个非零数的负指数幂等于它的正指数幂的倒数)(2m na (根式与分数指数幂的互化)练:将下列各根式写成分数指数幂的形式:(1(2将下列各分数指数幂写成根式的形式:(1)323; (2)258-2、新课•=3,即123•123=11223+;4=9,即142(3)=23=1423⨯;……猜想:有理数指数幂的运算法则与整数指数幂的运算法则完全相同. 可以证明对有理数指数幂,原整数指数幂的运算法则保持不变,即 (1)rsr sa a a +=(a>0,r,s ∈Q );同底数幂相乘,底数不变,指数相加. (2)()r srsa a =(a>0,r,s ∈Q ); 幂的乘方,底数不变,指数相乘. (3)()rr rab a b =(a>0,b>0,r ∈Q );积的乘方,等于把积的各个因式分别乘方.显然,整数指数幂的运算法则是有理数指数幂运算法则的特殊情况.3、知识巩固例1求下列各式的值:(1)238;(2)348116⎛⎫⎪⎝⎭;(3)3416-;(4)3•••解:分析先将根式转化为分数指数幂,在计算会更简便快捷.(1)238=233(2)=2332⨯=22=4;(2)348116⎛⎫⎪⎝⎭=34432⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦=34432⨯⎛⎫⎪⎝⎭=332⎛⎫⎪⎝⎭=278;(3)3416-=344(2)-=34()42⨯-=32-=18;(4)3•••=(4)13•123•133•163=11112363+++=23=9.练一练求值:(1)120.01;(2)1232-;(3)1264121-⎛⎫⎪⎝⎭;(4)2327.解:(1)120.01=()1220.1⎡⎤⎣⎦=1220.1⨯=0.1;(2)1532-=155(2)-=15()52⨯-=12-=12;(3)1264121-⎛⎫⎪⎝⎭=122811-⎡⎤⎛⎫⎢⎥⎪⎝⎭⎢⎥⎣⎦=12()2811⨯-⎛⎫⎪⎝⎭=1811-⎛⎫⎪⎝⎭=118;(4)2327=233(3)=2333⨯=23=9.例2计算下列各式(a>0,b>0):(1;(2)2133215(3)a b a b-÷.解:分析系数与系数做运算;同底的幂按法则进行运算;不同底的幂不进行运算.(1=213a a-=213a-=13a-;(2)2133215(3)a b a b-÷=12233153a ba b-=121(3)235a b---=1465a b-.练一练化简下列各式(a>0):(1•(2•解:(1•1134a a•=1134a+=712a;(2•2332a a•=2332a+=496a+=136a.实际上,当底数大于0时,我们可以将指数的取值范围由有理数推广到实数.有理数指数幂和无理数指数幂统称为实数指数幂.有理数指数幂的运算法则同样适用于无理数指数幂. 4、小结(1)实数指数幂的运算法则r s r sa a a+=(a>0,r,s∈Q);()r s rsa a=(a>0,r,s∈Q);()r r rab a b=(a>0,b>0,r∈Q);(2)化简要遵循运算顺序进行,一般“先括号里再括号外,先乘方再乘除,最后加减”;如果有根式,先把根式化成分数指数幂在进行化简;5、作业练习4.1.2 1、2。
中职数学教学设计——实数指数幂

1
;(2)
1 8
6
−
;(3) a
3 7
−
;(4) (−a)
2 3
.
2.将下列各根式写成分数指数幂的形式.
(1) 4 10 ;(2) 7 ;(3) 4 5.65 ;(4) 1 .
2
5 a4
3.利用计算器求下列各式的值(保留到小数点后第 3
位).
3
−2
(1) 34 ;(2) 6 5 ;(3)
1
.
5 2.53
=
n
am
.
n
当指数为负分数 − m( m,n ∈ N* , n > 1 )且 a ≠ 0 时,
n
−m
a =n
= 1
1 .
m
an
n am
讲解 说明
当 n 为偶数时,a 的取值应使 n am
或1 n am
有意义.
这样,就把整数指数幂推广到了有理数指数幂.
可以证明,当 a>0,b>0 且 p,q∈Q 时,有理数指数幂有以
指导
(1) 3.13−3 ;(2) 3.2 7 .
思考 动手 求解
交流
通过 练习 及时 掌握 学生 的知 识掌 握情 况, 查漏 补缺
归纳 总结
布置 作业
1.书面作业:完成课后习题和学习与训练; 2.查漏补缺:根据个人情况对课题学习复习与回顾; 3.拓展作业:阅读教材扩展延伸内容.
引导 提问
说明
回忆 反思
(1) a2 a ; (2)
a .
5 a3
2.计算下列各式的值.
(1) ( 3 25 125) 4 5 ; (2) 3 3 4 3 4 27.
提问 巡视
教案数学中职实数指数幂

教案数学中职实数指数幂教案标题:数学中职实数指数幂教案目标:1. 了解实数的定义和性质;2. 掌握指数的定义和运算规则;3. 理解实数指数幂的概念和运算法则;4. 能够应用实数指数幂解决实际问题。
教案步骤:引入(5分钟):引导学生回顾实数的定义和性质,例如实数的分类、实数的运算法则等。
提醒学生实数的重要性和应用领域。
概念讲解(15分钟):1. 介绍指数的定义和运算规则,包括指数的基数、指数和幂的关系等。
通过示例和图表展示指数的计算过程和结果。
2. 引入实数指数幂的概念,解释实数指数幂的定义和特点。
通过示例和图表展示实数指数幂的计算过程和结果。
练习与讨论(20分钟):1. 分发练习题,让学生独立完成。
练习题涵盖指数的基本运算、实数指数幂的计算等。
2. 引导学生讨论解题思路和方法,解答他们在练习中遇到的问题。
鼓励学生积极参与讨论,互相学习和帮助。
应用与拓展(15分钟):1. 设计一些实际问题,让学生应用实数指数幂解决。
例如,计算物体的面积、体积等问题。
2. 引导学生思考实数指数幂在实际生活中的应用,如科学计数法、金融利息计算等。
鼓励学生分享自己的观点和经验。
总结与反思(5分钟):回顾本节课的重点内容和学习收获,引导学生总结实数指数幂的定义和运算法则。
鼓励学生提出问题和疑惑,解答他们的疑问。
作业布置:布置相关的作业,巩固学生对实数指数幂的理解和应用能力。
要求学生按时提交作业,并指导他们如何自主学习和提高。
教学资源:1. 教科书或教学参考书;2. 练习题和答案;3. 多媒体设备,如投影仪、电脑等。
教学评估:1. 观察学生在课堂上的参与度和学习态度;2. 检查学生在练习中的答题情况,评估他们对实数指数幂的理解和应用能力;3. 收集学生的作业,检查他们的独立思考和解题能力;4. 针对学生的表现,提供个别辅导和指导,帮助他们克服困难,提高学习效果。
《实数指数幂及其运算》教案

《实数指数幂及其运算》教案第一课时学习目标1.知识与技能目标理解整数指数幂的概念和性质,并能用于相关计算中;理解根式的概念和性质,并能用于相关计算中.2.过程与方法目标通过复习回顾初中所学二次根式的相关性质,用类比的思想来完成根式的学习;3.情感态度与价值观目标通过复习回顾旧知识,来完成新知识的学习,在这一过程中培养观察分析、抽象概括能力、归纳总结能力、化归转化能力;重点难点教学重点:根式的概念、性质教学难点:根式的概念教学过程(I)复习回顾师:在初中,我们已经学习了整数指数幂的概念及其性质.现在,我们一起来看屏幕.a0=1(a≠0)(a≠0,n)师:这儿我们为什么都要求a≠0?(引导学生分析清楚)师:另外,我们在初中还学习了平方根、立方根这两个概念.师(生):我们来看,若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n=a,则2叫a的n次方根.这样,我们可以给出n次方根的定义.(II)讲授新课1.n次方根的定义:若x n=a(n>1且n∈N*),则x叫做a的n次方根.师:n次方根的定义给出了,我们考虑这样一个问题,x如何用a 表示呢?生:正数的平方根有两个且互为相反数,负数没有平方根;正数的立方根是正数,负数的立方根是负数.师:跟平方根一样,偶次方根有下列性质:在实数范围内,正数的偶次方根有两个且互为相反数,负数没有偶次方根;跟立方根一样,奇次方根有下列性质:在实数范围内,正数的奇次方根是正数,负数的奇次方根是负数.这样,再由n次方根的定义我们便可得到n次方根的性质:2.根式运算性质:①(n>1,且n)②师:关于性质的推导,我们一起来看:师:性质②有一定变化,大家应重点掌握,接下来,我们来看例题:3.例题讲解师:根指数 n为奇数的题目较易处理,而例题侧重于根指数n为偶数的运算,说明此类题目容易出错,应引起大家的注意.为使大家进一步熟悉性质运用,请大家来做练习题.(III)课堂练习(IV)课时小结(V)课后作业教材练习A:1第二课时学习目标1.知识与技能目标理解分数指数幂的概念和性质,并能用于相关计算中;会对根式、分数指数幂进行互化;了解无理指数幂.2.过程与方法目标通过复习回顾初中所学的整数指数幂及上节课所学根式的相关性质,用类比的思想来完成分数指数幂的学习;3.情感态度与价值观目标培养学生用联系观点看问题;教学重难点教学重点:1.分数指数幂的概念.2.分数指数幂的运算性质.教学难点:对分数指数幂概念的理解.教学过程(I)复习回顾师:上一节课,我们一起复习了整数指数幂折运算性质,并学习了根式的运算性质.师:对于整数指数幂运算性质(2),当a>0,m,n是分数时也成立.(说明:对于这一点,课本采用了假设性质(2)对a>0,m,n是分数也成立这种方法,我认为不妨先推广性质(2),为下一步利用根式运算性质推导正分数指数幂的意义作准备).师:对于根式的运算性质,大家要注意被开方数a n的幂指数n与根式的根指数n的一致性.接下来,我们来看几个例子.幂运算性质(2).因此,我们可以得出正分数指数幂的意义.(II)讲授新课1.正数的正分数指数幂的意义:师:大家要注意两点,一是分数指数幂是根式的另一种表示形式;二是根式与分数指数幂可以进行互化.另外,我们还要对正数的负分数指数幂和0的分数指数幂作如下规定.2.规定:(1)(2)0的正分数指数幂等于0.(3)0的负分数指数幂无意义.师:规定了分数指数幂的意义以后,指数的概念就从整数推广到有理数指数.当a>0时,整数指数幂的运算性质,对于有理指数幂也同样适用.即对于任意有理数r,s,均有下面的运算性质:3.有理指数幂的运算性质:(1)a r•a s=a r+s(a>0,r,s∈Q)(2)(a r)s=ar•(a>0,r,s∈Q)(3)(a•b)r=a r•b r(a>0,b>0,r∈Q)4.例题讲解例2:求值:分析:此题主要运用有理指数幂的运算性质.解:例3:用分数指数幂的形式表示下列各式:分析:此题应结合分数指数幂意义与有理指数幂运算性质.解:5.无理指数幂师:若a>0,p是一个无理数,则a p(如)表示一个确定的实数,即有理指数幂还可以推广到无理指数幂.我们现在还无法给出无理指数幂严格的定义,但是上述有理指数幂的运算性质,对于无理数指数幂都适用,而有关概念和证明我们现在也不考虑.现在我们可能还有一些疑问,究竟是一个什么样的数呢?我们按照要求的精确度,取无理数的不足近似值或过剩近似值:1.4,1.41,1.414,……(的不足近似值);1.5,1.42,1.415,……(的过剩近似值).其次,我们相应地可用有理指数幂的序列31.4,31.41,31.414,……或31.5,31.42,31.415,……来近似地计算无理指数幂的不足或过剩近似值.一般地,当a>0,α为任意实数时,实数指数幂aα都有意义.例1.利用科学计算器计算(精确到0.001):例2.利用科学计算器计算函数值.已知课后作业教材练习A:2,3;B:1,2,3。
高教版中职数学基础模块上册《实数指数幂》教案 (一)

高教版中职数学基础模块上册《实数指数幂》教案 (一)高教版中职数学基础模块上册《实数指数幂》教案一、教学目标1. 理解实数、指数和幂的基本概念及其性质。
2. 掌握实数的运算法则。
3. 熟练掌握指数和幂的运算法则。
4. 初步掌握实际问题中应用指数和幂的方法。
二、教学重难点1. 指数与幂的定义和性质。
2. 指数与幂的运算法则。
3. 实际问题的应用。
三、教学内容及步骤A. 呈现1. 引出实数的概念及表示法。
2. 引出指数与幂的概念及表示法。
B. 模拟与探究1. 通过教师提问和学生讨论,让学生深入理解指数和幂的定义和性质,并进行探究。
2. 教师引导学生进行实数的基本运算。
3. 教师组织学生练习指数和幂的运算法则。
C. 引申与拓展1. 教师引导学生从实际问题中得出指数和幂的应用方法。
2. 教师提供案例,让学生自己解决问题,并进行讨论和分享。
四、教学方法1. 教师引导学生参与讨论,深化对概念的理解。
2. 教师演示指数和幂的运算方法,引导学生模仿操作。
3. 多媒体课件展示案例,引导学生思考和解决问题。
4. 学生个人或小组探究问题,教师辅导和引导。
五、教学过程设计1. 引入部分学生根据教师提供的问题和资料,思考和分享实数、指数和幂的概念,并探究实数的运算规律。
2. 模拟与探究部分2.1 指数和幂的定义和性质:问题:什么是指数?什么是幂?它们有什么性质?探究:学生分组自主探究指数和幂的定义和性质,并通过PPT展示学习成果。
2.2 实数的基本运算:问题:实数的四则运算规则是什么?探究:教师演示实数的基本运算,然后引导学生独立解决一道题。
2.3 指数和幂的运算法则:问题:如何计算指数和幂的运算?探究:教师演示指数和幂的运算法则,让学生跟随操作并练习。
3. 引申与拓展部分3.1 指数和幂的应用:问题:指数和幂在实际问题中有哪些应用?引申:教师通过多媒体课件展示案例,引导学生思考和解决问题。
3.2 学生自主解决问题:问题:使用指数和幂解决一个实际问题。
高教版中职数学基础模块上册:4.1《实数指数幂》优秀教案

18 苏州园林知识与能力1.积累“轩榭、败笔、丘壑、嶙峋、镂空”等词语,掌握其音义,并用词造句。
2.整体感知内容,概括苏州园林的特征,分析本文的结构特点。
3.掌握本文运用的说明方法,品味说明语言的多样性。
过程与方法运用多种媒体,创设丰富情境,引导学生感知园林的画意美,感受园林文化的艺术美。
情感态度与价值观1.领略中国园林的建筑美,逐步培养学生的艺术鉴赏力。
2.了解我国园林建筑的成就,激发热爱祖国的思想。
3.感受写作大师的语言美,增强热爱母语的感情。
教学重点作者是如何抓住苏州园林的特征,并突出这个特征的。
教学难点理解绘画与园林建筑的联系。
2课时第一课时一、新课导入《中国石拱桥》让我们领略到了我国桥梁事业的伟大成就,今天,我们从桥上走下来,进入另一种建筑物——园林。
在我国的园林中,苏州园林具有独一无二的特征和地位,它是中国各地园林的标本。
现在,让我们去苏州园林游览一番,看看那儿的园林建筑。
二、自主预习1.作者介绍叶圣陶(1894—1984),原名叶绍钧,现代著名作家、教育家,有“优秀的语言艺术家”之称,代表作是长篇小说《倪焕之》。
他曾在小学、中学、大学教过书,对语文教学的改革和教材的建设有重大贡献。
20年代和30年代是他创作道路上的重要阶段。
这个时期他的作品很多,最有名的有长篇小说《倪焕之》,童话集《稻草人》《古代英雄的石像》。
他原籍江苏苏州吴县,所以对苏州园林很熟悉,又有深刻的研究。
2.背景资料叶圣陶先生自小生长在苏州,他对苏州的一草一木充满了深厚的感情,特别是与驰名中外的苏州园林结下了不解之缘。
1979年初,香港一家出版社邀请叶圣陶为其出版的《苏州园林》图册作序,叶圣陶欣然允诺。
序文即此篇(略有删节)。
后来图册因故未能出版,序文被《百科知识》所用,原题为《拙政诸园寄深眷——谈苏州园林》。
3.知识链接中国四大古典名园:颐和园、避暑山庄、拙政园、留园苏州四大古典名园:沧浪亭、狮子林、拙政园、留园 4.检查预习 (1)订正字音 轩榭..(xu ānxi è) 池沼.(zh ǎo) 丘壑.(h è) 嶙峋..(l ínx ún) 蔷薇..(qi ángw ēi) 镂.空(l òu) 斟酌..(zh ēnzhu ó) 重峦叠嶂.(zh àng) 屈曲..(q ūq ū) 鉴.赏(ji àn) 栏.杆(l án) 相间.(ji àn) 依傍.(b àng) 单调.(di ào) 蔓⎩⎪⎨⎪⎧m àn 蔓延w àn 藤蔓m án蔓菁模⎩⎪⎨⎪⎧m ó模范m ú模样(2)词语释义因地制宜:根据不同地区的具体情况规定适宜的方法。
《实数指数幂》教案全面版

《实数指数幂》教案教学目标:使学生理解分数指数幂的概念,了解实数指数幂的概念,掌握实数指数幂的运算法则,掌握根式与分数指数幂的相互转化,理解对立、统一的辨证关系.教学重点:掌握根式与分数指数幂的相互转化,实数指数幂的运算法则.教学难点:对分数指数幂概念的理解及根式与分数指数幂的互化.教学过程:一、复习1.零指数、负整数指数的概念,以及它们之间的关系.2.浓缩后的3条法则是什么?怎样浓缩好?二、新课引入与讲解在初中已学过,若是大于1的整数,是的整数倍,那么若不是的整数倍,那么上式中右端的就是一个分数了(引入自然,合理)例如,当=2,=3时,,显然不能用正整数指数幂来解释,所以必须对的分数指数幂重新定义,为此规定,在不是的整数倍时也适用,自然应把看成是根式的另一种记法,对于底为什么要使,须回忆应分几种情况:1.零指数与负整数的底均不能为零.2.正分数指数幂,当指数的分子,分母互质时,分母为奇数,底数可以为任意实数;分母为偶数时底数为非负实数.3.负分数指数幂,当指数的分子与分母互质时,分母为奇数、底数不能为零,分母为偶数,底数为正实数.总之,当正实数为底时,指数可为任意实数.以上这几点均可举例说明.关于运算法则仍然成立,可以通过特殊值加以验证,克服心理障碍.假如,设=,=验证第一条∵ ,∴ 成立.它不仅让学生从心理上承认在指数概念推广后,运算法则仍然有效,同时也能启发学生在解繁杂根式运算时,用幂的运算法则更为简便.当时,(、∈,且为既约分数);(、∈且为既约分数).这样当指数推广到分数指数幂以后当,为有理数时,表示一个确定的实数.当,为无理数时,是否还表示一个确定的实数?答案是肯定的,它是在的以值不足近似值为指数的所有幂与以的以的过剩近似值为指数的所有的幂中间的一个实数,这样就使中的可取一切实数了.为学习指数函数做好了必要准备.由此得可以验证与证明;;,其中,,、为任意实数.三、课堂练习(1)(2)(3)(4)(5)(6)(7)(8)利用计算器计算(精确到0.001)①;②;③.(请同学按课本上的方式按键计算,如学生手中的计算器按键方式不同,教师需给予辅导).课堂小结:1.分数指数幂的概念,明确他是根式的一种写法(记号).2.零的正分数指数幂为零.零的负分数指数幂无意义.3.4.3条法则.5.对于计算结果,不强求统一.没有特别时要求时一般用分数指数幂的形式表示,但结果中不能同时含根号与分数指数,也不能即有分母又含有负指数,系数一般不用负指数来表示.课后作业:1.预习、复习3。
实数指数幂及运算法则教案

一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队合作精神。
二、教学重点与难点1. 教学重点:(1)实数指数幂的概念;(2)实数指数幂的运算法则;(3)运用实数指数幂及运算法则解决实际问题。
2. 教学难点:(1)实数指数幂的运算法则的推导和理解;(2)运用实数指数幂及运算法则解决实际问题。
三、教学准备1. 教师准备:(1)实数指数幂的相关知识;(2)实数指数幂的运算法则的例题和练习题;(3)实数指数幂的实际问题。
2. 学生准备:(1)掌握实数的基本概念;(2)具备一定的数学运算能力。
四、教学过程1. 导入:(1)复习实数的基本概念;(2)引导学生思考实数指数幂的概念。
2. 知识讲解:(1)讲解实数指数幂的概念;(2)推导和讲解实数指数幂的运算法则;(3)运用实际例子解释实数指数幂及运算法则的应用。
3. 课堂练习:(1)让学生独立完成练习题;(2)讲解练习题的解题思路和方法。
4. 课堂小结:(1)回顾本节课所学内容;(2)强调实数指数幂及运算法则的重要性和应用。
五、课后作业1. 复习本节课所学内容;2. 完成课后练习题;3. 思考和解决实际问题。
六、教学评估1. 课堂讲解评估:(1)观察学生对实数指数幂概念的理解程度;(2)评估学生对实数指数幂运算法则的掌握情况;(3)评价学生的课堂参与度和提问回答情况。
2. 课堂练习评估:(1)检查学生练习题的完成情况;(2)分析学生解题思路和方法的正确性;(3)针对学生易错点进行讲解和辅导。
七、教学反思1. 反思教学内容:(1)是否全面讲解了实数指数幂的概念和运算法则;(2)是否结合实际例子让学生更好地理解实数指数幂的应用;(3)是否注重了学生的课堂参与和思维能力的培养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
树立事物之间存在着相互联系又可以相互转化的思想,培养学生的创新思维.
教学
重难点
教学重点:实数指数幂的运算,掌握其运算法.
教学难点:运用实数指数幂的运算法则及分数指数幂和根式之间的互化进行计算.
第1课时
教学过程
教学活动
学生活动
设计思路
一、创设情境
在学习了有理数指数幂的基础上,我们可以将 中指数x的取值范围从有理数拓展到实数,此时 的意义是什么呢?如 、( ,它们是一个确定的数吗?能否计算出结果呢?其实,指数从有理数推广到实数后,x为无理数时, 也是有意义的, 、( 都是确定的数,虽然它们的精确值只能用近似值来逼近.
例2化简(式中字母均为正实数)
(1) ;(2) .
分析两个小题我们首先需要将根式转化为分数指数幂,然后再化简运算.
解(1)
(2)
=
=
=
=a
例3计算
分析原代数式中每一项都是前面一项的2倍(除第1项外),可考虑将该代数式中的每项乘2后再与原代数式相减.
解令S= (1)
将(1)式两边同时乘以2,得到
2S= (2)
第七单元4.1《实数指数幂》教案
授课题目
实数指数幂
授课课时
1
课型
讲授
教学
目标
知识与技能:
1.了解实数指数幂的含义.
2.在分数指数幂的基础上,掌握实数指数幂的运算法则.
3.进一步巩固分数指数幂和根式之间的互化进行计算.
过程与方法:
实数指数幂是分数指数幂的深化,是以后学习指数函数的基础,在具体的运算中,学会用抽象的符号或字母的进行运算,提高运算能力.
2.预习
3.调查实践,探究
教学
反思
(正文,宋体小四,1.5倍行距,段首前空两字)
用(2)式减去(1)式可得
2S—S=( )-( )
即S= —1,
所以, = -1.
四、课堂练习
1 计算下列各式.
(1) ;
(2) ;
(3) .
2化简(式中字母均为正实数).
(1) ;
(2) ;
(3)
五、课堂小结
当指数为实数,幂的运算法则:
(1) , .
(2) .
(3) , .
六、作业布置:
1.教材配套练习
二、知识学习
有理数指数幂的运算性质同样可以适用于实数指数幂的运算性质(证明略),即当 时,有
(1) ;
(2) ;
(3) .
注意:运算性质成立的条件是每个实数指数幂都有意义.
三、例题讲解
例1计算
(1) ;
(2) ;
解(1)
=
=
=2-3+1
=0
(2)
= )
=
=
=
对第(1)小题,我们需要将某些底数变化为指数幂的形式,以方便利用实属指数幂的运算法则进行计算或者化简.